Формула короткого замыкания тока – Ток короткого замыкания и его расчет. Ударный ток короткого замыкания :: SYL.ru

Содержание

Ток короткого замыкания формула для расчета

Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей. Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания

Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается сопротивление изоляции. Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания.

Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением. Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.

Однако, отключение напряжения может не случиться даже если присутствуют защитные средства. Такая ситуация складывается, когда место короткого замыкания сильно удалено и значительное сопротивление делает ток недостаточным для срабатывания защитных устройств. Тем не менее, этого тока вполне хватает для возгорания проводов и возникновения пожара.

В таких ситуациях большое значение имеют так называемые времятоковые характеристики, свойственные автоматическим выключателям. Здесь большую роль играет отсечка тока и тепловые расцепители, защищающие от перегрузок. У этих систем совершенно разное время срабатывания, поэтому, медленное действие тепловой защиты может привести к образованию горящей дуги и повреждению проводников, расположенных рядом.

Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.

Как рассчитать ток короткого замыкания по формуле

Расчет данных токов, как правило, производится в случае необходимости проверки работы оборудования в экстремальных ситуациях. Основной целью является определение пригодности защитных автоматических устройств. Для того, чтобы правильно рассчитать ток короткого замыкания прежде всего, необходимо точно знать металл, из которого изготовлен проводник.  Для расчетов также потребуется длина провода и его сечение.

Для определения удельного сопротивления петли фаза-ноль необходимо знать показатель активного сопротивления Rп, значение которого состоит из удельного сопротивления провода, умножаемого на его длину. Значение индуктивного сопротивления Хп рассчитывается по показателю удельного индуктивного сопротивления, принимаемого, как 0,6 Ом/км.

Показатель Zt является полным сопротивлением фазной обмотки, установленной в трансформаторе со стороны низкого напряжения. Таким образом, своевременные предварительные расчеты помогут избежать серьезных повреждений электрооборудования, вызванных коротким замыканием.

Расчеты дают возможность точно определить, какой автоматический выключатель обеспечит наиболее эффективную защиту от замыканий. Однако, все необходимые измерения можно произвести с помощью специального прибора, который как раз и предназначен для определения этих величин. Для проведения замера, прибор подключается к сети и переводится в необходимый режим.

Защита сети от короткого замыкания

Расчет токов короткого замыкания (КЗ), пример, методические пособия

расчет токов кзВ этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.

И так:

1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;

2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;

3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.

Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:

1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;

2. Программа для расчета токов КЗ в сетях 0.4 кВ.

Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН). В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом. Имеет место следующая зависимость:

Расчетная схема для определения токов КЗ Рис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з. на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:
Расчет токов короткого замыкания (КЗ), пример, методические пособия
Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ. Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.

 Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.

Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.

Схема замещения в случае наличия реактора при питании секций
Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.

В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.

В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.

Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.

Базисные токи в точках короткого замыкания К1 – К4, кА:

Расчет токов короткого замыкания (КЗ), пример, методические пособияПри расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
Расчет токов короткого замыкания (КЗ), пример, методические пособиягде uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.

При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.

В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).

Сопротивление участка магистрали резервного питания:

в относительных единицах:

где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.

Сопротивление трансформатора собственных нужд 6/0,4 кВ:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.

Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.

Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н). 

Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;

Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:

Расчет токов короткого замыкания (КЗ), пример, методические пособия
Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем: 

Расчет токов короткого замыкания (КЗ), пример, методические пособия

В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).

При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.

Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.

По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Ток короткого замыкания и его расчет. Ударный ток короткого замыкания :: SYL.ru

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

ток короткого замыкания

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет – она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I = U / R,

где:

I – величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? – спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U – та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R – электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников – малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

ударный ток короткого замыкания

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P = U x I,

где:

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

I – ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

формула тока короткого замыкания

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) — это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки – страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки – емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

где:

I к.з. — величина тока короткого замыкания, А;

Uph – фазное напряжение, В;

Zn — полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt – полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

ток короткого замыкания трансформатора

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина – соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

защита от токов короткого замыкания

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

расчет токов короткого замыкания

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

сила тока короткого замыкания

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

сила тока короткого замыкания источника

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

Расчет токов короткого замыкания | Заметки электрика

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про короткое замыкание и его последствия. Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь  рассчитывать токи короткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к. сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и электрикам для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил пример расчета защиты асинхронного двигателя. Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.

Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его номинального тока для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

 

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).

В скобках около марки кабеля указано количество жил и их сечение (как рассчитать сечение кабеля). 

Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью установить счетчик. Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.

Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это проверить вводной автоматический выключатель А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

 

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

  • базисная мощность энергосистемы Sб = 100 (МВА)

  • базисное напряжение Uб1 = 10,5 (кВ)

  • ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.

На этой схеме указываем все элементы электрической цепи и их параметры. Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту. 

Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному. 

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:

Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) автомат уверенно сработал и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з. 

P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.

Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


составляющие тока, формула, сила тока, график

Ток короткого замыкания — разрушительная энергия, создаваемая между двумя точками электроцепи. Полное определение, график тока кз, зависимость, равенство, токовые источники, измерение токовой мощности и другое далее.

Что это такое

Это электросоединение нескольких точек электроцепи, имеющих разные потенциальные значения, которые не предусмотрены конструкцией устройства и нарушают нормальное его функционирование. Также им называют резко возрастающий ударный электроимпульс. Возникает, если была нарушена изоляция в токоведущих элементах или произошло механическое соприкосновение незаизолированных проводников. Также бывает в том случае, когда значение сопротивления нагрузки меньше того, что имеет источник питания.

Полное определение

От чего зависит

Ток короткого замыкания образуется в тот момент, когда генерируются и разделяются сгенерированные носители при помощи света, в дополнение к теме, как определить ток короткого замыкания источника. Часто он равняется светопотоку, поэтому считается минимальным. Зависит от:

  • площади и плотности;
  • число фотонов или мощности падающего показателя излучения;
  • световой интенсивности;
  • спектра падающего излучения;
  • оптического свойства, поглощения и отражения;
  • вероятности разделения СЭ, поверхностной пассивации и времени.

Обратите внимание! Также он зависит от возникающего в проводнике электрического поля, от времени и пути токового протекания. Находится в зависимости от заряда с его концентрацией, скоростью и площади поперечного проводникового сечения. Равен напряжению, поделенному на проводниковое сопротивление. Измеряется в амперах.

Зависимость электротока

Источники

Источником выступает в быту поврежденная электрическая проводка, незаземленный кабель или нагретый поврежденный провод.

Стоит указать, что электроток происходит в одно-, двух- и трехфазной цепи во время замыкания фазы на землю или нейтрального провода, нескольких фаз, одновременного переключения фаз на землю. Бывает межвитковым и обмоточным на металлокорпус.

Чтобы защититься от него, нужно поставить токоограничивающего вида электрореакторы, распараллелить электроцепи, отключить секционные и шиносоединительные выключатели, использовать трансформаторы, имеющие расщепленную обмотку, использовать коммутационный аппарат, который отключает поврежденное оборудование. Также нужно применить релейную защиту вместе с плавкими предохранителями и автоматическими выключателями.

Источники

Как измерить мощность электротока

Измерение мощности электротока короткого замыкания не отличается от измерения обычной электроэнергии. Все что нужно для ответа на вопрос, как рассчитать ток короткого замыкания трансформатора, это поделить сетевое напряжение на электросопротивление. Также можно воспользоваться более сложной формулой: Iкз = E/r.

Стоит указать, что при снижении показателя сопротивления, токовая сила будет расти. Соответственно, по проводнику будет идти тепло. Эта связь обладает количественной и временной характеристикой. Поэтому чем выше токовое значение, тем больше тепла будет выведено за определенное время. В этот момент можно найти, рассчитать и посчитать токовое значение.

Формула измерения мощности электротока

График тока короткого замыкания

Чтобы понять, как действует переменный ток короткого замыкания в однофазном резисторе, можно сделать специальный график. По нему можно научиться находить, определять, рассчитывать и измерять энергию. В момент нарушения кабельной изоляции, нормальное значение вырастает на графике в десять раз, а в тот период, когда срабатывает автомат, это разрывает аварийную цепь. Резко снижается показатель, а затем постепенно все приходит в норму.

График электротока

Схема

Еще один способ изучения принципа токового действия это построение схемы. На данный момент для этого можно применить специальную программу. Благодаря ей можно не только понять, в какой ситуации случится короткое замыкание, но и попробовать его предотвратить, построив правильную электросхему и используя затем качественные материалы.

Обратите внимание! Стоит указать, что кроме дистанционного способа, есть возможность сделать схему самостоятельно, используя соответствующие учебные пособия. В результате такого действия можно сделать проверку вводного автоматического выключателя, имеющего средний номинальный ток на коммутационную способность в силовой кабельной линии. Благодаря схеме будет несложно определяться в токовых значениях.

Схема электротока

В целом, электроток короткого замыкания — разрушительная энергия, которая зависит от числа фотонов, спектра излучения, оптического свойства и прочего. Измерение его мощности можно произвести через специальную формулу. Имеет свой график и схему, которые представлены выше.

Мощность короткого замыкания

Содержание:

  1. Виды коротких замыканий
  2. Изменение тока в аварийном режиме
  3. Испытания и выбор нужных уставок для защитных устройств
  4. Мощность КЗ и начальный ток
  5. Негативные последствия коротких замыканий

Нормальный рабочий режим в системах электроснабжения может внезапно прерваться в результате аварийной ситуации, в частности – короткого замыкания. Подобное состояние возникает из-за поврежденной изоляции элементов сети и электрооборудования. Для того чтобы эффективно противостоять этому явлению, следует хорошо знать его основные параметры, в том числе – мощность короткого замыкания. Этот параметр позволяет вычислить формула, используемая для вычислений тока КЗ.

Подобная информация помогает не только устранить вероятные последствия, но и в кратчайшие сроки восстановить нормальный рабочий режим всех энергосистем. Эти же знания используются при выборе защитных устройств и других средств, ограничивающих высокие токи.

Виды коротких замыканий

Понятие короткого замыкания заключается в непосредственном непреднамеренном соединении любых двух точек, расположенных на различных фазах, нулевом проводе или земле. Вариантов таких соединений может быть очень много, и все они не предусмотрены нормальными условиями эксплуатации установок, оборудования и сетей.

Среди основных видов КЗ следует отметить однофазное и трехфазное. В первом случае одна из фаз замыкается и взаимодействует с нулевым проводом или землей. Аналогичные явления наблюдаются во время обрывов проводов и одновременных замыканий двух разных фаз.

При трехфазном коротком замыкании хорошо заметна определенная симметрия, так как все фазы находятся в одних и тех же условиях. Поэтому токи в каждой из них будут одинаковыми. Другие виды КЗ относятся к несимметричным, поскольку фазы попадают в неодинаковые условия. В результате, токи и напряжения получаются с искаженной амплитудой, в зависимости от конкретных условий аварии.

Следует учесть, что при коротком замыкании происходит заметное снижение общего электрического сопротивления в системах. Это приводит к резкому увеличению токов во всех ветвях сетей и одновременному снижению напряжения на отдельных участках.

Среди основных причин, вызывающих аварийные ситуации подобного рода, можно выделить следующие:

  • Нарушенная изоляция в токоведущих частях. Причинами становится ее неудовлетворительное состояние, естественное старение, механические повреждения, постоянное воздействие перенапряжений.
  • Поврежденные опоры и провода ЛЭП из-за неудовлетворительного состояния, негативного влияния ураганных ветров, гололеда, раскачивания проводов и т.д.
  • Ошибочные действия персонала при выполнении различных операций. Например, разъединители отключаются, находясь под нагрузкой или включаются на заземление, оставленное по ошибке.

Причинами большинства повреждений являются конструктивные недостатки, несовершенное оборудование, ошибки, допущенные при проектировании и в процессе монтажа. Отрицательную роль играет использование оборудования в ненормативных режимах, неправильный и неудовлетворительный уход за ним.

Изменение тока в аварийном режиме

В аварийном режиме ток теряет свои постоянные характеристики и подвергается заметным изменениям. В самое первое мгновение он резко увеличивается, после чего происходит его затухание до определенной величины. Далее в работу вступает АРВ – автоматический регулятор возбуждения, под влиянием которого ток доходит до установленного уровня. Этот период известен под названием переходного процесса. Временные рамки наступившего короткого замыкания начинаются со времени изменений токового уровня и заканчиваются отсоединением КЗ.

Различные показатели тока на протяжении всего периода используются для исследований динамической и термической устойчивости аппаратуры, избрания нужных уставок релейной защиты.

В любой сети присутствуют различные типы сопротивлений индуктивного типа. В момент возникновения КЗ они создают определенные препятствия и не позволяют току мгновенно переменяться. То есть, изменения все-таки происходят, но не скачкообразно, а в нарастающем порядке от обычного показателя до аварийного.

Для того чтобы упростить расчетную и аналитическую работу, ток в период перехода условно разделяется на две составные части – апериодическую и периодическую. Первая компонента считается неизменной токовой составной частью. Она появляется в самом начале КЗ и довольно скоро снижается до нулевой отметки.

Периодическая токовая часть в начальном периоде получила такое же название тока КЗ. Он тоже называется сверхпереходным, поскольку для его вычислений замещающая схема дополняется сверхпереходным сопротивлением генераторной установки и сверхпереходной ЭДС. Данная величина применяется при назначении уставок или, когда требуется проверить восприимчивость к току релейной защиты.

По завершении переходного периода периодический ток становится постоянно действующим током короткого замыкания. В этот момент как раз затухает апериодическая компонента, и вступает в действие АРВ. Таким образом, полная величина тока КЗ будет состоять из суммы обеих компонент, действующих в каждый временной отрезок переходного процесса. Полный ток с максимальным мгновенным показателем известен, как ударный ток короткого замыкания, рассчитываемый при анализе динамической устойчивости электрооборудования.

Испытания и выбор нужных уставок для защитных устройств

Как уже было отмечено, выбор наиболее подходящих параметров релейной защиты и уставок осуществляется с использованием сверхпереходного или начального тока короткого замыкания. В первую очередь это связано с простотой расчетов данной величины.

Анализируя варианты защиты с быстродействием или небольшими выдержками времени, с использованием начального тока, специалисты обычно не принимают во внимание апериодическую составляющую. Использовать ее в расчетах не имеет смысла, поскольку затухание происходит очень быстро – в течение 0,05-0,2 секунды. Этот промежуток гораздо ниже времени срабатывания рассматриваемых защитных устройств.

Если питание сети осуществляется от мощной энергетической системы, ее генераторы оснащаются автоматическим регулятором возбуждения – АРВ, обеспечивающим поддержку на шинах постоянного напряжения. Когда на этом участке возникает КЗ, величина периодической токовой составляющей остается без изменений. Это дает возможность анализировать с помощью начального тока работу релейной защиты и ее поведение при любых задержках по времени.

В сетях, получающих питание от генераторных установок или систем с установленной ограниченной мощностью, при наступлении КЗ напряжение на шинах уже не будет постоянным, а подвергнется изменениям в широком диапазоне. Величины начального и установившегося токов не будут равны между собой. Теоретически, для расчетов защитных систем можно было бы воспользоваться установившимся током короткого замыкания. Однако сложности с его расчетами привели к тому, что на практике в большинстве случаев применяются показатели начального тока, не вызывая заметных погрешностей.

Подобная ситуация объясняется несколькими факторами. В первую очередь, это увеличенное переходное сопротивление в аварийном месте, оказывающее более сильное влияние на установившийся ток, нежели на начальный. Кроме того, нельзя исключить воздействие нагрузочных токов и других явлений, обычно не принимаемых во внимание при расчетах. В связи с этим, данные по установившемуся току довольно условные, что приводит к большой погрешности в конечном результате.

Мощность КЗ и начальный ток

При возникновении трехфазного КЗ, сопротивление и ЭДС в каждой фазе будут совпадать друг с другом, поскольку для всех фаз соблюдаются совершенно одинаковые условия. Такое замыкание называется симметричным, а его расчеты довольно простые. Вполне достаточно рассчитать одну фазу, а затем полученные результаты применить к двум остальным.

Расчет токов и напряжений в симметричных системах начинается со схемы замещения, составляемой с заменых ее отдельных компонентов соответствующими активными и реактивными сопротивлениями. Источники питания отмечаются с указанием ЭДС или напряжения на выходных клеммах. Трансформаторы, генераторы и другие устройства обладают сопротивлениями, определяемыми в их технических паспортах. Эти данные также вводятся в расчеты.

Особый порядок расчетов токов КЗ применяется при подключении к системам с неограниченной мощностью. В этом случае рассматриваются мощные источники питания, у которых напряжение на шинах не изменяется, вне зависимости от места возникновения короткого замыкания. Показатели сопротивления в таких системах условно принимаются за нулевое значение.

На практике систем с неограниченной мощностью просто не существует, тем не менее, они широко применяются при выполнении расчетов коротких замыканий. Понятие неограниченной мощности актуально лишь когда величина ее внутреннего сопротивления будет значительно ниже сопротивления внешних деталей и компонентов, расположенных между шиной и местом КЗ.

Системы питания с ограниченной мощностью обладают достаточно высоким сопротивлением в точке короткого замыкания. Поэтому его величина обязательно учитывается при расчетах тока КЗ. В некоторых случаях сопротивление системы определяет не ток, а мощность короткого замыкания, присутствующая на шинах подстанции и представляющая собой условную величину.

Негативные последствия коротких замыканий

При возникновении аварийной ситуации, связанной с коротким замыканием, заметно возрастает ток и снижается напряжение. Подобные изменения чаще всего приводят к опасным последствиям:

  • Повышение тока и активное сопротивление цепи способствуют выделению большого количества тепла в течение короткого времени. В совокупности с электрической дугой, высокая температура наносит большие повреждения окружающей обстановке. Чем выше ток и время его действия, тем больше размеры разрушений. Достигая неповрежденного оборудования, поражающие факторы наносят повреждения изоляции и токоведущим частям.
  • Пониженное напряжение вызывает сбой в работе потребителей. Особенно это касается асинхронных двигателей, у которых заметно снижается частота вращения. В некоторых случаях они просто остановятся и перестают работать. Перестают нормально функционировать системы освещения, при работе которых расходуется значительный объем электроэнергии.
  • Увеличенное скольжение приводит к росту потребления реактивной мощности асинхронными агрегатами. После отключения КЗ возникает ее дефицит, и напряжение в сети начинает лавинообразно снижаться, вплоть до полного прекращения работы.
  • Спад напряжения нарушает устойчивую параллельную работу генераторов. В результате, система питания распадается, электроснабжение потребителей прекращается.

Расчет токов короткого замыкания | Проектирование электроснабжения

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания. В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы.

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

1 ГОСТ 28249-93 (Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ).

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

– полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6 (10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

Ударный коэффициент

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Rк=Rуд.к*l/Nк

Индуктивное сопротивление питающей линии, мОм:

Хк=Худ.к*l/

Полное активное сопротивление, мОм:

RΣ = Rт+Rк

Полное индуктивное сопротивление, мОм:

XΣ=Xт+Xк

Полное сопротивление, мОм:

Полное сопротивление

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Zпт=Zпт.уд.*L 

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Интерполяция

Жду ваших отзывов, пожеланий, предложений, уточнений.
Продолжение следует… будет еще видеообзор измененной версии.
Нужно ли учитывать сопротивления коммутационных аппаратов при расчете к.з.?

Советую почитать:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *