Формула чему равна мощность: Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?

Содержание

Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?

Автор Даниил Леонидович На чтение 6 мин. Просмотров 15.5k. Опубликовано Обновлено

Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.

Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства.

Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.

Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.

Что такое мощность в электричестве: просто о сложном

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.

Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.

Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Как рассчитать электрическую мощность в быту

Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.

Отсюда получим формулы для расчета мощности (P):

  • U*I;
  • I2*R;
  • U*I*cos(фи).

В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.

Как измерить электрическую мощность дома

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.

Ваттметр

Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное.

В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.

Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.

Формулы расчета мощности для однофазной и трехфазной схемы питания

Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).

Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).

Как работает схема трехфазного электроснабжения

Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.

Как узнать ток, зная мощность и напряжение

Для вычисления тока электросети по мощности и напряжению используют формулы:

  • I=P/U – постоянный ток;
  • I=P/(U*cos(фи)) — однофазная сеть;
  • I=P/(1,73*U*cos(фи)) — трехфазная сеть.

Для простоты расчетов значение фи принимают равной 0,95.

Как узнать напряжение, зная силу тока

Для расчета напряжения используют формулы:

U=P/I – постоянный ток;

U=P/(I*cos(фи)) — однофазная сеть;

U=P/(1,73*I*cos(фи)) — трехфазная сеть.

Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I – постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Интересная инфа по теме

Трехфазную схему электроснабжения используют в производстве.

Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.

Заключение

Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.

формула, мгновенный и средний расчет силы.

Термин «мощность» в физике имеет специфический смысл. Механическая работа может выполняться с различной скоростью. А механическая мощность обозначает, как быстро совершается эта работа. Способность правильно измерить мощность имеет важное значение для использования энергетических ресурсов.

Физический смысл мощности

Разные виды мощности

Для формулы механической мощности применяется следующее выражение:

N = ΔA/Δt.

В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.

Существует три величины, которыми можно выразить мощность: мгновенная, средняя и пиковая:

  1. Мгновенная мощность – мощностной показатель, измеренный в данный момент времени. Если рассмотреть уравнение для мощности N = ΔA/Δt , то мгновенная мощность представляет собой ту, которая берется в чрезвычайно малый промежуток времени Δt. Если имеется построенная графическая зависимость мощности от времени, то мгновенная мощность – это просто считываемое с графика значение в любой взятый момент времени. Другая запись выражения для мгновенной мощности:

N = dA/dt.

  1. Средняя мощность – мощностная величина, измеренная за относительно большой временной отрезок Δt;
  2. Пиковая мощность – максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение определенного временного промежутка. Стереосистемы и двигатели автомобилей – примеры устройств, способных обеспечить максимальную мощность, намного выше их средней номинальной мощности. Однако поддерживать эту мощностную величину можно в течение короткого времени. Хотя для эксплуатационных характеристик устройств она может быть более важной, чем средняя мощность.

Важно! Дифференциальная форма уравнения N = dA/dt универсальна. Если механическая работа выполняется равномерно в течение времени t, то средняя мощность будет равна мгновенной.

Из общего уравнения получается запись:

N = A/t,

где A будет общая работа за заданное время t. Тогда при равномерной работе вычисленный показатель равен мгновенной мощности, а при неравномерной –средней.

Формулы для механической мощности

В каких единицах измеряют мощность

Стандартной единицей для измерения мощности служит Ватт (Вт), названный в честь шотландского изобретателя и промышленника Джеймса Ватта. Согласно формуле, Вт = Дж/с.

Существует еще одна единица мощности, до сих пор широко используемая, –  лошадиная сила (л. с.).

Интересно. Термин «лошадиная сила» берет свое начало в 17-м веке, когда лошадей использовали для поднятия груза из шахты. Одна л. с. равна мощности для поднятия 75 кг на 1 м за 1 с. Это эквивалентно 735,5 Вт.

Мощность силы

Уравнение для мощности соединяет выполненную работу и время. Поскольку известно, что работа выполняется силами, а силы могут перемещать объекты, можно получить другое выражение для мгновенной мощности:

  1. Работа, проделанная силой при перемещении:

A = F x S x cos φ.

  1. Если поставить А в универсальную формулу для N, определяется мощность силы:

N = (F x S x cos φ)/t = F x V x cos φ, так как V = S/t.

  1. Если сила параллельна скорости частицы, то формула принимает вид:

N = F x V.

Мощность вращающихся объектов

Процессы, связанные с вращением объектов, могут быть описаны аналогичными уравнениями. Эквивалентом силы для вращения является крутящий момент М, эквивалент скорости V – угловая скорость ω.

Если заменить соответствующие величины, то получается формула:

N = M x ω.

M = F x r, где r – радиус вращения.

Для расчета мощности вала, вращающегося против силы, применяется формула:

N = 2π x M x n,

где n – скорость в об/с (n = ω/2π).

Отсюда получается то же упрощенное выражение:

N = M x ω.

Таким образом, двигатель может достичь высокой мощности либо при высокой скорости, либо, обладая большим крутящим моментом. Если угловая скорость ω равна нулю, то мощность тоже равна нулю, независимо от крутящего момента.

Видео

Оцените статью:

Формула для нахождения мощности — Морской флот

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность электрического тока через напряжение и ток

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность является физической величиной, равной, как правило, скоростью изменения энергии целой системы. Если говорить более конкретно о том, чему равна мощность, то можно сказать, что она напрямую зависит от соотношения выполненной за определенный срок времени работы и размера этого самого промежутка времени. Существует понятие средней и мгновенной мощности. То есть, если речь идет о мощности системы в некотором промежутке времени, то это – средняя мощность. Если же рассматривается мощность на данный момент, то это – мгновенная мощность. Отсюда получаем следующую формулу:

N (мощность) = Е (энергия)/ t (время)

Следовательно, интеграл, полученный из показателей мгновенной мощности за отдельный срок времени равен полному объему использованной в течение данного периода времени энергии.

В качестве единицы измерения данной величины принято использовать ватт. Учитывая предыдущую формулу можно сказать, что 1 Ватт = 1 Дж / 1 с. Еще одной популярной единицей для измерения величины мощности считается лошадиная сила.

Что такое мощность в механике?

Сила, действующая на тело, находящееся в движении, выполняет работу. В таком случае, мощность определяется скалярным произведением вектора силы и вектора скорости, с которой система движется в пространстве. То есть:

В данной формуле F – это сила, v – это скорость, a – это угол связывающий вектор скорости и вектор силы.

Если речь идет о вращательном движении тела, то уместна следующая формула:

N = M * w = (2П * М * n) / 60

В данной формуле M – это момент силы, w – это угловая скорость, П – это число Пи, а n – это количество оборотов в установленную единицу времени (в минуту).

От чего зависит мощность электрической энергии?

Термин электрической мощности характеризует скорость изменения или передачи электрической энергии. Изучая сеть переменного тока, кроме понятия «мгновенная мощность», которое соответствует традиционно физическому определению, принято использовать и активную мощность. Активная мощность равна среднему показателю мгновенной мощности за период времени, показателю, которым определяется реактивная мощность, соответствующая энергии, перемещающейся между источником и потребителем без диссипации и полному значению мощности, которое определяется произведением активного значения тока и напряжения, не учитывая сдвиг фаз.

Мощность – физическая величина, равная отношению проделанной работы к определенному промежутку времени.

Существует понятие средней мощности за определенный промежуток времени Δt . Средняя мощность высчитывается по этой формуле: N = ΔA / Δt , мгновенная мощность по следующей формуле: N = dA / dt . Эти формулы имеют довольно обобщенный вид, так как понятие мощности присутствует в нескольких ветках физики – механике и электрофизике. Хотя основные принципы расчета мощности остаются приблизительно такими же, как и в общей формуле.

Измеряется мощность в ваттах. Ватт – единица измерения мощности, равная джоулю, деленному на секунду. Кроме ватта, существуют и другие единицы измерения мощности: лошадиная сила, эрг в секунду, масса-сила-метр в секунду.

  • Одна метрическая лошадиная сила равна 735 ваттам, английская – 745 ватт.
  • Эрг – очень малая единица измерения, один эрг равен десять в минус седьмой степени ватт.
  • Один масса-сила-метр в секунду равен 9,81 ваттам.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Мощность в механике

Мощность в механике напрямую зависит от силы и работы, которую эта сила выполняет. Работа же является величиной, характеризующей силу, приложенную к какому-либо телу, под действием которой тело проходит определенное расстояние. Мощность высчитывается по скалярному произведению вектора скорости на вектор силы: P = F * v = F * v * cos a (сила, умноженная на вектор скорости и на угол между вектором силы и скорости (косинус альфа)).

Так же можно посчитать мощность вращательного движения тела. P = M * w = π * M * n / 30 . Мощность равна (М) моменту силы, умноженному на (w) угловую скорость или пи (п), умноженному на момент силы (М) и (n) частоту вращения, деленных на 30.2 / R .

  • Мощность переменного тока не поддается исчислению по формуле постоянного тока. В переменном токе выделяют три вида мощности:
  • Активная мощность (Р), которая равна P = U * I * cos f. Где U и I действующие параметры тока, а f (фи) угол сдвига между фазами. Данная формула приведена как пример для однофазного синусоидального тока.
  • Реактивная мощность (Q) характеризует нагрузки, создаваемые в устройствах колебаниями электрического однофазного синусоидального переменного тока. Q = U * I * sin f. Единица измерения – вольт-ампер реактивный (вар).
  • Полная мощность (S) равна корню квадратов активной и реактивной мощности. Измеряется в вольт-амперах.
  • Неактивная мощность – характеристика пассивной мощности присутствующей в цепях с переменным синусоидальным током. Равна квадратному корню суммы квадратов реактивной мощности и мощности гармоник. При отсутствии мощности высших гармоник равна модулю реактивной мощности.

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время, или

где N – мощность,
A – работа,
t – время.

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность , чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α

Чему равна мощность электрического тока? Запишите формулу

Что значит формyла N = k*S*dT, и как ей пользоваться?

Найдите массу строительного листа из дуба, если его размеры 700см на 2м на 2000мм Дуб сухой-700кг/м3, 0,70г/см3

В атоми Купруму 63 частинки, з них 34 нейтрони. Визначте кількість електронів в атомі.

ПОЖАЛУЙСТАААА!!! Все примеры!;) Буду оооооооочень благодарна!

Об’єм рідини 12 декалітрів. Визначте об’єм рідини в кубічних сантиметрах.

Розмір паралепіпеда 2 дм * 4см * 8мм. Визначте його об’єм в кубічних сантиметрах.

Сталевий кубик з довжиною ребра 10 см нагріли від 10 С до 30 С , а з довжиною ребра 20 см охолодили від 30 С до 10 С. Знайти співвідношення між кількі … стю теплоти Q1 , що витрачена на нагрівання і кількістю теплоти Q2, що виділилась при охолодженні. надо быстро

Что показывает амперметр A в цепи схема которой приведена на рисунке?

Помогите Пожалуйста!!! по Физике 1) Во сколько раз отличаются кинетические энергии пули массой 10 г, летящей со скоростью 500 м/с, и молотка массой 0, … 6 кг, имеющего в момент удара о гвоздь скорость 10 м/с? 2) Тело массой 1 кг находится на высоте 2,5 м от поверхности Земли. На какой высоте следует расположить тело массой 0,7 кг, чтобы оно обладало такой же потенциальной энергией? 3) Неподвижный блок не дает выигрыша в силе. Однако для проверки данного правила взяли груз, вес которого 5 Н, и уравновесили его на неподвижном блоке, удержали с помощью динамометра, и показания динамометра оказались равны 4,7 Н. Когда груз попытались поднять, силу пришлось увеличить до 5,3 Н. Дайте развернутое объяснение, почему были отличия в силе. Что можно сделать, чтобы динамометр во время опыта показывал 5 Н? 4) На коротком плече рычага подвешен груз массой 100 кг. Чтобы его поднять, к длинному плечу приложили силу 250 Н. Точка приложения движущей силы опустилась на 40 см. На какую высоту поднялся груз, если КПД рычага равен 70 %?

Помогите Пожалуйста!!! по Физике 1) Каким образом возможна ситуация, чтобы человек массой 80 кг уравновесил слона массой 35 ц с помощью рычага? На как … ом расстоянии от точки опоры нужно стоять человеку, если слон находится в 0,5 метров от неё? Массой рычага пренебречь. 2) Мяч падает с высоты 30 м. На какой высоте скорость его движения будет равна 20 м/с? 3) Стальной и деревянный бруски одинакового объема подняли на одинаковую высоту. Для какого бруска изменение потенциальной энергии больше и почему?

Мощность электрического тока: формула

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так – ничего сложного!

формула и применение в физике

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время , или

N=A/t,

где N – мощность,
A – работа,
t – время. 

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность, чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Нужна помощь в учебе?



Предыдущая тема: Механическая работа: определение и формула
Следующая тема:&nbsp&nbsp&nbspПростые механизмы и их применение: рычаг, равновесие сил на рычаге
Формула мощности

— уравнения с примерами

Если мы оглянемся вокруг, то обнаружим несколько вещей, которые требуют энергии для бега или работы. Этой силой может быть что угодно: электричество, физическая сила, человеческие ресурсы и т. Д. Основная задача остается неизменной — способность выполнять работу в определенное время.

Формула порошка может быть определена как работа, выполненная любым конкретным объектом или источником за заданное время.

Предположим, что A и B — два человека, выполняющие одно и то же задание, но A завершил задачу раньше B, тогда что это означает?

Это просто означает, что A более эффективен, чем B, и эффективность прямо пропорциональна мощности, поэтому мы можем сказать, что A более мощный, чем B.Это и есть сила, она определяется как работа, проделанная телом в данное время.

Мощность = Работа, проделанная объектом или телом / Общее затраченное время.

Формула мощности отличается в зависимости от требуемых формулировок, например, она может быть другой для объектов, связанных с силой, а также может отличаться для электронных устройств.

Формула мощности для различных отношений и единиц:

  1. P = VI:

Эта формула для мощности взята из главы, посвященной электричеству.Формула дана великим ученым по имени Ом, и эта формула названа в его честь и также известна как закон Ома.

Это означает, что мощность прямо пропорциональна разности потенциалов проводника. Здесь P обозначает мощность, V обозначает разность потенциалов, а I обозначает ток. Единица СИ — ватт. Единица измерения V — вольт, а для I — в столбце.

  1. Формула электрической мощности:

P = R × I2 или V2 / R: Эти формулы являются вариантом закона Ома.Здесь R означает сопротивление, V означает разность потенциалов, а I означает ток.

В нем указано, что мощность прямо пропорциональна квадрату разности потенциалов и обратно пропорциональна сопротивлению проводника.

  1. Уравнение мощности:

P = E / t: Эта формула также называется уравнением механической мощности. Здесь E означает энергию в джоулях, а t означает время в секундах.

Эта формула утверждает, что потребление энергии в единицу времени называется мощностью.

  1. P = w / t:

Это наиболее распространенная и основная формула мощности, о которой мы узнали очень рано. Эта формула выводится из теоремы работы-энергии.

В нем указано, что работа, выполняемая за единицу времени, называется мощностью. Здесь W означает работу в джоулях, а t означает время в секундах.

  1. P = F × s / t:

В этой формуле F обозначает силу, приложенную к объекту, s обозначает смещение объекта, а t обозначает общее затраченное время. 2 × R

Или,

P = V × V / R

P = V2 / R.(следовательно, доказано)

Здесь

P = мощность объекта или тела.

В = разность потенциалов между двумя концами проводника.

I = ток, протекающий по цепи.

R = Сопротивление, обеспечиваемое проводом.

Формула мощности:

P = F × s / t

Как мы знаем,

Мощность = работа, выполненная во времени

P = w / t

Работа = сила (F) × смещение (с)

P = F × s / t

Здесь

P = Мощность.

F = Сила, приложенная к телу.

W = Работа, выполняемая телом.

t = Общее затраченное время.

с = Полное смещение корпуса.

Мощность

Количественная работа связана с силой, вызывающей смещение. Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение. Иногда работа выполняется очень быстро, а иногда — довольно медленно. Например, альпинистке требуется необычно много времени, чтобы поднять свое тело на несколько метров вдоль скалы.С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени. Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз. Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью. У туриста рейтинг мощности выше , чем у скалолаза.

Мощность — это скорость выполнения работы.Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.

Мощность = Работа / время

или

P = Вт / т

Стандартная метрическая единица измерения мощности — Вт . Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени. Таким образом, ватт эквивалентен джоулям в секунду. По историческим причинам, лошадиных сил иногда используется для описания мощности, выдаваемой машиной.Одна лошадиная сила эквивалентна примерно 750 Вт.

Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью. Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины — это соотношение работы / времени для этой конкретной машины. Автомобильный двигатель — это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль.Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с мощностью в четыре раза больше мог бы выполнять такой же объем работы за четверть времени. То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны. Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.

Человек — это также машина с номинальной мощностью . Некоторые люди более полны власти, чем другие. То есть некоторые люди могут выполнять тот же объем работы за меньшее время или больше за то же время. Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных способностей ученика. Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью.Таким образом, вес ученика равен силе, которая действует на ученика, а высота лестницы — это смещение вверх. Предположим, Бен Пумпинирон поднимает свое 80-килограммовое тело по 2,0-метровой лестнице за 1,8 секунды. Если бы это было так, то мы могли бы вычислить номинальную мощность Бена . Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице.Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.

Номинальная мощность Бена — 871 Вт. Он вполне коня .

Другая формула силы

Выражение для мощности — работа / время. А поскольку выражение для работы — это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время.Поскольку выражение для скорости — это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость». Это показано ниже.

Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость). Мощный автомобильный двигатель — сильный и быстрый. Мощная сельскохозяйственная техника — прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнсмен футбольной команды силен и быстр.Машина , которая достаточно сильна, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (то есть с большой скоростью), является мощной машиной.

Проверьте свое понимание

Используйте свое понимание работы и силы, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1.Два студента-физика, Уилл Н. Эндабл и Бен Пумпинирон, в зале для тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд. Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.

2. В физической лаборатории Джек и Джилл взбежали на холм.Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.


3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж. Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.

4. Выполняя подтягивание , студентка-физик поднимает свое тело весом 42,0 кг на расстояние 0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?

5. Ежемесячный счет за электроэнергию в вашей семье часто выражается в киловатт-часах.Один киловатт-час — это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.

6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй. Второй этаж 5.20 метров над первым этажом. Средняя масса пассажира — 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.

Как рассчитать механическую мощность

Обновлено 22 декабря 2020 г.

Кенрик Везина

Вы можете найти механическую мощность , которые используются повсюду в современном мире.Вы сегодня ездили на машине? Он использовал энергию, получаемую либо от топлива, либо от батареи, для перемещения взаимосвязанного ряда механических компонентов — осей, шестерен, ремней и так далее — до тех пор, пока, наконец, эта энергия не использовалась для вращения колес и движения транспортного средства вперед.

Power в физике — это мера скорости , с которой работа выполняется с течением времени. Слово «механический» носит чисто описательный характер; он говорит вам, что мощность связана с машиной и движением различных компонентов, таких как трансмиссия автомобиля или шестеренки часов.

Формула механической силы использует те же фундаментальные законы физики, которые используются для других форм силы.

TL; DR (слишком долго; не читал)

Мощность P определяется как работа Вт более раз т по следующей формуле. Примечание по единицам измерения: мощность должна быть в ваттах (Вт), работа — в джоулях (Дж), а время — в секундах (с) — всегда перепроверяйте, прежде чем вводить свои значения.

Механическая мощность подчиняется тем же законам, которые регулируют другие типы энергии, такие как химическая или термическая. Механическая мощность — это просто мощность, связанная с движущимися компонентами механической системы, например шестернями, колесами и шкивами внутри старинного Часы.

Энергия, Сила, Работа и Сила

Чтобы понять выражение для механической силы, полезно выделить четыре взаимосвязанных термина: энергия , сила , работа И мощность .

  • Энергия E , которую содержит объект, является мерой того, сколько работы он может выполнить; другими словами, сколько движения оно может создать. Он измеряется в джоулях (Дж).
  • A force F , по сути, толкает или притягивает. Силы передают энергию между объектами. Как и скорость, сила имеет величину и направление . Он измеряется в Ньютонах (Н).
  • Если сила перемещает объект в том же направлении , в котором она действует, она выполняет работу .По определению, одна единица энергии необходима для выполнения одной единицы работы. Поскольку энергия и работа определяются друг с другом, они оба измеряются в джоулях (Дж).
  • Мощность — это мера скорости , при которой выполняется работа, или энергия используется с течением времени. Стандартная единица мощности — ватт (Вт).

Уравнение для механической мощности

Из-за взаимосвязи между энергией и работой существует два распространенных способа математического выражения мощности.Первый — работа Вт и время t :

P = \ frac {W} {t}

Мощность при линейном движении

Если вы имеете дело с линейным движением, вы можете предположить, что любая приложенная сила перемещает объект вперед или назад по прямому пути в соответствии с действием силы — подумайте о поездах на рельсах. Поскольку компонент направления в основном заботится о себе, вы также можете выразить мощность в терминах простой формулы, используя силу , расстояние и скорость .

В этих ситуациях работа W может быть определена как сила F × расстояние d . Подключите это к основному уравнению выше, и вы получите:

P = \ frac {Fd} {t}

Заметили что-нибудь знакомое? При линейном движении расстояние , , деленное на , время — это определение скорости ( v ), поэтому мы также можем выразить мощность как:

P = F \ frac {d } {t} = Fv


Пример расчета: перевозка белья

Хорошо, это было много абстрактной математики, но давайте приступим к работе, чтобы решить примерную задачу:

Родители просят вас нести 10 кг чистого белья наверху.Если обычно вам требуется 30 секунд, чтобы подняться по лестнице, а высота лестницы составляет 3 метра, оцените, сколько энергии вам потребуется, чтобы перенести одежду с нижней части лестницы наверх.

Исходя из подсказки, мы знаем, что время t будет 30 секунд, но у нас нет значения для работы W . Однако мы можем упростить сценарий для оценки. Вместо того, чтобы беспокоиться о перемещении белья вверх и вперед на каждом отдельном этапе, давайте предположим, что вы просто поднимаете его по прямой с начальной высоты.Теперь мы можем использовать выражение механической мощности P = F × d / t , но нам все еще нужно выяснить задействованную силу.

Чтобы переносить белье, необходимо противодействовать действию силы тяжести на него. Поскольку сила тяжести составляет F = mg в направлении вниз, вы должны приложить ту же силу в направлении вверх. Обратите внимание, что g — это ускорение свободного падения, которое на Земле составляет 9,8 м / с 2 .Имея это в виду, мы можем создать расширенную версию стандартной формулы мощности:

P = mg \ frac {d} {t}

И мы можем подставить наши значения для массы, ускорения, расстояния и времени:

P = (10 \ times 9,8) \ frac {3} {30} = 9,08 \ text {ватт}

Таким образом, вам нужно будет потратить около 9,08 Вт, чтобы носить белье.

Последнее замечание о сложности

Наше обсуждение ограничилось довольно простыми сценариями и относительно простой математикой.В продвинутой физике сложные формы уравнения механической мощности могут потребовать использования исчисления и более длинных, более сложных формул, которые учитывают множественные силы, криволинейное движение и другие усложняющие факторы.

Если вам нужна более подробная информация, база данных HyperPhysics, размещенная в Государственном университете Джорджии, является отличным ресурсом.

Формулы мощности в однофазных и трехфазных цепях постоянного и переменного тока

Формулы и уравнения электрической мощности в цепях постоянного и переменного тока 1-Φ и 3-Φ

Возвращаясь к основам, ниже приведены простые формулы электрической мощности для одиночных Цепи фазного переменного тока, трехфазные цепи переменного тока и цепи постоянного тока.Вы можете легко найти электрическую мощность в ваттах , используя следующие формулы электрической мощности в электрических цепях .

Базовая формула мощности в цепях переменного и постоянного тока

Формула мощности в цепях постоянного тока
  • P = V x I
  • P = I 2 x R
  • P = V 2 / R

Формулы мощности в однофазных цепях переменного тока
  • P = V x I x Cos Ф
  • P = I 2 x R x Cos Ф
  • P = V 2 / R (Cos Ф)

Формулы мощности в трехфазных цепях переменного тока
  • P = √3 x V L x I L x Cos Ф
  • P = 3 x V Ph x I Ph x Cos Ф
  • P = 3 x I 2 x R x Cos Ф
  • P = 3 (V 2 / R) x Cos Ф

Где:

Формулы питания переменного тока в сложных схемах:
Комплексная мощность и полная мощность:

Когда в цепи есть катушка индуктивности или конденсатор, wer становится комплексной степенью «S» , что означает, что он состоит из двух частей i.е. реальная и мнимая часть. Величина комплексной мощности называется полной мощностью | S |.


Где

  • P — активная мощность
  • Q — реактивная мощность
Активная или реальная мощность и реактивная мощность:

Действительная часть — Комплексная мощность «S» известна как активная или реальная мощность «P» , а мнимая часть известна как , реактивная мощность «Q».

  • S = P + jQ
  • P = V I cosθ
  • Q = V I sinθ

Где

θ — фазовый угол между напряжением и током.

Коэффициент мощности:

Коэффициент мощности «PF» — это отношение активной мощности «P» к полной мощности «| S |» . Математически коэффициент мощности — это косинус угла θ между активной и полной мощностью.


Где

| S | = √ (P 2 + Q 2 )

Другие формулы, используемые для коэффициента мощности, следующие:

Cosθ = R / Z

Где:

  • Cosθ = коэффициент мощности
  • R = сопротивление
  • Z = импеданс (сопротивление в цепях переменного тока i.е. X L , X C и R , известные как индуктивное реактивное сопротивление , емкостное реактивное сопротивление и сопротивление соответственно).

Cosθ = кВт / кВА

Где

  • Cosθ = коэффициент мощности
  • кВт = фактическая мощность в ваттах
  • кВА = полная мощность в вольт-амперах или ваттах

Для определения коэффициента мощности используются дополнительные формулы.

Реальная мощность однофазного и трехфазного тока

Где

  • В действующее значение и I среднеквадратичное значение — это среднеквадратичное значение напряжения и тока соответственно.
  • В L-N и I L-N — это напряжение и ток между фазой и нейтралью соответственно.
  • V L-L & I L-L — линейное напряжение и ток соответственно.
  • Cosθ — коэффициент мощности PF.
Реактивная мощность однофазного и трехфазного тока:

Где

θ = — фазовый угол, т.е. разность фаз между напряжением и током.

В следующей таблице показаны различные формулы мощности для цепей переменного и постоянного тока.

Количество DC AC (1-фазный) AC (3 фазы)

Мощность

  • P = V x I
  • P = I 2 x R
  • P = V 2 / R
  • P = V x I x Cos Ф
  • P = I 2 x R x Cos Ф
  • P = V 2 / R (Cos Ф)
  • P = √3 x V L x I L x Cos Ф
  • P = 3 x V Ph x I Ph x Cos Ф
  • P = 3 x I 2 x R x Cos Ф
  • P = 3 (V 2 / R) x Cos Ф

Сопутствующие формулы и сообщения по уравнениям:

Определение мощности и размера выборки

Определение мощности и размера выборки

Определение мощности и размера выборки

Автор:

Лиза Салливан, доктор философии

Профессор биосатистики

Школа общественного здравоохранения Бостонского университета


Критически важным аспектом любого исследования является определение подходящего размера выборки для ответа на исследовательский вопрос.В этом модуле основное внимание уделяется формулам, которые можно использовать для оценки размера выборки, необходимого для получения оценки доверительного интервала с заданным пределом погрешности (точности) или для обеспечения высокой вероятности проверки гипотезы при обнаружении значимой разницы в параметр.

Исследования должны быть разработаны таким образом, чтобы включать достаточное количество участников для адекватного ответа на вопрос исследования. Исследования, в которых участвует либо недостаточное количество участников, либо чрезмерно большое количество участников, расточительны с точки зрения времени участников и исследователей, ресурсов для проведения оценок, аналитических усилий и т. Д.Эти ситуации также можно рассматривать как неэтичные, поскольку участники могли подвергнуться риску в рамках исследования, которое не смогло ответить на важный вопрос. Исследования, которые намного больше, чем они должны быть, чтобы ответить на вопросы исследования, также расточительны.

Формулы, представленные здесь, позволяют оценить необходимый размер выборки на основе статистических критериев. Однако во многих исследованиях размер выборки определяется финансовыми или логистическими ограничениями. Например, предположим, что предлагается исследование для оценки нового скринингового теста на синдром Дауна.Предположим, что скрининговый тест основан на анализе образца крови, взятого у женщины на ранних сроках беременности. Чтобы оценить свойства скринингового теста (например, чувствительность и специфичность), каждой беременной женщине будет предложено сдать образец крови и, в дополнение, пройти амниоцентез. Амниоцентез включен в качестве золотого стандарта, и его план состоит в том, чтобы сравнить результаты скринингового теста с результатами амниоцентеза. Предположим, что сбор и обработка образца крови стоит 250 долларов на участника, а амниоцентез — 900 долларов на участника.Одни только эти финансовые ограничения могут существенно ограничить число женщин, которые могут быть зачислены. Так же, как важно учитывать статистическую и клиническую значимость при интерпретации результатов статистического анализа, важно также взвесить как статистические, так и логистические вопросы при определении размера выборки для исследования.


После завершения этого модуля студент сможет:

  1. Приведите примеры, демонстрирующие, как предел погрешности, размер эффекта и изменчивость результата влияют на вычисления размера выборки.
  2. Вычислить размер выборки, необходимый для точной оценки параметров генеральной совокупности.
  3. Интерпретируйте статистическую силу при проверке гипотез.
  4. Вычислите размер выборки, необходимый для обеспечения высокой мощности при проверке гипотез.


Модуль доверительных интервалов предоставляет методы оценки доверительных интервалов для различных параметров (например, μ, p, (μ 1 — μ 2 ), μ d , (p 1 -p 2 ) )).Доверительные интервалы для каждого параметра имеют следующий общий вид:

Оценка точки + Погрешность

В модуле доверительных интервалов мы вывели формулу доверительного интервала для μ как

На практике мы используем стандартное отклонение выборки для оценки стандартного отклонения генеральной совокупности. Обратите внимание, что существует альтернативная формула для оценки среднего значения непрерывного результата в одной генеральной совокупности, и она используется, когда размер выборки невелик (n <30).Он включает значение из распределения t, в отличие от значения из стандартного нормального распределения, чтобы отразить желаемый уровень достоверности. При вычислении размера выборки мы используем формулу для большой выборки, показанную здесь. [Примечание: размер результирующей выборки может быть небольшим, и на этапе анализа необходимо использовать соответствующую формулу доверительного интервала.]

Точечная оценка среднего для генеральной совокупности является выборочным средним, а предел погрешности составляет

.

При планировании исследований мы хотим определить размер выборки, необходимый для обеспечения того, чтобы предел ошибки был достаточно малым, чтобы быть информативным.Например, предположим, что мы хотим оценить средний вес студенток колледжа. Мы проводим исследование и получаем 95% доверительный интервал следующим образом: 125 + 40 фунтов, или от 85 до 165 фунтов. Предел погрешности настолько велик, что доверительный интервал неинформативен. Чтобы быть информативным, исследователь может захотеть, чтобы предел погрешности составлял не более 5 или 10 фунтов (это означает, что 95% доверительный интервал будет иметь ширину (от нижнего предела до верхнего предела) 10 или 20 фунтов). Чтобы определить необходимый размер выборки , исследователь должен указать желаемую погрешность .Важно отметить, что это не статистический вопрос, а клинический или практический. Например, предположим, что мы хотим оценить средний вес при рождении младенцев, рожденных матерями, которые курят сигареты во время беременности. Вес при рождении у младенцев явно имеет гораздо более ограниченный диапазон, чем у студенток колледжа. Следовательно, мы, вероятно, захотим создать доверительный интервал для среднего веса при рождении, который имеет погрешность, не превышающую 1–2 фунта.

Предел погрешности в доверительном интервале одной выборки для μ можно записать следующим образом:

.

Наша цель — определить размер выборки n, который гарантирует, что предел погрешности « E » не превышает заданного значения. Мы можем взять приведенную выше формулу и с помощью некоторой алгебры решить относительно n :

Сначала умножьте обе части уравнения на квадратный корень из n . Затем вычтите квадратный корень из n из числителя и знаменателя в правой части уравнения (поскольку любое число, деленное само на себя, равно 1). Остается:

Теперь разделите обе части на «E» и вычеркните «E» из числителя и знаменателя в левой части.Остается:

Наконец, возведите обе части уравнения в квадрат, чтобы получить:

Эта формула генерирует размер выборки n , необходимый для обеспечения того, чтобы предел погрешности E не превышал заданного значения. Чтобы найти n , мы должны ввести « Z », « σ», « и« E ».

  • Z — значение из таблицы вероятностей стандартного нормального распределения для желаемого уровня достоверности (например,g., Z = 1,96 для 95% достоверности)
  • E — это предел погрешности, который исследователь определяет как важный с клинической или практической точки зрения.
  • σ — стандартное отклонение интересующего результата.

Иногда бывает трудно оценить σ . Когда мы используем приведенную выше формулу размера выборки (или одну из других формул, которые мы представим в следующих разделах), мы планируем исследование для оценки неизвестного среднего значения конкретной переменной результата в популяции.Маловероятно, что мы узнаем стандартное отклонение этой переменной. При вычислении размера выборки исследователи часто используют значение стандартного отклонения от предыдущего исследования или исследования, проведенного в другой, но сопоставимой совокупности. Расчет размера выборки не является применением статистических выводов, и поэтому разумно использовать соответствующую оценку стандартного отклонения. Оценка может быть получена из другого исследования, о котором сообщалось в литературе; некоторые исследователи проводят небольшое пилотное исследование для оценки стандартного отклонения.Пилотное исследование обычно включает небольшое количество участников (например, n = 10), которые выбираются по удобству, а не методом случайной выборки. Данные участников пилотного исследования можно использовать для вычисления стандартного отклонения выборки, которое служит хорошей оценкой для σ в формуле размера выборки. Независимо от того, как получается оценка изменчивости результата, она всегда должна быть консервативной (т.е. настолько большой, насколько это разумно), чтобы размер результирующей выборки не был слишком маленьким.

Формула дает минимальный размер выборки, чтобы гарантировать, что предел ошибки в доверительном интервале не превысит E . Планируя исследования, исследователи также должны учитывать выбытие или отказ от последующего наблюдения. Приведенная выше формула дает количество участников, необходимое с полными данными, чтобы гарантировать, что предел ошибки в доверительном интервале не превышает E . Мы проиллюстрируем, как устраняется истощение при планировании исследований, на примерах в следующих разделах.


В исследованиях, в которых планируется оценить среднее значение переменной непрерывного результата в одной популяции, ниже приводится формула для определения размера выборки:

, где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), σ — стандартное отклонение переменной результата, а E — желаемое погрешность.Приведенная выше формула генерирует минимальное количество субъектов, необходимое для обеспечения того, чтобы предел ошибки доверительного интервала для μ не превышал E .

Пример 1:

Исследователь хочет оценить среднее систолическое артериальное давление у детей с врожденным пороком сердца в возрасте от 3 до 5 лет. Сколько детей должно быть включено в исследование? Исследователь планирует использовать 95% доверительный интервал (так Z = 1,96) и хочет погрешность в 5 единиц.Стандартное отклонение систолического артериального давления неизвестно, но исследователи провели поиск литературы и обнаружили, что стандартное отклонение систолического артериального давления у детей с другими пороками сердца составляет от 15 до 20. Чтобы оценить размер выборки, мы рассматриваем больший стандарт отклонение, чтобы получить наиболее консервативный (самый большой) размер выборки.

Чтобы гарантировать, что 95% -ный доверительный интервал оценки среднего систолического артериального давления у детей в возрасте от 3 до 5 лет с врожденным пороком сердца находится в пределах 5 единиц от истинного среднего значения, необходима выборка размером 62.[ Примечание : Мы всегда округляем вверх; формулы размера выборки всегда генерируют минимальное количество субъектов, необходимое для обеспечения указанной точности.] Если бы мы приняли стандартное отклонение, равное 15, размер выборки был бы n = 35. Поскольку оценки стандартного отклонения были получены из исследований детей с другими пороками сердца, было бы целесообразно использовать большее стандартное отклонение и запланировать исследование с 62 детьми. Выбор меньшего размера выборки потенциально может дать оценку доверительного интервала с большей погрешностью.

Исследователь хочет оценить средний вес при рождении доношенных детей (примерно 40 недель беременности) от матерей в возрасте 19 лет и младше. Средний вес новорожденных, рожденных доношенными от матерей в возрасте 20 лет и старше, составляет 3 510 граммов со стандартным отклонением 385 граммов. Сколько женщин в возрасте 19 лет и младше должны быть включены в исследование, чтобы гарантировать, что оценка среднего веса при рождении их младенцев с доверительным интервалом 95% имеет предел погрешности, не превышающий 100 граммов? Прежде чем смотреть на ответ, попробуйте выполнить расчет.

Ответ


В исследованиях, в которых план состоит в оценке доли успехов по дихотомической переменной результата (да / нет) в одной популяции, формула определения размера выборки:

, где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), а E — желаемый предел погрешности. p — доля успехов в популяции.Здесь мы планируем исследование для получения 95% доверительного интервала для неизвестной доли населения, p . Уравнение для определения размера выборки для определения p, кажется, требует знания p, но, очевидно, это круговой аргумент, потому что, если бы мы знали долю успехов в популяции, то в исследовании не было бы необходимости! Что нам действительно нужно, так это приблизительное значение p или ожидаемое значение. Диапазон p составляет от 0 до 1, и, следовательно, диапазон p (1-p) составляет от 0 до 1.Значение p, которое максимизирует p (1-p), равно p = 0,5. Следовательно, если нет информации для приближения p, то p = 0,5 можно использовать для получения наиболее консервативного или наибольшего размера выборки.

Пример 2:

Исследователь хочет оценить долю первокурсников в его университете, которые в настоящее время курят сигареты (т. Е. Распространенность курения). Сколько первокурсников должно быть вовлечено в исследование, чтобы гарантировать, что оценка доли курящих первокурсников с доверительным интервалом 95% находится в пределах 5% от истинной доли?

Поскольку у нас нет информации о доле курящих первокурсников, мы используем 0.5 для оценки размера выборки следующим образом:

Чтобы гарантировать, что оценка 95% доверительного интервала доли курящих первокурсников находится в пределах 5% от истинной доли, необходима выборка размером 385.

Предположим, что подобное исследование было проведено 2 года назад и обнаружило, что распространенность курения среди первокурсников составляет 27%. Если исследователь считает, что это разумная оценка распространенности через 2 года, ее можно использовать для планирования следующего исследования.Используя эту оценку p, какой размер выборки необходим (при условии, что снова будет использоваться 95% доверительный интервал и нам нужен такой же уровень точности)?

Ответ

Пример 3:

Исследователь хочет оценить распространенность рака груди среди женщин в возрасте от 40 до 45 лет, проживающих в Бостоне. Сколько женщин должно быть вовлечено в исследование, чтобы оценка была точной? Национальные данные показывают, что к 40 годам у 1 из 235 женщин диагностируется рак груди.Это соответствует доле 0,0043 (0,43%) или 43 на 10 000 женщин. Предположим, исследователь хочет, чтобы оценка была в пределах 10 на 10 000 женщин с достоверностью 95%. Размер выборки рассчитывается следующим образом:

Выборка размером n = 16 448 гарантирует, что оценка распространенности рака груди с доверительным интервалом 95% находится в пределах 0,10 (или в пределах 10 женщин на 10 000) от его истинного значения. Это ситуация, когда исследователи могут решить, что выборка такого размера невозможна.Предположим, что исследователи думали, что выборка размером 5 000 будет разумной с практической точки зрения. Насколько точно мы можем оценить распространенность на выборке размером n = 5000? Напомним, что формула доверительного интервала для оценки распространенности:

.

Предполагая, что распространенность рака груди в выборке будет близка к той, которая основана на национальных данных, мы ожидаем, что предел погрешности будет примерно равен следующему:

Таким образом, при n = 5000 женщин можно ожидать, что 95% доверительный интервал будет иметь погрешность, равную 0.0018 (или 18 на 10 000). Исследователи должны решить, будет ли это достаточно точным, чтобы ответить на исследовательский вопрос. Обратите внимание, что вышеизложенное основано на предположении, что распространенность рака груди в Бостоне аналогична общенациональной. Это может быть, а может и не быть разумным предположением. Фактически, цель настоящего исследования — оценить распространенность в Бостоне. Исследовательская группа при участии клинических исследователей и биостатистов должна тщательно оценить последствия выбора выборки размером n = 5000, n = 16 448 или любого промежуточного размера.


В исследованиях, в которых планируется оценить разницу в средних значениях между двумя независимыми популяциями, ниже приводится формула для определения размеров выборки в каждой группе сравнения:

, где n i — размер выборки, требуемый в каждой группе (i = 1,2), Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться, а E — желаемый предел погрешности. σ снова отражает стандартное отклонение переменной результата.Вспомните из модуля по доверительным интервалам, что, когда мы генерировали оценку доверительного интервала для разницы в средних, мы использовали Sp, объединенную оценку общего стандартного отклонения, как меру изменчивости в результате (на основе объединения данных). , где Sp вычисляется следующим образом:

Если доступны данные о вариабельности результата в каждой группе сравнения, то Sp можно вычислить и использовать в формуле размера выборки. Однако чаще всего данные о вариабельности исходов доступны только по одной группе, часто не получавшей лечения (например,g., плацебо-контроль) или группу, не подвергавшуюся воздействию. При планировании клинического испытания нового препарата или процедуры часто доступны данные из других испытаний, в которых принимали участие плацебо или активная контрольная группа (т. Е. Стандартное лекарство или лечение, назначенное для исследуемого состояния). Стандартное отклонение переменной результата, измеренное у пациентов, отнесенных к группе плацебо, контрольной или неэкспонированной группе, можно использовать для планирования будущего исследования, как показано ниже.

Обратите внимание, что формула размера выборки генерирует оценки размера выборки для выборок равного размера.Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы.

Пример 4:

Исследователь хочет спланировать клиническое испытание для оценки эффективности нового препарата, предназначенного для повышения уровня холестерина ЛПВП («хорошего» холестерина). План состоит в том, чтобы зарегистрировать участников и случайным образом распределить их для приема нового препарата или плацебо. Холестерин ЛПВП будет измеряться у каждого участника через 12 недель назначенного лечения.Основываясь на предыдущем опыте проведения подобных исследований, исследователь ожидает, что 10% всех участников будут потеряны для последующего наблюдения или выбыли из исследования в течение 12 недель. 95% доверительный интервал будет рассчитан для количественной оценки разницы в средних уровнях ЛПВП между пациентами, принимающими новый препарат, по сравнению с плацебо. Исследователь хотел бы, чтобы погрешность была не более 3 единиц. Сколько пациентов следует включить в исследование?

Размеры выборки рассчитываются следующим образом:

Основной проблемой является определение вариабельности интересующего результата (σ), здесь стандартное отклонение холестерина ЛПВП.Чтобы спланировать это исследование, мы можем использовать данные Фрамингемского исследования сердца. У участников, которые присутствовали на седьмом обследовании исследования потомства и не лечились от высокого холестерина, стандартное отклонение холестерина ЛПВП составляет 17,1. Мы будем использовать это значение и другие входные данные для вычисления размеров выборки следующим образом:

Образцы размера n 1 = 250 и n 2 = 250 гарантируют, что 95% доверительный интервал для разницы средних уровней ЛПВП будет иметь погрешность не более 3 единиц.Опять же, эти размеры выборки относятся к количеству участников с полными данными. Исследователи предположили, что процент отсева (или отсева) составляет 10% (в обеих группах). Чтобы гарантировать, что общий размер выборки 500 доступен через 12 недель, исследователь должен набрать больше участников, чтобы учесть их выбывание.

N (число для включения) * (% оставшихся) = желаемый размер выборки

Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся)

N = 500/0.90 = 556

Если они ожидают 10% отсева, исследователи должны зарегистрировать 556 участников. Это обеспечит N = 500 с полными данными в конце испытания.

Пример 5:

Исследователь хочет сравнить две диеты у детей, страдающих ожирением. Одна диета — это диета с низким содержанием жиров, а другая — с низким содержанием углеводов. План состоит в том, чтобы набрать детей и взвесить их в начале исследования. Затем каждому ребенку будет случайным образом назначена диета с низким содержанием жиров или углеводов.Каждый ребенок будет соблюдать назначенную диету в течение 8 недель, после чего он снова будет взвешиваться. Количество потерянных фунтов будет подсчитано для каждого ребенка. Основываясь на данных, полученных при испытаниях диеты у взрослых, исследователь ожидает, что 20% всех детей не завершат исследование. Для количественной оценки разницы в потерянном весе между двумя диетами будет рассчитан 95% доверительный интервал, и исследователь хотел бы, чтобы погрешность составляла не более 3 фунтов. Сколько детей следует включить в исследование?

Размеры выборки рассчитываются следующим образом:

Опять же, проблема заключается в определении изменчивости интересующего результата (σ), здесь стандартное отклонение в фунтах, потерянных за 8 недель.Чтобы спланировать это исследование, исследователи используют данные опубликованного исследования взрослых. Предположим, что в одном из таких исследований сравнивали одни и те же диеты у взрослых и участвовали по 100 участников в каждой диетической группе. В исследовании сообщалось о стандартном отклонении веса, потерянном за 8 недель на диете с низким содержанием жиров на 8,4 фунта, и о стандартном отклонении веса, потерянном за 8 недель на диете с низким содержанием углеводов, в размере 7,7 фунтов. Эти данные можно использовать для оценки общего стандартного отклонения потери веса следующим образом:

Теперь мы используем это значение и другие входные данные для вычисления размеров выборки:

Образцы размера n 1 = 56 и n 2 = 56 гарантируют, что 95% доверительный интервал для разницы в потерянном весе между диетами будет иметь погрешность не более 3 фунтов.Опять же, эти размеры выборки относятся к количеству детей с полными данными. Исследователи ожидают 20% отсева. Чтобы гарантировать, что общий размер выборки 112 будет доступен через 8 недель, исследователь должен набрать больше участников, чтобы учесть их выбытие.

N (число для включения) * (% оставшихся) = желаемый размер выборки

Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся)

N = 112 / 0,80 = 140


В исследованиях, в которых планируется оценить среднюю разницу непрерывного результата на основе сопоставленных данных, ниже приводится формула для определения размера выборки:

, где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например,g., Z = 1,96 для 95%), E — желаемый предел погрешности, а σ d — стандартное отклонение разницы оценок. Чрезвычайно важно, чтобы стандартное отклонение баллов разницы (например, разница, основанная на измерениях с течением времени или разница между согласованными парами) использовалось здесь для надлежащей оценки размера выборки.


В исследованиях, в которых планируется оценить разницу в пропорциях между двумя независимыми популяциями (т.д., чтобы оценить разницу рисков) формула для определения размеров выборки, требуемой в каждой группе сравнения:

, где n i — размер выборки, необходимый в каждой группе (i = 1,2), Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), и E — желаемая погрешность. p 1 и p 2 — это доли успехов в каждой группе сравнения. Опять же, здесь мы планируем исследование для получения 95% доверительного интервала для разницы в неизвестных пропорциях, а формула для оценки необходимых размеров выборки требует p 1 и p 2 .Чтобы оценить размер выборки, нам нужны приблизительные значения p 1 и p 2 . Значения p 1 и p 2 , которые максимизируют размер выборки, равны p 1 = p 2 = 0,5. Таким образом, если нет доступной информации для приближения p 1 и p 2 , то можно использовать 0,5 для создания наиболее консервативных или наибольших размеров выборки.

Подобно ситуации для двух независимых выборок и непрерывного результата в верхней части этой страницы, может быть случай, когда доступны данные о доле успешных результатов в одной группе, обычно необработанной (например.g., плацебо-контроль) или группу, не подвергавшуюся воздействию. В таком случае известная пропорция может использоваться как для p 1 , так и для p 2 в приведенной выше формуле. Приведенная выше формула генерирует оценки размера выборки для выборок равного размера. Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы. Заинтересованные читатели могут увидеть Флейсс для более подробной информации. 4

Пример 6:

Исследователь хочет оценить влияние курения во время беременности на преждевременные роды.Нормальная беременность длится примерно 40 недель, а преждевременные роды происходят до 37 недель. В отчете Национальной статистики естественного движения населения за 2005 год указывается, что примерно 12% младенцев рождаются преждевременно в Соединенных Штатах. 5 Исследователь планирует собрать данные с помощью обзора медицинских карт и создать 95% доверительный интервал для разницы в долях детей, рожденных недоношенными женщинами, которые курили во время беременности, по сравнению с теми, кто этого не сделал. Сколько женщин должно быть включено в исследование, чтобы гарантировать, что 95% доверительный интервал для разницы в пропорциях имеет погрешность не более 4%?

Размеры выборки (т.е., количество женщин, которые курили и не курили во время беременности), можно вычислить по формуле, показанной выше. Национальные данные показывают, что 12% младенцев рождаются преждевременно. Мы будем использовать эту оценку для обеих групп при вычислении размера выборки.

Образцы размера n 1 = 508 женщин, которые курили во время беременности, и n 2 = 508 женщин, которые не курили во время беременности, гарантируют, что 95% -ный доверительный интервал для разницы в пропорциях преждевременных родов будет иметь запас погрешность не более 4%.

Здесь проблема истощения?

Ответ


В модуле проверки гипотез для средних и пропорций мы представили методы для средних, пропорций, различий в средних и различий в пропорциях. Хотя каждый тест включал детали, которые были специфичными для интересующего результата (например, непрерывный или дихотомический) и для количества групп сравнения (одна, две, более двух), для каждого теста были общие элементы.Например, в каждой проверке гипотезы можно совершить две ошибки. Первая называется ошибкой типа I и относится к ситуации, когда мы неправильно отклоняем H 0 , хотя на самом деле это правда. На первом этапе любой проверки гипотезы мы выбираем уровень значимости, α, и α = P (ошибка типа I) = P (отклонить H 0 | H 0 верно). Поскольку мы намеренно выбираем небольшое значение для α, мы контролируем вероятность совершения ошибки типа I. Второй тип ошибок называется ошибкой типа II и определяется как вероятность того, что мы не отклоним H 0 , когда он ложен.Вероятность ошибки типа II обозначается β, а β = P (ошибка типа II) = P (Не отклонять H 0 | H 0 ложно). При проверке гипотез мы обычно сосредотачиваемся на мощности, которая определяется как вероятность того, что мы отклоним H 0 , когда оно ложно, то есть мощность = 1- β = P (Отклонить H 0 | H 0 ложно ). Мощность — это вероятность того, что тест правильно отклонит ложную нулевую гипотезу. Хороший тест — это тест с низкой вероятностью совершения ошибки типа I (т.е., малое α) и высокое увеличение (то есть малое β, высокое увеличение).

Здесь мы представляем формулы для определения размера выборки, необходимого для обеспечения высокой мощности теста. Вычисления размера выборки зависят от уровня значимости, aα, желаемой мощности теста (эквивалентно 1-β), вариабельности результата и величины эффекта. Величина эффекта — это разница в интересующем параметре, которая представляет собой клинически значимое различие. Подобно пределу погрешности в приложениях с доверительным интервалом, величина эффекта определяется на основе клинических или практических критериев, а не статистических критериев.

Понятие статистической мощности может быть трудным для понимания. Прежде чем представить формулы для определения размеров выборки, необходимых для обеспечения высокой мощности в тесте, мы сначала обсудим мощность с концептуальной точки зрения.

Предположим, мы хотим проверить следующие гипотезы при aα = 0,05: H 0 : μ = 90 по сравнению с H 1 : μ ≠ 90. Чтобы проверить гипотезы, предположим, что мы выбрали выборку размером n = 100. В этом примере предположим, что стандартное отклонение результата составляет σ = 20.Мы вычисляем выборочное среднее, а затем должны решить, предоставляет ли выборочное среднее доказательства в поддержку альтернативной гипотезы или нет. Это делается путем вычисления статистики теста и сравнения статистики теста с соответствующим критическим значением. Если нулевая гипотеза верна (μ = 90), то мы, вероятно, выберем образец, среднее значение которого близко к значению 90. Однако также можно выбрать образец, среднее значение которого намного больше или намного меньше 90. Напомним из Центральной предельной теоремы (см. Стр. 11 в модуле Вероятность), что для больших n (здесь n = 100 достаточно велико) распределение выборочных средних приблизительно нормально со средним значением

.

и

Если нулевая гипотеза верна, можно наблюдать любое среднее значение выборки, показанное на рисунке ниже; все это возможно при H 0 : μ = 90.

Когда мы устанавливаем правило принятия решения для нашей проверки гипотезы, мы определяем критические значения на основе α = 0,05 и двустороннего теста. Когда мы запускаем проверку гипотез, мы обычно стандартизируем данные (например, конвертируем в Z или t), а критические значения — это соответствующие значения из распределения вероятностей, используемого в тесте. Чтобы облегчить интерпретацию, мы продолжим это обсуждение вместо Z. Критические значения для двустороннего теста с α = 0,05 равны 86.06 и 93,92 (эти значения соответствуют -1,96 и 1,96 соответственно по шкале Z), поэтому правило принятия решения выглядит следующим образом: отклонить H 0 , если < 86,06 или если > 93,92. Область отклонения показана в хвостах рисунка ниже.

Область отклонения для теста H 0 : μ = 90 по сравнению с H 1 : μ ≠ 90 при α = 0,05

.

Области в двух хвостах кривой представляют вероятность ошибки типа I, α = 0.05. Эта концепция обсуждалась в модуле по проверке гипотез.

Теперь предположим, что альтернативная гипотеза, H 1 , верна (т. Е. Μ ≠ 90) и что истинное среднее на самом деле составляет 94. На рисунке ниже показаны распределения выборочного среднего при нулевой и альтернативной гипотезах. значения выборочного среднего показаны по горизонтальной оси.

Распределение ниже H 0 : μ = 90 и ниже H 1 : μ = 94

Если истинное среднее значение равно 94, то альтернативная гипотеза верна.В нашем тесте мы выбрали α = 0,05 и отклонили H 0 , если наблюдаемое среднее значение выборки превышает 93,92 (на данный момент фокусируясь на верхнем хвосте области отклонения). Критическое значение (93,92) указано вертикальной линией. Вероятность ошибки типа II обозначается β, а β = P (Не отклонять H 0 | H 0 ложно), то есть вероятность не отклонить нулевую гипотезу, если нулевая гипотеза верна. β показано на рисунке выше как область под крайней правой кривой (H 1 ) слева от вертикальной линии (где мы не отклоняем H 0 ).Мощность определяется как 1- β = P (отклонить H 0 | H 0 неверно) и показана на рисунке как площадь под крайней правой кривой (H 1 ) справа от вертикальной линии ( где мы отклоняем H 0 ).

Обратите внимание, что β и мощность связаны с α, изменчивостью результата и величиной эффекта. Из рисунка выше мы можем видеть, что произойдет с β и мощностью, если мы увеличим α. Предположим, например, что мы увеличиваем α до α = 0,10. Верхнее критическое значение будет 92.56 вместо 93.92. Вертикальная линия сместится влево, увеличивая α, уменьшая β и увеличивая мощность. Хотя лучший тест — это тест с более высокой мощностью, не рекомендуется увеличивать α как средство увеличения мощности. Тем не менее, существует прямая зависимость между α и мощностью (с увеличением α увеличивается и мощность).

β и мощность также связаны с изменчивостью результата и величиной эффекта. Величина эффекта — это разница в интересующем параметре (например, μ), которая представляет собой клинически значимое различие.На приведенном выше рисунке графически отображаются α, β и степень, когда разница в среднем под нулевым значением по сравнению с альтернативной гипотезой составляет 4 единицы (то есть 90 против 94). На рисунке ниже показаны те же компоненты для ситуации, когда среднее значение согласно альтернативной гипотезе равно 98.

Рисунок — Распределение ниже H 0 : μ = 90 и ниже H 1 : μ = 98.

Обратите внимание на то, что мощность намного выше, когда существует большая разница между средним значением H 0 по сравнению с H 1 (т.э., 90 против 98). Статистический тест с большей вероятностью отклонит нулевую гипотезу в пользу альтернативы, если истинное среднее значение равно 98, чем если истинное среднее значение равно 94. Также обратите внимание на то, что в этом случае существует небольшое перекрытие в распределениях при нулевой и альтернативной гипотезах. . Если наблюдается выборочное среднее значение 97 или выше, очень маловероятно, что оно получено из распределения, среднее значение которого равно 90. На предыдущем рисунке для H 0 : μ = 90 и H 1 : μ = 94, если мы Наблюдая, например, выборочное среднее значение 93, было бы не так ясно, было ли оно получено из распределения, среднее значение которого равно 90, или распределения, среднее значение которого равно 94.


При разработке исследований большинство людей рассматривают степень вероятности 80% или 90% (так же, как мы обычно используем 95% в качестве уровня достоверности для оценок доверительного интервала). Входные данные для формул размера выборки включают желаемую мощность, уровень значимости и размер эффекта. Величина эффекта выбрана так, чтобы представлять клинически значимую или практически важную разницу в интересующем параметре, как мы проиллюстрируем.

Формулы, которые мы представляем ниже, определяют минимальный размер выборки, чтобы гарантировать, что проверка гипотезы будет иметь указанную вероятность отклонения нулевой гипотезы, если она ложна (т.е., указанная мощность). Планируя исследования, исследователи снова должны учитывать выбывание или потерю для последующего наблюдения. Формулы, показанные ниже, определяют необходимое количество участников с полными данными, и мы проиллюстрируем, как отсев участников решается при планировании исследований.

H 0 : μ = μ 0 и H 1 : μ ≠ μ 0 где μ 0 — известное среднее значение (например,г., исторический контроль). Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже:

, где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него. Например, если α = 0,05, то 1- α / 2 = 0,975 и Z = 1,960. 1- β — выбранная мощность, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β ниже него. Оценка размера выборки для проверки гипотез часто основана на достижении 80% или 90% мощности.Значения Z 1-β для этих популярных сценариев приведены ниже:

  • Для 80% мощности Z 0,80 = 0,84
  • Для 90% мощности Z 0,90 = 1,282

ES — размер эффекта , определяемый следующим образом:

, где μ 0 — среднее значение при H 0 , μ 1 — среднее значение при H 1 , а σ — стандартное отклонение интересующего результата.Числитель величины эффекта, абсолютное значение разницы средних | μ 1 — μ 0 |, представляет собой то, что считается клинически значимым или практически важным различием в средствах. Подобно проблеме, с которой мы столкнулись при планировании исследований для оценки доверительных интервалов, иногда бывает трудно оценить стандартное отклонение. При вычислении размера выборки исследователи часто используют значение стандартного отклонения от предыдущего исследования или исследования, выполненного в другой, но сопоставимой совокупности.Независимо от того, как получается оценка изменчивости результата, она всегда должна быть консервативной (т.е. настолько большой, насколько это разумно), чтобы размер результирующей выборки не был слишком маленьким.

Пример 7:

Исследователь предполагает, что у людей, не страдающих диабетом, уровень глюкозы в крови натощак, фактор риска ишемической болезни сердца, выше у тех, кто пьет не менее 2 чашек кофе в день. Планируется перекрестное исследование для оценки среднего уровня глюкозы в крови натощак у людей, которые пьют не менее двух чашек кофе в день.Средний уровень глюкозы в крови натощак у людей, не страдающих диабетом, составляет 95,0 мг / дл со стандартным отклонением 9,8 мг / дл. 7 Если средний уровень глюкозы в крови у людей, выпивающих не менее 2 чашек кофе в день, составляет 100 мг / дл, это будет иметь клиническое значение. Сколько пациентов следует включить в исследование, чтобы убедиться, что мощность теста составляет 80% для выявления этой разницы? Будет использоваться двусторонний тест с уровнем значимости 5%.

Размер эффекта рассчитывается как:

.

Размер эффекта представляет собой значимую разницу в среднем генеральной совокупности — здесь 95 против 100 или 0,51 единицы стандартного отклонения. Теперь мы заменим размер эффекта и соответствующие значения Z на выбранные α и мощность, чтобы вычислить размер выборки.

Следовательно, выборка размером n = 31 будет гарантировать, что двусторонний тест с α = 0,05 будет иметь 80% -ную мощность для обнаружения разницы в 5 мг / дл в средних уровнях глюкозы в крови натощак.

В запланированном исследовании участников попросят голодать в течение ночи и сдать образец крови для анализа уровня глюкозы.Основываясь на предыдущем опыте, исследователи предполагают, что 10% участников не соблюдают голодание или откажутся соблюдать протокол исследования. Таким образом, в исследование будут включены в общей сложности 35 участников, чтобы обеспечить доступность 31 для анализа (см. Ниже).

N (число для включения) * (%, соблюдающие протокол) = желаемый размер выборки

Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся)

N = 31 / 0,90 = 35,

против

, где p 0 — известная пропорция (например,г., исторический контроль). Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже:

, где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него. 1- β — это выбранная мощность, а Z 1-β — это значение из стандартного нормального распределения, удерживающего 1- β ниже него, а ES — величина эффекта, определяемая следующим образом:

, где p 0 — пропорция согласно H 0 , а p 1 — пропорция согласно H 1 .Числитель величины эффекта, абсолютное значение разницы в пропорциях | p 1 -p 0 |, снова представляет то, что считается клинически значимым или практически важным различием в пропорциях.

Пример 8:

Недавний отчет Фрамингемского исследования сердца показал, что 26% людей, не страдающих сердечно-сосудистыми заболеваниями, имели повышенный уровень холестерина ЛПНП, определяемый как ЛПНП> 159 мг / дл. 9 Исследователь предполагает, что более высокая доля пациентов с сердечно-сосудистыми заболеваниями в анамнезе будет иметь повышенный холестерин ЛПНП.Сколько пациентов следует обследовать, чтобы убедиться, что мощность теста составляет 90%, чтобы обнаружить разницу в 5% в пропорции с повышенным холестерином ЛПНП? Будет использоваться двусторонний тест с уровнем значимости 5%.

Сначала вычисляем размер эффекта:

Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки.

Выборка размером n = 869 обеспечит двусторонний тест с α = 0.05 имеет 90% -ную мощность для обнаружения 5% -ной разницы в доле пациентов с сердечно-сосудистыми заболеваниями в анамнезе, у которых повышен уровень холестерина ЛПНП.

Производитель медицинского оборудования производит имплантируемые стенты. В процессе производства приблизительно 10% стентов считаются дефектными. Производитель хочет проверить, не превышает ли доля дефектных стентов 10%. Если в результате процесса образуется более 15% дефектных стентов, необходимо предпринять корректирующие действия.Поэтому производитель хочет, чтобы тест имел мощность 90%, чтобы обнаружить разницу в пропорциях такой величины. Сколько стентов необходимо оценить? Для расчетов используйте двусторонний тест с уровнем значимости 5%. (Проведите вычисления самостоятельно, прежде чем смотреть ответ.)

Ответ


В исследованиях, в которых планируется провести проверку гипотезы, сравнивая средние значения непрерывной переменной результата в двух независимых популяциях, представляют интерес гипотезы:

против

, где μ 1 и μ 2 — средние значения в двух сравниваемых популяциях.Формула для определения размеров выборки для обеспечения заданной мощности теста:

, где n i — размер выборки, необходимый в каждой группе (i = 1,2), α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, содержащего 1- α / 2 под ним, а 1- β — выбранная степень, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β под ним. ES — размер эффекта, определяемый как:

где | μ 1 — μ 2 | — абсолютное значение разницы средних значений между двумя группами, ожидаемая согласно альтернативной гипотезе, H 1 .σ — стандартное отклонение интересующего результата. Напомним из модуля по проверке гипотез, когда мы выполняли тесты гипотез, сравнивая средние значения двух независимых групп, мы использовали Sp, объединенную оценку общего стандартного отклонения, как меру изменчивости результата.

Sp рассчитывается следующим образом:

Если доступны данные о вариабельности результата в каждой группе сравнения, то Sp можно вычислить и использовать для генерации размеров выборки.Однако чаще всего данные о вариабельности исходов доступны только по одной группе, обычно необработанной (например, плацебо-контроль) или группе, не подвергавшейся воздействию. При планировании клинического испытания нового препарата или процедуры часто доступны данные из других испытаний, которые могли включать плацебо или активную контрольную группу (т. Е. Стандартное лекарство или лечение, назначенное для исследуемого состояния). Стандартное отклонение переменной результата, измеренной у пациентов, отнесенных к группе плацебо, контрольной или неэкспонированной группе, можно использовать для планирования будущего исследования, как показано.

Также обратите внимание, что приведенная выше формула генерирует оценки размера выборки для выборок равного размера. Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы (более подробную информацию см. В Howell 3 ).

Пример 9:

Исследователь планирует клиническое испытание для оценки эффективности нового препарата, предназначенного для снижения систолического артериального давления.План состоит в том, чтобы зарегистрировать участников и случайным образом распределить их для приема нового препарата или плацебо. Систолическое артериальное давление будет измеряться у каждого участника через 12 недель назначенного лечения. Основываясь на предыдущем опыте проведения аналогичных испытаний, исследователь ожидает, что 10% всех участников будут потеряны для последующего наблюдения или выбыли из исследования. Если новый препарат показывает снижение среднего систолического артериального давления на 5 единиц, это будет представлять собой клинически значимое снижение. Сколько пациентов следует включить в исследование, чтобы убедиться, что мощность теста составляет 80% для выявления этой разницы? Будет использоваться двусторонний тест с уровнем значимости 5%.

Чтобы вычислить величину эффекта, необходима оценка вариабельности систолического артериального давления. Анализ данных Framingham Heart Study показал, что стандартное отклонение систолического артериального давления составило 19,0. Это значение можно использовать для планирования испытания.

Размер эффекта:

Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки.

Образцы размера n 1 = 232 и n 2 = 232 гарантируют, что проверка гипотезы будет иметь мощность 80% для обнаружения разницы в 5 единиц среднего систолического артериального давления у пациентов, принимающих новый препарат, по сравнению с пациентами. получение плацебо.Однако исследователи выдвинули гипотезу о 10% отсеве (в обеих группах) и, чтобы обеспечить общий размер выборки 232, они должны учитывать отсев.

N (число для включения) * (% оставшихся) = желаемый размер выборки

Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся)

N = 232 / 0,90 = 258.

Исследователь должен зарегистрировать 258 участников, которые будут случайным образом распределены для приема нового препарата или плацебо.

Исследователь планирует исследование для оценки связи между потреблением алкоголя и средней успеваемостью среди выпускников колледжа.План состоит в том, чтобы классифицировать учащихся как сильно пьющих или не употребляющих 5 или более напитков в обычный день выпивки в качестве критерия употребления алкоголя. Средние средние баллы будут сравниваться между учащимися, отнесенными к категории сильно пьющих, по сравнению с не использующими две независимые выборки проверки средних значений. Предполагается, что стандартное отклонение средних баллов составляет 0,42, а значимая разница в средних баллах (относительно статуса потребления алкоголя) составляет 0,25 единицы. Сколько выпускников колледжа должны быть включены в исследование, чтобы убедиться, что мощность теста составляет 80% для определения 0.25 единиц разницы в среднем среднем балле? Используйте двусторонний тест с уровнем значимости 5%.

Ответ


В исследованиях, в которых планируется провести проверку гипотезы о средней разнице в непрерывной переменной результата на основе сопоставленных данных, представляют интерес гипотезы:

против

, где μ d — средняя разница в генеральной совокупности. Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже:

, где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него, 1- β — выбранная степень, а Z 1-β — значение стандартного нормального распределения, удерживающее 1- β ниже него, а ES — величина эффекта, определяемая следующим образом:

, где μ d — средняя разность, ожидаемая согласно альтернативной гипотезе, H 1 , а σ d — стандартное отклонение разницы в результате (например,g., разница основана на измерениях с течением времени или разница между согласованными парами).

Пример 10:

Исследователь хочет оценить эффективность лечения иглоукалыванием для уменьшения боли у пациентов с хронической мигренью. Планируется набор пациентов, страдающих мигренью. Каждого перед тем, как назначить какое-либо лечение, попросят оценить серьезность боли, которую он испытывает при следующей мигрени.Боль будет регистрироваться по шкале от 1 до 100, причем более высокие баллы указывают на более сильную боль. Затем каждый пациент будет проходить курс лечения иглоукалыванием. При следующей мигрени (после лечения) каждого пациента снова попросят оценить тяжесть боли. Разница в боли будет рассчитана для каждого пациента. Будет проведена двусторонняя проверка гипотезы при α = 0,05, чтобы оценить, существует ли статистически значимая разница в показателях боли до и после лечения. Сколько пациентов должно быть вовлечено в исследование, чтобы убедиться, что тест имеет мощность 80% для определения разницы в 10 единиц по шкале боли? Предположим, что стандартное отклонение разницы оценок составляет примерно 20 единиц.

Сначала вычислите размер эффекта:

Затем подставьте размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки.

Выборка размером n = 32 пациента с мигренью гарантирует, что двухсторонний тест с α = 0,05 будет иметь 80% мощность для определения средней разницы в 10 баллов боли до и после лечения, при условии, что все 32 пациента завершили лечение .


В исследованиях, в которых планируется провести проверку гипотезы, сравнивая пропорции успехов в двух независимых популяциях, представляют интерес гипотезы:

H 0 : p 1 = p 2 по сравнению с H 1 : p 1 ≠ p 2

, где p 1 и p 2 — пропорции в двух сравниваемых популяциях.Формула для определения размеров выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже:

, где n i — размер выборки, необходимый в каждой группе (i = 1,2), α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, содержащего 1- α / 2 под ним, а 1- β — выбранная степень, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β под ним. ES — величина эффекта, определяемая следующим образом:

,

где | p 1 — p 2 | — абсолютное значение разницы в пропорциях между двумя группами, ожидаемых согласно альтернативной гипотезе, H 1 , а p — общая пропорция, основанная на объединении данных из двух групп сравнения (p можно вычислить, взяв среднее значение пропорций в двух группах сравнения, предполагая, что группы будут примерно одинакового размера).

Пример 11:

Исследователь выдвинул гипотезу о более высокой заболеваемости гриппом среди студентов, регулярно пользующихся спортивными сооружениями, чем среди их сверстников, которые этого не делают. Исследование будет проведено весной. Каждого ученика спросят, пользовались ли они спортивным сооружением регулярно в течение последних 6 месяцев и не болели ли они гриппом. Будет проведена проверка гипотезы для сравнения доли студентов, которые регулярно использовали спортивные сооружения и заболели гриппом, с долей студентов, которые этого не сделали и заболели гриппом.В течение обычного года примерно 35% студентов болеют гриппом. Исследователи считают, что увеличение заболеваемости гриппом на 30% среди тех, кто регулярно пользовался спортивным сооружением, было бы клинически значимым. Сколько студентов должно быть привлечено к исследованию, чтобы убедиться, что мощность теста составляет 80%, чтобы обнаружить эту разницу в пропорциях? Будет использоваться двусторонний тест с уровнем значимости 5%.

Сначала мы вычисляем размер эффекта, подставляя доли учащихся в каждой группе, у которых ожидается развитие гриппа, p 1 = 0.46 (т.е. 0,35 * 1,30 = 0,46) и p 2 = 0,35, а общая пропорция, p = 0,41 (т.е. (0,46 + 0,35) / 2):

Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки.

Выборки размера n 1 = 324 и n 2 = 324 гарантируют, что проверка гипотезы будет иметь 80% -ную мощность для выявления 30% -ной разницы в доле учащихся, заболевших гриппом, между теми, кто болеет, и не заболевает. регулярно пользоваться спортивными сооружениями.

Донорские фекалии? Действительно? Clostridium difficile (также называемая «C. difficile» или «C. diff.») Представляет собой бактериальный вид, который можно найти в толстой кишке человека, хотя его численность контролируется другой нормальной флорой толстой кишки. Антибиотикотерапия иногда снижает нормальную флору в толстой кишке до такой степени, что процветает C. difficile и вызывается инфекция с симптомами, варьирующимися от диареи до опасного для жизни воспаления толстой кишки. Болезнь от C.difficile чаще всего поражает пожилых людей в больницах или учреждениях длительного ухода и обычно возникает после приема антибиотиков. В последние годы инфекции, вызванные C. difficile, стали более частыми, тяжелыми и трудно поддающимися лечению. По иронии судьбы, C. difficile сначала лечится путем прекращения приема антибиотиков, если они все еще назначаются. Если это не помогло, инфекцию вылечили путем перехода на другой антибиотик. Однако лечение другим антибиотиком часто не излечивает C.difficile. Были спорадические сообщения об успешном лечении путем вливания фекалий здоровых доноров в двенадцатиперстную кишку пациентов, страдающих C. difficile. (Юк!) Это восстанавливает нормальную микробиоту в толстой кишке и противодействует чрезмерному росту C. diff. Эффективность этого подхода была проверена в рандомизированном клиническом исследовании, опубликованном в Медицинском журнале Новой Англии (январь 2013 г.). Исследователи планировали случайным образом распределить пациентов с рецидивирующей инфекцией C. difficile либо на антибактериальную терапию, либо на дуоденальную инфузию донорских фекалий.Чтобы оценить размер необходимой пробы, исследователи предположили, что инфузия кала будет успешной в 90% случаев, а терапия антибиотиками будет успешной в 60% случаев. Сколько субъектов потребуется в каждой группе, чтобы гарантировать, что мощность исследования составляет 80% с уровнем значимости α = 0,05?

Ответ


Определение подходящего дизайна исследования более важно, чем статистический анализ; плохо спланированное исследование никогда нельзя спасти, тогда как плохо проанализированное исследование можно повторно проанализировать.Важнейшим компонентом дизайна исследования является определение подходящего размера выборки. Размер выборки должен быть достаточно большим, чтобы адекватно ответить на вопрос исследования, но не слишком большим, чтобы охватить слишком много пациентов, когда было бы достаточно меньшего. Определение подходящего размера выборки включает статистические критерии, а также клинические или практические соображения. Определение размера выборки требует совместной работы; Биостатисты должны работать в тесном сотрудничестве с клиническими исследователями, чтобы определить размер выборки, которая позволит решить интересующий вопрос исследования с достаточной точностью или мощностью для получения клинически значимых результатов.

В следующей таблице приведены формулы размера выборки для каждого описанного здесь сценария. Формулы организованы по предлагаемому анализу, оценке доверительного интервала или проверке гипотез.

Ситуация

Размер выборки до

Оценка доверительного интервала

Размер выборки для проверки гипотезы

Непрерывный результат,

Один образец:

CI для μ, H 0 : μ = μ 0

Непрерывный результат,

Два независимых образца:

CI для (μ 1 2 ), H 0 : μ 1 = μ 2

Непрерывный результат,

Два совпадающих образца:

CI для μ d , H 0 : μ d = 0

Дихотомический результат,

Один образец:

CI для p, H 0 : p = p 0

Дихотомический результат,

Два независимых образца:

CI для (p 1 -p 2 ), H 0 : p 1 = p 2


  1. Бушман Н.А., Фостер Дж., Викерс П.Девочки-подростки и их дети: достижение оптимальной массы тела при рождении. Гестационная прибавка в весе и исход беременности с точки зрения гестации при родах и массы тела при рождении: сравнение между подростками до 16 лет и взрослыми женщинами. Ребенок: уход, здоровье и развитие. 2001; 27 (2): 163-171.
  2. Feuer EJ, Wun LM. ДЕВКАН: Вероятность развития или смерти от рака. Версия 4.0 .Bethesda, MD: Национальный институт рака, 1999.
  3. Хауэлл, округ Колумбия. Статистические методы психологии.Бостон, Массачусетс: Duxbury Press, 1982.
  4. Fleiss JL. Статистические методы расчета ставок и пропорций. Нью-Йорк, штат Нью-Йорк: John Wiley and Sons, Inc., 1981.
  5. Национальный центр статистики здравоохранения. Здоровье, США, 2005 г., с диаграммой тенденций в области здоровья американцев. Хяттсвилл, Мэриленд: Типография правительства США; 2005.
  6. Пласкон Л.А., Пенсон Д.Ф., Воан Т.Л., Стэнфордский университет. Курение сигарет и риск рака простаты у мужчин среднего возраста. Биомаркеры и профилактика эпидемиологии рака.2003; 12: 604-609.
  7. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB, Wilson PW. C-реактивный белок, метаболический синдром и прогноз сердечно-сосудистых событий в исследовании Framingham Offspring Study. Тираж. 2004; 110: 380-385.
  8. Рамачандран В., Салливан Л.М., Уилсон П.В., Семпос, Т.Т., Сандстрем Дж., Каннел В.Б., Леви Д., Д’Агостино, РБ. Относительное значение пограничных и повышенных уровней факторов риска ишемической болезни сердца. Анналы внутренней медицины. 2005; 142: 393-402.
  9. Векслер Х., Ли Дж. Э., Куо М., Ли Х. Выпивка в колледже в 1990-е годы: постоянная проблема Результаты Гарвардской школы общественного здравоохранения, 1999, Здоровье колледжей, 2000; 48: 199-210.

Ответ на вопрос о массе тела при рождении — стр. 3

Исследователь хочет оценить средний вес при рождении доношенных детей (примерно 40 недель беременности) от матерей в возрасте 19 лет и младше. Средний вес новорожденных, рожденных доношенными от матерей в возрасте 20 лет и старше, составляет 3 510 граммов со стандартным отклонением 385 граммов.Сколько женщин в возрасте 19 лет и младше должны быть включены в исследование, чтобы гарантировать, что оценка среднего веса при рождении их младенцев с доверительным интервалом 95% имеет предел погрешности, не превышающий 100 граммов?

Чтобы гарантировать, что оценка среднего веса при рождении с доверительным интервалом 95% находится в пределах 100 граммов от истинного среднего, необходима выборка размером 57. При планировании исследования исследователь должен учитывать тот факт, что у некоторых женщин могут возникать преждевременные роды.Если женщины будут включены в исследование во время беременности, то необходимо будет включить в исследование более 57 женщин, чтобы после исключения преждевременных родов 57 женщин с информацией о результатах были доступны для анализа. Например, если ожидается, что 5% женщин родят преждевременно (т. Е. 95% родят доношенными), то необходимо включить 60 женщин, чтобы у 57 роды были доношенными. Количество женщин, которые должны быть зачислены, N, рассчитывается следующим образом:

N (число для включения) * (% оставшихся) = желаемый размер выборки

N (0.95) = 57

N = 57 / 0,95 = 60,

Ответ первокурсников о курении — стр. 4

Предположим, что подобное исследование было проведено 2 года назад и обнаружило, что распространенность курения среди первокурсников составляет 27%. Если исследователь считает, что это разумная оценка распространенности через 2 года, ее можно использовать для планирования следующего исследования. Используя эту оценку p, какой размер выборки необходим (при условии, что снова будет использоваться 95% доверительный интервал и нам нужен такой же уровень точности)?

Чтобы гарантировать, что 95% доверительный интервал оценки доли курящих первокурсников находится в пределах 5% от истинной доли, необходима выборка размером 303.Обратите внимание, что этот размер выборки существенно меньше, чем рассчитанный выше. Наличие некоторой информации о величине доли в генеральной совокупности всегда дает размер выборки, который меньше или равен тому, который основан на доле генеральной совокупности 0,5. Однако оценка должна быть реалистичной.

Ответ на проблему с медицинским устройством — страница 7

Производитель медицинского оборудования производит имплантируемые стенты. В процессе производства приблизительно 10% стентов считаются дефектными.Производитель хочет проверить, не превышает ли доля дефектных стентов 10%. Если в результате процесса образуется более 15% дефектных стентов, необходимо предпринять корректирующие действия. Поэтому производитель хочет, чтобы тест имел мощность 90%, чтобы обнаружить разницу в пропорциях такой величины. Сколько стентов необходимо оценить? Для расчетов используйте двусторонний тест с уровнем значимости 5%.

Затем подставьте размер эффекта и соответствующие значения z для выбранных альфа и мощности, чтобы вычислить размер выборки.

Размер выборки из 364 стентов гарантирует, что двусторонний тест с α = 0,05 будет иметь мощность 90% для обнаружения 0,05 или 5% разницы в пропорции произведенных дефектных стентов.

Ответ на алкоголь и средний балл — страница 8

Исследователь планирует исследование для оценки связи между потреблением алкоголя и средней успеваемостью среди выпускников колледжа. План состоит в том, чтобы классифицировать учащихся как сильно пьющих или не употребляющих 5 или более напитков в обычный день выпивки в качестве критерия употребления алкоголя.Средние средние баллы будут сравниваться между учащимися, отнесенными к категории сильно пьющих, по сравнению с не использующими две независимые выборки проверки средних значений. Предполагается, что стандартное отклонение средних баллов составляет 0,42, а значимая разница в средних баллах (относительно статуса потребления алкоголя) составляет 0,25 единицы. Сколько выпускников колледжа должны быть включены в исследование, чтобы убедиться, что мощность теста составляет 80%, чтобы выявить разницу в 0,25 единицы в средних средних баллах? Используйте двусторонний тест с уровнем значимости 5%.

Сначала вычислите размер эффекта.

Теперь замените размер эффекта и соответствующие значения z на альфа и мощность, чтобы вычислить размер выборки.

Размеры выборки из n i = 44 сильно пьющих и 44, которые выпивают менее пяти напитков в обычный день, гарантируют, что проверка гипотезы имеет 80% -ную мощность для выявления разницы в 0,25 единицы средних средних баллов.

Ответ на донорские фекалии — страница 8

Сначала мы вычисляем величину эффекта, подставляя доли пациентов, которые, как ожидается, будут излечены при каждом лечении, p 1 = 0.6 и p 2 = 0,9, а общая пропорция p = 0,75:

Теперь мы заменяем размер эффекта и соответствующие значения Z на выбранные a и мощность, чтобы вычислить размер выборки.

Образцы размера n 1 = 33 и n 2 = 33 гарантируют, что проверка гипотезы будет иметь 80% -ную мощность для обнаружения этой разницы в пропорциях пациентов, излечившихся от C. diff. инфузией кала по сравнению с терапией антибиотиками.

Фактически, исследователи включили по 38 в каждую группу, чтобы учесть отсев. Тем не менее, после промежуточного анализа исследование было остановлено. Из 16 пациентов в группе инфузии у 13 (81%) отмечалось исчезновение диареи, связанной с C. difficile, после первой инфузии. Остальным 3 пациентам была проведена вторая инфузия с фекалиями от другого донора с разрешением у 2 пациентов. Излечение C. difficile произошло только у 4 из 13 пациентов (31%), получавших антибиотик ванкомицин.

МОЩНОСТЬ (функция) — служба поддержки Office

Допустим, вы хотите рассчитать чрезвычайно малый уровень допуска для обработанной детали или огромное расстояние между двумя галактиками. Чтобы возвести число в степень, используйте функцию МОЩНОСТЬ . 2.

Пример

Скопируйте данные примера из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы формулы отображали результаты, выберите их, нажмите F2, а затем нажмите Enter. При необходимости вы можете настроить ширину столбца, чтобы увидеть все данные.

Формула

Описание

R результат

= МОЩНОСТЬ (5,2)

5 кв.

25

= МОЩНОСТЬ (98.6,3.2)

98,6 возведен в степень 3,2.

2401077.222

= МОЩНОСТЬ (4,5 / 4)

4 в степени 5/4.

5.656854249

Мощность | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте мощность, рассчитав изменения энергии во времени.
  • Изучите энергопотребление и расчеты стоимости потребляемой энергии.

Что такое власть?

Рисунок 1.Эта мощная ракета космического корабля «Индевор» действительно работала и потребляла энергию с очень высокой скоростью. (кредит: НАСА)

Сила — это слово вызывает в воображении множество образов: профессиональный футболист, отталкивающий своего противника, драгстер, ревущий от стартовой линии, вулкан, выбрасывающий лаву в атмосферу, или взрывающаяся ракета, как на рисунке 1.

Эти образы силы объединяет быстрое выполнение работы, что соответствует научному определению мощности ( P ) как скорости выполнения работы.

Мощность

Мощность — это скорость выполнения работы.

[латекс] \ displaystyle {P} = \ frac {W} {t} \\ [/ latex]

Единица измерения мощности в системе СИ — ватт (Вт), где 1 ватт равен 1 джоуль в секунду (1 Вт = 1 Дж / с).

Поскольку работа — это передача энергии, мощность — это также скорость, с которой энергия расходуется. Например, лампочка мощностью 60 Вт потребляет 60 Дж энергии в секунду. Большая мощность означает большой объем работы или энергии, выработанный за короткое время. Например, когда мощный автомобиль быстро разгоняется, он выполняет большой объем работы и потребляет большое количество топлива за короткое время.

Расчет мощности по энергии

Пример 1. Расчет мощности для подъема по лестнице

Какова выходная мощность для женщины весом 60,0 кг, которая преодолевает лестничный марш высотой 3,00 м за 3,50 с, начиная с состояния покоя, но имея конечную скорость 2,00 м / с? (См. Рисунок 2.)

Рис. 2. Когда эта женщина бежит наверх, начиная с отдыха, она преобразует химическую энергию, исходную из пищи, в кинетическую энергию и потенциальную энергию гравитации. Ее выходная мощность зависит от того, как быстро она это сделает.2 \ right) \ left (3.00 \ text {m} \ right)} {3.50 \ text {s}} \\\ text {} & = & \ frac {120 \ text {J} +1764 \ text {J} } {3.50 \ text {s}} \\\ text {} & = & 538 \ text {W} \ end {array} \\ [/ latex]

Обсуждение

Женщина выполняет 1764 Дж работы, чтобы подняться по лестнице, по сравнению со всего лишь 120 Дж, чтобы увеличить свою кинетическую энергию; таким образом, большая часть ее мощности требуется для подъема, а не для ускорения.

Впечатляет, что полезная выходная мощность этой женщины чуть меньше 1 лошадиных сил (1 л.с. = 746 Вт)! Люди могут генерировать больше, чем лошадиные силы с помощью мышц ног в течение коротких периодов времени, быстро превращая доступный в крови сахар и кислород в рабочую мощность.(Лошадь может выделять 1 л.с. в течение нескольких часов подряд.) Как только кислород истощается, выходная мощность уменьшается, и человек начинает быстро дышать, чтобы получить кислород для метаболизма большего количества пищи — это известно как этап аэробных упражнений . Если бы женщина поднималась по лестнице медленно, то ее выходная мощность была бы намного меньше, хотя объем выполняемой работы был бы таким же.

Установление соединений: расследование на вынос — измерение номинальной мощности

Определите собственную номинальную мощность, измерив время, необходимое вам, чтобы подняться по лестнице.Мы проигнорируем выигрыш в кинетической энергии, так как приведенный выше пример показал, что это была небольшая часть выигрыша в энергии. Не ожидайте, что ваша мощность будет больше 0,5 л.с.

Примеры силы

Рис. 3. Огромное количество электроэнергии вырабатывается угольными электростанциями, такими как эта в Китае, но еще большее количество энергии идет на передачу тепла в окружающую среду. Здесь большие градирни необходимы для быстрой передачи тепла по мере его производства.Передача тепла характерна не только для угольных электростанций, но является неизбежным следствием выработки электроэнергии из любого топлива — ядерного, угля, нефти, природного газа и т.п. (Источник: Kleinolive, Wikimedia Commons)

Примеры силы ограничены только воображением, потому что типов столько же, сколько форм работы и энергии. (См. Некоторые примеры в Таблице 1.) Солнечный свет, достигающий поверхности Земли, несет максимальную мощность около 1,3 киловатт на квадратный метр (кВт / м 2 ).Крошечная часть этого остается на Земле в течение длительного времени. Наш уровень потребления ископаемого топлива намного превышает скорость его хранения, поэтому они неизбежно будут исчерпаны. Сила подразумевает, что энергия передается, возможно, меняя форму. Невозможно полностью преобразовать одну форму в другую, не потеряв часть ее в виде тепловой энергии. Например, лампа накаливания мощностью 60 Вт преобразует в свет всего 5 Вт электроэнергии, а 55 Вт рассеивается в тепловую энергию.

Кроме того, обычная электростанция преобразует только 35-40% топлива в электричество. Остаток превращается в огромное количество тепловой энергии, которая должна быть распределена в виде теплопередачи так же быстро, как и возникнет. Электростанция, работающая на угле, может производить 1000 мегаватт; 1 мегаватт (МВт) — это 10 6 Вт электроэнергии. Но электростанция потребляет химическую энергию в размере около 2500 МВт, создавая передачу тепла в окружающую среду в размере 1500 МВт. (См. Рисунок 3.)

Таблица 1. Выходная или потребляемая мощность
Объект или явление Мощность в ваттах
Сверхновая (в пике) 5 × 10 37
Галактика Млечный Путь 10 37
Пульсар Крабовидной туманности 10 28
Солнце 4 × 10 26
Извержение вулкана (максимальное) 4 × 10 15
Молния 2 × 10 12
Атомная электростанция (полная передача электроэнергии и тепла) 3 × 10 9
Авианосец (полезная и теплопроводная) 10 8
Драгстер (общий полезный и теплопередающий) 2 × 10 6
Автомобиль (общий полезный и теплоотдача) 8 × 10 4
Футболист (общий полезный и теплопередающий) 5 × 10 3
Сушилка для белья 4 × 10 3
Человек в состоянии покоя (вся теплопередача) 100
Обычная лампа накаливания (общая полезная и теплопередающая) 60
Сердце, человек в состоянии покоя (общая полезная и теплоотдача) 8
Часы электрические 3
Карманный калькулятор 10 −3

Мощность и энергопотребление

Обычно нам приходится платить за энергию, которую мы используем.Стоимость энергии для электроприбора интересно и легко оценить, если известны его потребляемая мощность и затраченное время. Чем выше уровень энергопотребления и чем дольше прибор используется, тем выше его стоимость. Уровень потребляемой мощности [латекс] P = \ frac {W} {t} = \ frac {E} {t} \\ [/ latex], где E — энергия, поставляемая электроэнергетической компанией. Таким образом, энергия, потребляемая за время т , составляет

E = Pt.

В счетах за электроэнергию указывается использованная энергия в единицах киловатт-часов (кВт⋅ч) , , которая является произведением мощности в киловаттах и ​​времени в часах. Этот блок удобен тем, что потребление электроэнергии на уровне киловатт в течение нескольких часов является типичным.

Пример 2. Расчет затрат на электроэнергию

Какова стоимость эксплуатации компьютера мощностью 0,200 кВт, 6 часов в день в течение 30 дней, если стоимость электроэнергии составляет 0,120 доллара США за кВт⋅ч?

Стратегия

Стоимость основана на потребленной энергии; таким образом, мы должны найти E из E = Pt , а затем рассчитать стоимость.Поскольку электрическая энергия выражается в кВт⋅ч, в начале такой задачи удобно преобразовать единицы в кВт и часы.

Решение

Энергия, потребленная в кВт⋅ч, составляет

[латекс] \ begin {array} {lll} E & = & Pt = (0.200 \ text {kW}) (6.00 \ text {h / d}) (30.0 \ text {d}) \\\ text {} & = & 36.0 \ text {кВт} \ cdot \ text {h} \ end {array} \\ [/ latex]

, а стоимость просто равна

. Стоимость

= (36,0 кВт⋅ч) (0,120 доллара США за кВт⋅ч) = 4,32 доллара США в месяц.

Обсуждение

Стоимость использования компьютера в этом примере не является ни чрезмерной, ни незначительной. Понятно, что стоимость — это сочетание силы и времени. Когда и то и другое высокое, например, кондиционер летом, стоимость высока.

Мотивация к экономии энергии стала более убедительной из-за ее постоянно растущей цены. Вооружившись знанием того, что потребляемая энергия является продуктом мощности и времени, вы можете оценить затраты для себя и сделать необходимые оценочные суждения о том, где экономить энергию.Нужно уменьшить либо мощность, либо время. Наиболее экономически выгодно ограничить использование мощных устройств, которые обычно работают в течение длительного времени, таких как водонагреватели и кондиционеры. Сюда не входят устройства с относительно высокой мощностью, такие как тостеры, потому что они работают всего несколько минут в день. Он также не будет включать электрические часы, несмотря на то, что они используются круглосуточно, потому что они являются устройствами с очень низким энергопотреблением. Иногда можно использовать устройства с большей эффективностью, то есть устройства, потребляющие меньше энергии, для выполнения той же задачи.Одним из примеров является компактная люминесцентная лампа, которая дает в четыре раза больше света на ватт потребляемой мощности, чем ее собрат с лампами накаливания.

Современная цивилизация зависит от энергии, но нынешние уровни потребления и производства энергии не являются устойчивыми. Вероятность связи между глобальным потеплением и использованием ископаемого топлива (с сопутствующим производством углекислого газа) сделала сокращение использования энергии, а также переход на неископаемые виды топлива чрезвычайно важными. Несмотря на то, что энергия в изолированной системе является сохраняемой величиной, конечным результатом большинства преобразований энергии является перенос тепла в окружающую среду, которое больше не используется для выполнения работы.Как мы обсудим более подробно в Термодинамике, способность энергии производить полезную работу «деградировала» при преобразовании энергии.

Сводка раздела

  • Мощность — это скорость выполнения работы или в форме уравнения для средней мощности P для работы Вт , выполненной за время t , [латекс] P = \ frac {W} {t} \\ [/ латекс]
  • В системе СИ для измерения мощности используется ватт (Вт), где [латекс] 1 \ text {W} = 1 \ frac {\ text {J}} {\ text {s}} \\ [/ latex].
  • Мощность многих устройств, таких как электродвигатели, также часто выражается в лошадиных силах (л.с.), где 1 л.с. = 746 Вт.

Концептуальные вопросы

  1. Большинство электроприборов имеют мощность в ваттах. Зависит ли этот рейтинг от того, как долго прибор включен? (В выключенном состоянии это устройство с нулевой мощностью.) Объясните определение мощности.
  2. Объясните в терминах определения мощности, почему потребление энергии иногда указывается в киловатт-часах, а не в джоулях.Какая связь между этими двумя энергетическими единицами?
  3. Искра статического электричества, которую вы можете получить от дверной ручки в холодный и сухой день, может нести несколько сотен ватт мощности. Объясните, почему вы не пострадали от такой искры.

Задачи и упражнения

  1. Пульсар в Крабовидной туманности (см. Рис. 4) — это остаток сверхновой, которая произошла в 1054 году нашей эры. Используя данные из таблицы 1, вычислите приблизительный коэффициент, на который мощность этого астрономического объекта снизилась после его взрыва.

    Рис. 4. Крабовидная туманность (предоставлено ESO, через Wikimedia Commons)

  2. Предположим, что звезда в 1000 раз ярче нашего Солнца (то есть излучающая в 1000 раз большую мощность) внезапно становится сверхновой. Используя данные из Таблицы 1: (a) Во сколько раз увеличивается его выходная мощность? (б) Во сколько раз ярче, чем вся наша галактика Млечный Путь, сверхновая? (c) Основываясь на ваших ответах, обсудите, возможно ли наблюдать сверхновые в далеких галактиках. Обратите внимание, что существует порядка 10 11 наблюдаемых галактик, средняя яркость которых несколько меньше нашей собственной галактики.
  3. Человек в хорошем физическом состоянии может выдавать 100 Вт полезной мощности в течение нескольких часов подряд, возможно, задействуя механизм, приводящий в действие электрогенератор. Пренебрегая любыми проблемами эффективности генератора и практическими соображениями, такими как время отдыха: (а) Сколько человек потребуется, чтобы запустить электрическую сушилку для белья мощностью 4,00 кВт? (б) Сколько людей потребуется, чтобы заменить большую электростанцию, вырабатывающую 800 МВт?
  4. Сколько стоит эксплуатация 3.Электрические часы 00-Вт на год при стоимости электроэнергии 0,0900 $ за кВт · ч?
  5. Большой бытовой кондиционер может потреблять 15,0 кВт электроэнергии. Какова стоимость эксплуатации этого кондиционера 3,00 часа в день в течение 30,0 дней, если стоимость электроэнергии составляет 0,110 доллара США за кВт · ч?
  6. (а) Какова средняя потребляемая мощность в ваттах прибора, потребляющего 5,00 кВт · ч энергии в день? (б) Сколько джоулей энергии устройство потребляет в год?
  7. (a) Какова средняя полезная выходная мощность человека, который делает 6.00 × 10 6 Дж полезной работы за 8.00 ч? (b) Работая с такой скоростью, сколько времени потребуется этому человеку, чтобы поднять 2000 кг кирпичей 1,50 м на платформу? (Работу по поднятию тела можно пропустить, потому что здесь это не считается полезным результатом.)
  8. Драгстер массой 500 кг разгоняется до конечной скорости 110 м / с за 400 м (около четверти мили) и сталкивается со средней силой трения 1200 Н. Какова его средняя выходная мощность в ваттах и ​​лошадиных силах, если это занимает 7,30 с?
  9. (а) Сколько времени займет автомобиль весом 850 кг с полезной мощностью 40?0 л.с. (1 л.с. = 746 Вт) для достижения скорости 15,0 м / с без учета трения? (b) Сколько времени займет это ускорение, если при этом автомобиль также преодолеет холм высотой 3,00 м?
  10. (a) Найдите полезную выходную мощность двигателя лифта, который поднимает груз массой 2500 кг на высоту 35,0 м за 12,0 с, если он также увеличивает скорость в состоянии покоя до 4,00 м / с. Обратите внимание, что общая масса уравновешенной системы составляет 10 000 кг, т.е. только 2500 кг поднимается в высоту, но все 10 000 кг ускоряются. (б) Сколько это стоит, если электричество стоит 0 долларов.0900 за кВт · ч?
  11. (а) Каково доступное энергосодержание в джоулях батареи, которая работает в электрических часах мощностью 2,00 Вт в течение 18 месяцев? (b) Как долго батарея, способная обеспечивать 8,00 × 10 4 Дж, может работать с карманным калькулятором, потребляющим энергию со скоростью 1,00 × 10 −3 Вт?
  12. (a) Сколько времени потребуется самолету массой 1,50 × 10 5 кг с двигателями мощностью 100 МВт, чтобы достичь скорости 250 м / с и высоты 12,0 км, если сопротивление воздуха будет незначительным? (б) Если это действительно занимает 900 с, какова мощность? (c) Учитывая эту мощность, какова средняя сила сопротивления воздуха, если самолет занимает 1200 с? (Подсказка: вы должны найти расстояние, которое самолет преодолеет за 1200 с при постоянном ускорении.)
  13. Рассчитайте выходную мощность, необходимую для 950-килограммового автомобиля, чтобы преодолеть уклон 2,00 ° с постоянной скоростью 30,0 м / с, столкнувшись с сопротивлением ветра и трением в сумме 600 Н. Ясно покажите, как вы выполняете шаги, указанные в Стратегиях решения проблем в области энергетики .
  14. (a) Вычислите мощность на квадратный метр, приходящуюся от Солнца в верхние слои атмосферы Земли. (Возьмем выходную мощность Солнца равной 4,00 × 10 26 Вт.) [/ Latex] (b) Часть этой мощности поглощается и отражается атмосферой, так что максимум 1.30 кВт / м 2 достигает поверхности Земли. Вычислите площадь в км 2 солнечных коллекторов, необходимых для замены электростанции, вырабатывающей 750 МВт, если коллекторы преобразуют в электричество в среднем 2,00% максимальной мощности. (Такая малая эффективность преобразования обусловлена ​​самими устройствами и тем фактом, что солнце находится прямо над головой лишь на короткое время.) При тех же предположениях, какая площадь потребуется для удовлетворения энергетических потребностей Соединенных Штатов (1,05 × 10 20 J)? Энергетические потребности Австралии (5.4 × 10 18 Дж)? Энергетические потребности Китая (6,3 × 10 19 Дж)? (Эти значения энергопотребления взяты с 2006 г.)

Глоссарий

мощность: скорость выполнения работы

ватт: (Вт) единица мощности СИ, с [латексом] 1 \ text {W} = \ frac {\ text {J}} {\ text {s}} \\ [/ latex]

лошадиных сил: более старая несистемная единица мощности, с 1 л.с. = 746 Вт

киловатт-час: установка кВт · час, используемая в основном для выработки электроэнергии, предоставляемой электроэнергетическими компаниями

Избранные решения проблем и упражнения

1.2 × 10 −10

3. (а) 40; (б) 8 миллионов

5. 149 долларов США

7.

Добавить комментарий

Ваш адрес email не будет опубликован.