Ферромагниты для высокочастотных трансформаторов – RU2014151501A — ПРОТЯЖЕННЫЙ ПО ОСИ ЦИЛИНДРА КОЛЬЦЕВОЙ ФЕРРОМАГНИТНЫЙ СЕРДЕЧНИК ВЫСОКОЧАСТОТНОГО ТРАНСФОРМАТОРА

электрический высокочастотный резонансный трансформатор (варианты) — патент РФ 2423746

Изобретение относится к электротехнике, к электрическим трансформаторам для устройств передачи электрической энергии. Технический результат состоит в повышении передаваемой мощности и рабочей частоты за счет исключения магнитопровода, обеспечения возможности подключения к выходу трансформатора низкоомных нагрузок. В качестве магнитопровода используется резонансная обмотка для повышения связи между первичной и вторичной обмотками, обусловленной добротностью образуемого ею четвертьволнового вибратора. Электрический высокочастотный трансформатор дополнительно снабжен резонансной обмоткой (резонатором), выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения и состоящей из последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки. Поверх резонансной обмотки у ее начала в области формирования пучности тока размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой. Резонансная частота контуров первичной, вторичной и резонансной обмоток равны между собой. Начала первичной, вторичной и резонансной обмоток электрически соединены между собой и заземлены, а второй вывод резонансной обмотки изолирован. Начала первичной и вторичной обмоток могут быть соединены между собой, начало резонансной обмотки заземлено, а ее конец изолирован. Первичная и вторичная обмотки могут быть гальванически не связаны, начало резонансной обмотки заземлено, а ее конец изолирован. 3 н.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2423746

Изобретение относится к области электротехники, в частности к конструкции электрических высокочастотных трансформаторов для устройств передачи электрической энергии.

Известен электрический трансформатор напряжения — электромагнитный статический преобразователь электрической энергии, содержащий первичную и вторичную обмотки и магнитопровод. Энергия из одной обмотки в другую передается изменяющимся во времени магнитным потоком, охватывающим обе обмотки трансформатора. Для снижения магнитного сопротивления переменному магнитному потоку обмотки располагают на ферромагнитном сердечнике-магнитопроводе.

Эффективность передачи энергии в трансформаторе из первичной обмотки во вторичную определяется коэффициентом магнитной связи между обмотками. При этом в силу практического равенства магнитного потока вдоль всего магнитопровода, соотношение напряжений на выводах обмоток соответствует соотношению числа их витков. (Копылов Н.П. Электрические машины. — М.: Логос, 2002 г., стр.131-239).

Недостатком известного трансформатора является ограничение его параметров по частоте и мощности из-за имеющихся у магнитопроводящих материалов свойств нелинейной зависимости их от частоты и интенсивности магнитного потока, что является следствием доменной природы магнитных свойств ферромагнетиков. При большой частоте и большой величине магнитного потока магнитные домены магнитопроводящего сердечника перестают реагировать на изменения магнитного потока.

Известно устройство для преобразования электрической энергии, предложенное в 1897 г. Н.Тесла. Согласно изобретению устройство содержит первичную низковольтную обмотку, соединенную с электрическим генератором повышенной частоты, и вторичную высоковольтную обмотку для передачи электрической энергии по одному проводу. Длина вторичной обмотки приблизительно равна четверти длины волны электромагнитного поля. Высоковольтная обмотка располагается внутри первичной обмотки, а прилегающий к первичной обмотке вывод высоковольтной обмотки заземляется. При этом в высоковольтной обмотке возбуждаются стоячие волны тока и напряжения. В области, прилегающей к первичной обмотке, возбуждается пучность тока и, следовательно, пучность магнитной индукции, а в противоположной области высоковольтной обмотки возбуждается пучность напряжения с созданием высокого потенциала на выводе высоковольтной обмотки трансформатора. (Н.Тесла. Электрический трансформатор. Патент США № 593138 от 12.11.1897 г.).

Недостатком данного электрического трансформатора является невозможность прямого подключения низкоомной нагрузки к вторичной обмотке из-за высокого выходного сопротивления трансформатора. Для обеспечения возможности подключения низкоомной нагрузки требуется применение специального согласующего устройства, например второго, понижающего, трансформатора Тесла.

Известен электрический высокочастотный трансформатор, содержащий низковольтную обмотку и высоковольтную обмотку, выполненную в виде спирали проводом разного сечения, причем сечение провода обмотки увеличивается по мере приближения к области пучности тока. Такое исполнение высоковольтной обмотки способствует снижению потерь на сопротивлении обмотки трансформатора при работе на повышенных частотах. При этом повышается добротность четвертьволновой высоковольтной обмотки и усиливается эффект образования пучности тока. (Патент РФ 2337423 от 07.09.2007 г.).

Недостатком известного электрического высокочастотного трансформатора является невозможность подключения к выходу трансформатора низкоомных нагрузок. Прямое подключение обычной низкоомной нагрузки равно аварийному режиму, соответствующему режиму короткого замыкания трансформатора, что не позволяет осуществить необходимую трансформацию и передачу электрической энергии.

Задачей изобретения является повышение эффективности преобразования и передачи электрической энергии.

Технический результат заключается в увеличении передаваемой мощности, повышении рабочей частоты, исключении использования магнитопровода и обеспечении возможности подключения к выходу трансформатора низкоомных нагрузок.

Вышеуказанный технический результат достигается тем, что предлагаемый электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у её начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансная частота контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, а начала первичной, вторичной и резонансной обмоток электрически соединены между собой и заземлены, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками и расширения диапазона рабочей частоты.

В другом варианте электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у ее начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансная частота контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, а начала первичной и вторичной обмоток соединены между собой, начало резонансной обмотки заземлено, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками и расширения диапазона рабочей частоты.

В другом варианте электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у ее начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансная частота контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, первичная и вторичная обмотки гальванически не связаны, начало резонансной обмотки заземлено, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками и расширения диапазона рабочей частоты.

Исключение из конструкции трансформатора магнитопроводящего ферромагнитного сердечника снимает ограничение на увеличение магнитной индукции и рабочей частоты при работе электрического высокочастотного резонансного трансформатора. Увеличение передаваемой мощности и повышение рабочей частоты достигается в результате замены магнитопроводящего сердечника трансформатора на резонансную обмотку (резонатор), выполненную в виде спирали с электрической длиной, равной четверти длины стоячей волны тока и напряжения в ней.

На фиг.1-3 представлен электрический высокочастотный резонансный трансформатор и схема его соединения с питающим генератором и нагрузкой.

Устройство содержит электрический высокочастотный резонансный трансформатор 1, имеющий первичную обмотку 2 с индуктивностью L1, соединенную через первый резонансный конденсатор 3 емкостью C1 с генератором 4, и вторичную обмотку 5 с индуктивностью L2, соединенную через второй резонансный конденсатор 6 емкостью C2 с нагрузкой 7, а также резонансную обмотку 8, обладающую индуктивностью L

p и собственной емкостью Ср. Начала первичной обмотки 3, вторичной обмотки 6 и резонансной обмотки 8 объединены и соединены с землей 9, а конец 10 резонансной обмотки 8 изолирован.

Электрический высокочастотный трансформатор работает следующим образом. Электрическая энергия повышенной частоты от генератора 4 подается на входной контур, образуемый индуктивностью L 1 первичной обмотки 2 и емкостью C1 первого резонансного конденсатора 3. Магнитный поток, создаваемый током в первичной обмотке 2, переносит энергию из входного резонансного контора в выходной резонансный контур, образуемый индуктивностью L2 вторичной обмотки 5 и емкостью С2 второго резонансного конденсатора 6, и отдает ее нагрузке 7. Магнитный поток первичной обмотки 2 возбуждает также резонансную обмотку 8, вдоль которой в условиях резонанса устанавливаются стоячие волны напряжения и тока. При этом создаваемые резонансной обмоткой 8 пучности тока находятся в области расположения первичной обмотки 2, что приводит к увеличению интенсивности магнитного потока в обмотке 2, уменьшению магнитного потока рассеяния трансформатора 1 и увеличению коэффициента связи и величины магнитной индукции при передаче энергии к нагрузке практически без ограничения по частоте.

Работа электрического высокочастотного резонансного трансформатора 1 с резонансной обмоткой 8 в качестве дополнительного намагничивающего четвертьволнового вибратора осуществляется при равенстве частот питающего генератора 4, входного контура (L1, C1), образуемого первичной обмоткой 2 и первым конденсатором 3, выходного контура (L 2, C2), образуемого вторичной обмоткой 5 и емкостью второго конденсатора 6, а также частотой резонансной обмотки 8, обладающей индуктивностью Lp, собственной емкостью Ср.

Рабочие резонансные частоты входного и выходного контуров и резонансной обмотки электрического высокочастотного резонансного трансформатора определяются их электрическими параметрами и соответствуют следующим выражениям.

Рабочая частота входного резонансного контура:

Рабочая частота выходного резонансного контура:

Рабочая частота резонансной обмотки (резонатора) 8:

где L1, L2, C 1, C2 — индуктивности обмоток в Гн, и емкости конденсаторов в Ф первичного и вторичного контуров;

L0, С0 — распределенная погонная индуктивность в Гн/м, и емкость, Ф/м резонансной обмотки 8; lэ — длина катушки резонансной обмотки 8.

Резонансные частоты f1, f2, f3 и частота тока fг питающего генератора 4 равны между собой и являются рабочей частотой электрического высокочастотного резонансного трансформатора.

В варианте исполнения трансформатора по фиг.2 начала первичной обмотки 2 и вторичной обмотки 5 соединены между собой, начало 9 резонансной обмотки 8 заземлено, а ее конец 10 изолирован.

В другом варианте, в соответствии с фиг.3, начала первичной обмотки 2 и вторичной обмотки 5 между собой и с началом резонансной спиральной обмотки 8 гальванически не связаны, начало 9 резонансной обмотки 8 заземлено, а её конец 10 изолирован.

В электрическом высокочастотном резонансном трансформаторе резонансная обмотка 8, выполненная в виде спирали с четвертьволновой электрической длиной, выполняет функцию ферромагнитного сердечника. Первичная 2 и вторичная 5 обмотки намотаны поверх четвертьволновой резонансной обмотки 8 и расположены в области формирования пучности тока по длине резонансной обмотки 8, которая в условиях резонанса работает в качестве четвертьволнового вибратора. Энергетический обмен между первичной и вторичной обмотками происходит через магнитное поле, возбуждаемое в области пучности тока резонансной катушки. За счет увеличения добротности четвертьволнового вибратора, образуемого резонансной обмоткой 8, значительно увеличивается коэффициент связи и энергетический обмен между первичной и вторичной обмотками.

Используемая в электрическом высокочастотном резонансном трансформаторе резонансная обмотка (резонатор) не требует применения ферритов или трансформаторного железа, выполняет функции магнитопровода, практически не имеющего предела магнитного насыщения, расширяя рабочий частотный диапазон в 10-100 раз, повышает коэффициент связи между первичной и вторичной обмотками, что значительно повышает величину передаваемой мощности.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, отличающийся тем, что он дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у ее начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансные частоты контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, а начала первичной, вторичной и резонансной обмоток электрически соединены между собой и заземлены, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками с расширением диапазона рабочей частоты.

2. Электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, отличающийся тем, что он дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у ее начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансные частоты контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, начала первичной и вторичной обмоток соединены между собой, начало резонансной обмотки заземлено, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками с расширением диапазона рабочей частоты.

3. Электрический высокочастотный резонансный трансформатор, содержащий первичную обмотку, соединенную через первый резонансный конденсатор с высокочастотным генератором, вторичную обмотку, соединенную через второй резонансный конденсатор с нагрузкой, отличающийся тем, что он дополнительно снабжен резонансной обмоткой, выполненной в виде спиральной катушки с длиной намотки, равной четверти длины стоячей волны тока и напряжения, при этом резонансная обмотка состоит из нескольких последовательно соединенных секций спирально намотанного изолированного провода, сечение которого различно для каждой секции и уменьшается по мере удаления секции от начала резонансной обмотки, поверх резонансной обмотки, у ее начала, в области формирования пучности тока, размещены первичная и вторичная обмотки, соединенные с генератором и нагрузкой, при этом резонансные частоты контуров первичной, вторичной и резонансной обмоток равны между собой и соответствуют частоте генератора, первичная и вторичная обмотки гальванически не связаны, начало резонансной обмотки заземлено, а конец резонансной обмотки изолирован, при этом резонансную обмотку используют в качестве магнитопровода для увеличения коэффициента связи между первичной и вторичной обмотками с расширением диапазона рабочей частоты.

Ферриты для широкополосных трансформаторов | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

 

Ферриты VII группы используются в качестве сердечников мощных широкополосных согласующих трансформаторов, используемых в радиопередающей аппаратуре. Ферриты данного типа обладают повышенной добротностью в слабых и сильных полях, малыми нелинейными искажениями, более высокой точкой Кюри по сравнению с ферритами для магнитоперестраиваемых контуров мощных радиотехнических устройств.

В широкополосных согласующих трансформаторах нашли применение ферриты марок 300ВНС, 200ВНС, 90ВНС, 50ВНС, которые имеют перетянутую форму петли гистерезиса и обладают малыми значениями тангенса угла магнитных потерь в широком диапазоне частот, нормированными также при высокочастотной индукции (примерно до 0,05 Тл), и малым значением амплитудной нестабильности магнитной проницаемости при высоком значении точки Кюри. Как и высокочастотные термостабильные, ферриты марок 50ВНС, 90ВНС, 200ВНС, 300ВНС имеют необратимые изменения свойств после приложения полей (больше пороговых) и даже при кратковременном приложении полей больше пороговых необратимо переходят в состояние с низкой добротностью.

В табл.1.7.1 приведены основные электромагнитные параметры ферритов для широкополосных трансформаторов, в табл.1.7.2 — вспомогательные (критическая частота, параметры петли гистерезиса, точка Кюри и др.). Относительный температурный коэффициент начальной магнитной проницаемости в различных интервалах температур дан в табл.1.7.3, а значения магнитной индукции при различных напряженностях постоянного магнитного поля — в табл. 1.7.4. Зависимость относительного тангенса угла магнитных потерь от частоты приведена на рис.1.7.1, а магнитной проницаемости и тангенса угла магнитных потерь от индукции — на рис.1.7.2. Зависимость начальной магнитной проницаемости от температуры показана на рис.1.7.3, а обратимой магнитной проницаемости от напряженности постоянного магнитного поля — на рис.1.7.4.

Основные электромагнитные параметры ферритов VII группы.

Марка феррита μH tgδμ×10³, не более, при
Номинальное значение Предельное отклонение B, Тл f, МГц
0,001 0,02
50ВНС 50 +10
-5
3,3
6,3
6,7
8
30
90ВНС 90 ±10 4,4
16,5
7,7
8
30
200ВНС 200 ±20 7,7
25,0
12,5
3
10
300ВНС 300 ±30 11,3 33,0 3

Вспомогательные параметры ферритов VII группы.

Марка феррита fкр, МГц, при tgδ Параметры петли гистерезиса в статическом режиме Θ, °С, не менее Конфигурация сердечников
0,1 0,02 μmax H_, A/м,
при
μmax
B, Тл Br, Тл HС, A/м
при H_=800 A/м
50ВНС
90ВНС 200ВНС
300ВНС
80,0
40,0 11,0
8,0
70,0
30,0 5,0
4,0
170
340 650
850
800
640 280
220
0,17
0,28 0,31
0,32
0,020
0,080 0,080
0,130
4,8
152 64,0
80,0
480
400 350
250
Кольцевые, стержневые
Кольцевые, О-образные, стержневые
Кольцевые
Кольцевые, О-образные

Для ферритов VII группы dk = 4,7…4,9, а ρ=104 Ом×м.

Относительный температурный коэффициент начальной магнитной проницаемости.

Марка феррита αμ×106, 1/°C, в интервале температур, °С
-60…+20 -40…+20 -20…+20 -10…+20 +20…+50
50ВНС +50…+80 +50…+70 +30…+60 +30…+60 +30…+60
90ВНС +20…+50 +20…+40 +10…+20 +5…+10 +5…+10
200ВНС +20…+50 +20…+50 +20…+50 +20…+50 -15…-20
300ВНС +20…+50 +20…+50 +20…+50 +20…+50 -10…-25
Марка феррита αμ×106, 1/°C, в интервале температур, °С
+20…+70 +20…+85 +20…+100 +20…+125 +20…+155
50ВНС +30…+60 +30…+60 +30…+60 +20…+50 +20…+40
90ВНС +5…+10 +5…+10 +5…+10 +5…+10 +5…+10
200ВНС -10…-20 -10…-20 -5…-15 -5…-10 -5…-10
300ВНС -10…-20 -10…-15 -5…-15 -5…-10 -5…-10

Магнитная индукция B, Тл, при различных напряженностях магнитного поля ферритов VII группы.

Марка феррита H_, A/м
40 80 240 800
50ВНС
90ВНС
200ВНС
300ВНС
0,003
0,004
0,012
0,0175
0,005
0,010
0,024
0,036
0,016
0,033
0,184
0,230
0,170
0,280
0,310
0,320

 

ФЕРРИТ-ХОЛДИНГ: Новости

 

30.12 19 

Уважаемые коллеги и партнеры! Коллектив компании ЛЭПКОС поздравляет с наступающими Новым годом и Рождеством! Желаем уверенно идти к самым амбициозным целям, всегда держать руку на пульсе и реализовать в Новом году все самые смелые идеи. Интересных проектов, хороших новостей и финансовых успехов!




24.12 19 

Режим работы склада ЛЭПКОС:31.12.2019 склад ЛЭПКОС работает с 8-30 до 15-00. В период с 01.01.2020 по 13.01.2020 в связи с новогодними праздниками и переездом склада ЛЭПКОС отгрузки продукции заказчикам производиться не будут. С 14 января 2020 года отгрузки будут осуществляться с нового склада по адресу: СПб, Московское шоссе, д.101, к.3. Приносим извинения за временные неудобства!




08.10 19 

ООО «ЛЭПКОС» приглашает посетить стенд нашей компании на выставке ChipEXPO 2019, которая пройдет с 16 по 18 октября 2019 года в г. Москве на территории ЦВК «Экспоцентр» на Красной Пресне, павильон «Форум», стенд C23.




26.06 19 

По итогам 2018 года компания «ЛЭПКОС» награждена компанией TDK памятным знаком «Лучший продавец ферритов 2018».


29.04 19 

График работы компании «ЛЭПКОС» в период майских праздников.



 

Силовой трансформатор на феррите | Электрознайка. Домашний Электромастер.

Силовой трансформатор на феррите

Здравствуйте уважаемые коллеги!!

     Чтобы намотать импульсный выходной трансформатор на ферритовом сердечнике на любую мощность, необходимо провести предварительный, прикидочный расчет.  Сначала  нужно определиться с мощностью, которую необходимо получить на выходе трансформатора. 
     Обратимся к таблице параметров ферритовых магнитопроводов, в ней указаны размеры, площадь сечения магнитопровода, площадь окна и мощность, которую «теоретически»  можно получить от сердечника.
     Эту таблицу я «откопал» еще в «советской технической литературе» по электротехнике и не один раз убедился в ее верности.
Ферритовые кольца на разные размеры по позициям №1 — №16 имеют рабочую мощность Рвт, от 9 до 951 и более, ватт. Нетрудно заметить, что начиная с позиции №6, даже незначительное увеличение размеров ферритового кольца, приводит к резкому увеличению «пропускаемой» мощности  Р вт.
     Кольцо  К18,5×11х6,5 (Наруж. диам. х Внутр. диам. х Ширина кольца, в миллиметрах)  соответствует мощности 70 ватт.
    Кольцо К28×16х9 уже 232 ватта.   И так далее… 

     Начиная с позиции №5 уже можно использовать кольца для изготовления выходного трансформатора в импульсном блоке питания на мощность 10 — 15  ватт. С позиции №7 можно изготовить импульсный блок питания на 25 — 30 ватт.
     Количество витков в обмотках ферритового трансформатора (количество витков на один  вольт) зависит от поперечного сечения магнитопровода «Sк».  Выбор размера того или иного ферритового кольца или Ш — сердечника, для задуманного ИБП, зависит в основном от условия — уместятся ли заявленные количества витков в обмотках,  в окне.
      Чем  больше мощность трансформатора, тем диаметр провода обмоток  должен быть  выше. Чем меньше поперечное сечение феррита, тем больше число витков  в обмотках (выше количество витков, приходящееся на один вольт).
     Теоретически, все кольца, начиная с позиции №7, «дадут мощность» свыше 232 ватт, что вполне достаточно для среднемощного, до 200 ватт источника питания. Но пытаться «вымучить» из него 200 ватт бесполезно, площадь окна в 202 мм.кв. для этого очень мала.  Витки всех обмоток не влезут в его окно. Чтобы получить мощность 200 ватт, нужно брать больше размер кольца.
     Существуют также П — образные ферритовые сердечники (строчный трансформатор в телевизорах с кинескопами).
     Исходя из практики, импульсные трансформаторы, выполненные на Ш — образных и П — образных ферритовых сердечниках, имеют те же свойства, что и на ферритовом кольце.
     Ш — образный сердечник № 17: поперечное сечение среднего стержня  »  «Sк»= 56 мм.кв.;  площадь окна -«Sо» = 7,5 х 20 = 150 мм.кв…
     Ш — образный сердечник № 18 от ИБП компьютера: сечение «Sк» = 8,0 х 12,5 = 100мм.кв. = 1см.кв.;  Площадь окна «Sо» = 7,5 х 19 = 142 мм.кв…
     Сердечник № 19: «Sк» = 10 х 10 = 100 мм.кв. = 1 см.кв.;   «Sо» = 7,5 х 25 = 187 мм.кв…
Из всего перечня ферритовых магнитопроводов, я использовал для построения маломощных импульсных трансформаторов кольца: № 5,№ 6, № 7.
     Из Ш — образных сердечников: № 17, № 18, № 19.
     Из П — образных, от строчных трансформаторов с «Sк»= 1,1 — 1,3 см.кв.
     Основной параметр у кольца, П и Ш — сердечников, это площадь поперечного сечения магнитопровода «Sк».  Этот параметр определяет  количество витков провода в обмотках.  Чем больше площадь «Sк», тем меньше витков в обмотках.
     Для определения количества витков в обмотках трансформатора, необходимо определить число витков на 1 вольт, исходя из площади Sк. Для этого я постоянно  использую свою простую формулу, полученную эмпирическим путем:
     n = 0,7/Sк
     где: n — количество витков на 1 вольт для данного сердечника;
     0,7 — коэффициент;
      Sк  — площадь поперечного сечения феррита в см.кв.

     Второй основной параметр ферритового сердечника, это площадь окна Sо.       

     В таблице о ферритах видно — увеличивается площадь окна  «Sо», увеличивается объем феррита в сердечнике. Следовательно, запасается больше индуктивной энергии в феррите, увеличивается «пропускаемая» электрическая мощность Рвт.
Увеличить мощность ферритового трансформатора любой конфигурации, можно двумя путями:
     1. Взять феррит заведомо больших размеров;
     2. Применить складывание однотипных сердечников вместе.
При этом суммарная площадь поперечного сечения сердечника «Sк», будет кратна количеству штук, а общая площадь окна «Sо» остается прежней.
     Какой же конфигурации (П, Ш или кольцо) ферритовый сердечник наиболее подходит для построения трансформатора.  У каждой формы магнитопровода есть свои особенности.
     Например, кольцо:
     — обмотки трансформатора покрывают всю поверхность кольца, максимальное потокосцепление магнитного поля катушки и сердечника;
     — минимально поле рассеивания электромагнитной энергии;
     — максимальна площадь теплового излучения обмоток при нагревании, хороший теплоотвод — естественная вентиляция;
     — площадь окна у кольца больше, чем у Ш — образного сердечника, значит при одинаковой площади «Sк» (у кольца и Ш — сердечника), с кольца можно «снять» большую мощность.
     Трансформатор на Ш — сердечнике (при одинаковой мощности) более компактен, чем на кольце и П — образном сердечнике. Обмотки на Ш — обр. сердечнике сильно нагреваются, т. к. находятся внутри корпуса трансформатора, требуется обдув вентилятором.
     Силовые ферритовые трансформаторы в компьюторных блоках питания выполнены в основном на Ш — образных сердечниках.
Разбирая старый ферритовый трансформатор, обратите внимание, есть ли немагнитный зазор в прилегающих плоскостях. Для ферритовых сердечников, применяемых в двухтактных импульсных источниках питания, такой зазор не нужен.  Если зазор существует,  нужно аккуратно сточить на бруске, наждачной шкурке или мелком напильнике боковые стержни сердечника таким образом, чтобы сохранялась плоскость соприкосновения.

Тороидальные аморфные и нанокристаллические магнитопроводы Мстатор

mstatorПАО «Мстатор» в течение 30-ти лет осуществляет разработку и получение сплавов с аморфной и нанокристаллической структурой. Более подробно свойства материалов, выпускаемых МСТАТОР рассмотрены в разделе «Характеристики аморфных и нанокристаллических сплавов серии АМАГ«.

На сегодняшний день компания имеет полный комплекс современного оборудования и технологий, позволяющих выпускать достаточно широкую номенклатуру изделий. В частности, сюда можно отнести ленты из аморфных и нанокристаллических сплавов марки АМАГ шириной от 1 до 30 мм и толщиной от 15 до 30 мкм, тороидальные магнитопроводы, а также готовые электромагнитные компоненты. Вся продукция предприятия прошла необходимую сертификацию и соответствует современным европейским и североамериканским стандартам.

mstatorПри проектировании индуктивных компонентов с использованием сердечников на основе аморфных и нанокристаллических сплавов можно отметить следующие преимущества:
  • Уменьшенный вес
  • Уменьшенные потери в меди благодаря сокращению числа витков
  • Расширенный температурный диапазон от -60 до 125°С
  • Повышенная стабильность свойств и надёжность
  • Высокая точность для измерительных устройств
  • Повышение КПД готового устройства

Кроме того, в сравнении с изделиями из традиционно применяемых материалов, магнитопроводы производства МСтатор имеют высокую начальную магнитную проницаемость, высокие значения индукции (до 1.5 Тл), меньшие габариты.

Для более быстрого поиска требуемого магнитопровода компания МСТАТОР разработала ПО для автоматизированного проектирования электромагнитных компонентов на основе магнитопроводов из аморфных и нанокристаллических сплавов Ознакомиться с программами для расчета и скачать ПО можно по ссылке .

На рисунке представлены основные линейки выпускаемых компанией МСтатор магнитопроводов.mstator

Более подробная информация и технические характеристики серии MSK представлены в разделе «Помехоподавляющие магнитопроводы для многовитковых дросселей серии MSK»

Более подробная информация и технические характеристики серии MSP представлены в разделе «Магнитопроводы МСТАТОР серии MSP с линейной петлёй для трансформаторов и дросселей сетей isdn»

Более подробная информация и технические характеристики серии MSTAN представлены в разделе «Магнитопроводы для аудио систем серии MSTAN»

Более подробная информация и технические характеристики серии MSC представлены в разделе «Низкопрофильные дроссельные магнитопроводы с распределённым зазором»

Более подробная информация и технические характеристики серии MSSN представлены в разделе «Нанокристаллические магнитопроводы с прямоугольной петлёй гистерезиса серии MSSN»

Более подробная информация и технические характеристики серии MSTN представлены в разделе «Магнитопроводы для силовых трансформаторов ИИП серии MSTN»

Более подробная информация и технические характеристики серии MSSA представлены в разделе » Аморфные магнитопроводы с прямоугольной петлёй гистерезиса серии MSSA»

Тороидальные магнитопроводы серии MSF изготавливаются из тонкой (25 мкм) аморфной ленты (АМАГ-170) на основе кобальта с плоской петлёй гистерезиса и отличаются высокой магнитной проницаемостью и очень низкими потерями. Имея типовое значение магнитной проницаемости 120 000 и более, дроссели синфазных фильтров на основе магнитопроводов серии MSF требуют меньшего числа витков обмоток, что обеспечивает малую паразитную ёмкость. Кроме того, такие магнитопроводы обладают меньшими габаритами и обеспечивают более высокое вносимое затухание в широком диапазоне частот относительно традиционных изделий на основе ферритов и пермаллоев.

Конструкция подразумевает установку витого ленточного магнитопровода в жесткий защитный контейнер из стеклонаполненного полиамида и его фиксацию силиконовым герметиком. Контейнер имеет скруглённые кромки и предназначен для непосредственного нанесения обмотки толстым проводом. Контейнер обеспечивает надёжную механическую защиту аморфного материала и сохранение его свойств. Все материалы соответствуют стандарту UL94V-1/0.

Применение: дроссели синфазных фильтров, трансформаторы в системах передачи данных, высокоточные трансформаторы тока в т.ч. для электронных счётчиков электроэнергии, датчики для УЗО(Устройства Защитного Отключения).

Габаритные размеры и основные характеристики магнитопроводов серии MSF:

Серия MSF
Тип Габаритные размеры в контейнере
[c покрытием краской]
(без контейнера) (D-d-H)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(мм²)
Коэфф.
индуктивности
AL 1)
(мкГн/ вит²)
Материал контейнера
10 кГц;
0.1 В
100 кГц;
0.1 В
Номин. Номин. min. min.
MSF-04S-T 4.3 – 2.2 – 1.3
(4.0 – 2.5 – 1.0)
10.2 0.59 4.7 1.5 алюм. фольга
MSF-04A-T 4.2–2.2–2.4
(4.0 – 2.4– 2.0)
10.0 1.25 14.0 5.2
MSF-07A-T 7.3 – 3.1 – 4.1
(7.0 – 3.5 – 3.8)
16.5 5.20 25.2 9.2
MSF-08S-T 8.3 – 3.7 – 3.3
(8.0 – 4.0 – 3.0)
18.8 4.7 23.0 8.7
MSF-09S-T 9.4 – 4.0 – 1.4
(9.0-4.3-1.0)
20.1 1.83 7.5 2.8
MSF-10S-T
[MSFP-10S-T]
11.3 – 5.3 – 5.6
[11.0-5.5-5.5]
(9.8 – 6.5 – 4.5)
25.9 6.1 26.0
[20.8]
9.9
[7.92]
Пластик или [Покрытие краской]
MSF-12A-T
[MSFP-12A-T]
14.0 – 6.6 – 4.8
[13.0-7.0-4.0]
(12.0 – 8.0 – 3.0)
31.4 4.7 11.3
[9.1]
4.3
[3.5]
MSF-12S-T
[MSFP-12S-T]
14.0 – 6.6 – 6.3
[13.0-7.0-5.5]
(12.0 – 8.0 – 4.5)
31.4 7.0 17.1
[13.7]
6.5
[5.2]
MSF-15A-T
[MSFP-15A-T]
16.7 – 10.5 – 6.3
[16.0-11.0-5.5]
(15.0 – 12.0– 4.5)
42.4 5.26 9.4
[7.5]
3.5
[2.8]
MSF-15S-T
[MSFP-15A-T]
16.9 – 8.6 – 6.5
[16.0-9.0-5.5]
(15.0 – 10.0– 4.5)
39.3 8.8 17.7
[14.2]
6.6
[5.3]
MSF-16A-T
[MSFP-16A-T]
17.8 – 8.3 – 8.1
[17.0-9.0-7.0]
(16.0 –10.0 – 6.0)
40.8 14.04 26.4
[21.1]
10.0
[8.0]
MSF-18S-T
[MSFP-18S-T]
19.8 –10.4 – 6.4
[19.0-11.0-5.5]
(18.0 –12.0 – 4.5)
47.1 10.5 17.1
[13.7]
6.5
[5.2]
MSF-19A-T
[MSFP-19A-T]
21.6 – 11.0 – 7.9
[20.5-11.7-7.0]
(19.5 –12.7 – 6)
50.6 15.9 24.1
[19.3]
9.1
[7.3]
MSF-20A-T
[MSFP-20A-T]
22.5 – 10.4 – 10.1
[21.0-11.5-9.0]
(20.0 –12.5 – 8.0)
51.0 23.4 35.2
[28.2]
13.4
[10.7]
MSF-25A-T
[MSFP-25A-T]
27.7 – 17.3 – 12.9
[26.0-19.0-11.0]
(25.0 –20.0 – 10)
70.7 19.5 20.9
[16.7]
7.9
[6.3]
MSF-26S-T
[MSFP-26S-T]
28.4-13.8-12.2
[27.0-15.0-11.0]
(26.0-16.0-10.0)
65.9 39.0 45.0
[36.0]
17.0
[13.6]
MSF-32S-T
[MSFP-32S-T]
33.7 – 19.4 – 11.9
[32.7-20.2-11.0]
(31.7 –21.2–10.0)
83.0 41.0 37.7
[30.2]
14.2
[11.4]
1) При F=10Кгц, Urms=0.1 В, Т=25°С

Тороидальные магнитопроводы новой cерии MSFN-T, MSFN-TH изготавливаются из тонкой (20 ÷ 25 мкм) нанокристаллической ленты на основе железа (марки АМАГ-200С) и отличаются высокими значениями индукции насыщения (1,2 Тл) и магнитной проницаемости (до 80 000) в широком диапазоне частот, низкими потерями, повышенной рабочей температурой (до 120°C), хорошей температурной стабильностью. Линейка MSFN-TH, являющаяся результатом последних разработок, имеет более высокие значения проницаемости и выпускается в двух конструктивных исполнениях – в пластиковом контейнере (MSFN-TH) и с покрытием в виде порошковой эпоксидной краски (MSFNP-TH). Магнитопроводы имеют типовое значение магнитной проницаемости 90 000 и более. Дроссели синфазных фильтров на основе магнитопроводов серии MSFN требуют меньшего числа витков обмоток, что обеспечивает малую паразитную ёмкость, имеют меньшие габариты и обеспечивают более высокое вносимое затухание в широком диапазоне частот в сравнении с традиционными изделиями на основе ферритов и пермаллоев.

Применение:Синфазные помехоподавляющие фильтры, высокоточные трансформаторы тока, высокоточные импульсные трансформаторы, УЗО (Устройства Защитного Отключения), системы телекоммуникаций.

Габаритные размеры и основные характеристики магнитопроводов серии MSFN:

Серия MSFN-T
Тип Габаритные размеры в контейнере
[c покрытием краской]
(без контейнера) (D-d-H)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(мм²)
Коэфф.
индуктивности
AL 1)
(мкГн/ вит²)
Материал контейнера
10 кГц 100 кГц
Номин. Номин. min. min.
MSFN-07А-T 7.3–3.1–4.1
(7.0-3.5-3.8)
15.9 5.32 14.7 алюм. фольга
MSFN-10S-T 11.3 – 5.3 – 5.6
(9.8-7.3-4.5)
25.5 6.1 10.5
MSFN-12А-T 14.0 – 6.6 – 4.8
(12.0-8.0-3.0)
31.0 4.7 6.7
MSFN-12S-T 14.0 – 6.6 – 6.3
(12.0-8.0-4.5)
31.0 7.0 10.0
MSFN-15A-T 16.7 – 10.5 – 6.3
(15.0-12.0-4.5)
42.2 7.0 10.0
MSFN-18S-T 19.8 –10.4 – 6.4
(18.0-12.0-4.5)
46.52 10.5 10.0
MSFN-19A-T 21.6 – 11.0 – 7.9
(19.5-12.7-6.0)
49.7 15.7 14.0
Серия MSFN-TH
MSFN-10S-TH
[MSFNP-10S-TH]
11.3 – 5.3 – 5.6
[11.0-5.5-5.5]
(10.0-6.5-4.5)
25.5 6.1 22.3
[17.8]
5.2
[4.2]
Пластик
[Покрытие краской]
MSFN-12S-TH
[MSFNP-12S-TH]
14.0 – 6.6 – 6.3
[13.0-7.0-5.5]
(12.0-8.0-4,5)
31.4 7.0 21.2
[16.9]
4.9
[3.9]
MSFN-16A-TH
[MSFNP-16A-TH]
17.8 – 8.3 – 8.1
[17.0-9.0-7.0]/> (16.0–10.0–6.0)
40.8 14.04 31.7
[25.4]
7.9
[6.3]
MSFN-18S-TH
[MSFNP-18S-TH]
19.8 –10.4 – 6.4
[19.0-11.0-5.5]
(18.0-12.0-4.5)
46.5 10.5 20.8
[16.6]
5.2
[4.2]
MSFN-20A-TH
[MSFNP-20A-TH]
22.5 – 10.4 – 10.1
[21.0-11.5-9.0]
(20.0–12.5–8.0)
51.0 23.4 43.7
[35.0]
10.1
[8.0]
MSFN-25A-TH
[MSFNP-25A-TH]
27.7-17.3-12.9
[26.0-19.0-11.0]
(25.0-20.0-10.0)
70.7 19.5 17.8
[14.2]
5.7
[4.6]
MSFN-25S-TH
[MSFNP-25S-TH]
28.4-13.8-12.2
[26.0-17.0-11.0]
(25.0-16.0-10.0)
64.4 35.1 52.2
[41.7]
13.0
[10.4]
MSFN-30S-TH
[MSFNP-30S-TH]
32.7-17.8-12.4
[31.0-19.0-11.0]
(30.0-20.0-10.0)
78.5 37.5 41.2
[33.0]
8.6
[6.9]
MSFN-32S-TH
[MSFNP-32S-TH]
34.8-17.4-12.8
[33.0-19.0-11.0]
(32.0-20.0-10.0)
81.6 45.0 47.5
[38.0]
9.9
[7.9]
MSFN-40S-TH
[MSFNP-40S-TH]
40.7-23.4-15.3
[39.0-25.0-13.0]
(38.0-26.0-12.0)
100.5 56.16 53.1
[42.5]
13.3
[10.6]
MSFN-40A-TH
[MSFNP-40A-TH]
42.7-29.0-18.0
[41.0-31.0-16.0]
(40.0-32.0-15.0)
113 46.8 37.8
[30.2]
9.5
[7.6]
MSFN-45S-TH
[MSFNP-45S-TH]
48.1-21.9-23.4
[46.0-26.0-21.0]
(45.0-25.0-20.0)
100.9 156.0 100.0
[80.0]
30.2
[24.2]
MSFN-50S-TH
[MSFNP-50S-TH]
53.8-36.2-23.9
[51.0-39.0-21.0]
(50.0-40.0-20.0)
141.3 78.0 32.6
[26.0]
10.1
[8.1]
MSFN-60S-TH
[MSFNP-60S-TH]
64.0-41.0-24.5
[61.0-44.0-21.0]
(60.0-45.0-20.0)
164.9 117.0 47.3
[37.8]
14.7
[11.8]
MSFN-60A-TH
[MSFNP-60A-TH]
64.0-36.0-34.0
[61.0-39.0-31.0]
(60.0-40.0-30.0)
157.0 228.0 100.3
[80.2]
31.0
[24.8]
MSFN-80A-TH
[MSFNP-80A-TH]
83.4-59.6-28.6
[81.0-62.0-26.0]
(80.0-63.0-25.0)
224.5 156.7 41.4
[33.2]
14.9
[11.9]
MSFN-100S-TH
[MSFNP-100S-TH]
104.2-75.8-24.7
[101.0-79.0-20.0]
(100.0-80.0-20.0)
282.6 156.0 35.7
[28.5]
11.0
[8.8]
1) Iизм.= 10 мА×вит ÷ 20 мА×вит согласно спецификации, Т=25 °С.
2) Диапазон рабочих температур от -60°C до +120° °
3) Диапазон температур с покрытием краской см. «Конструкция»

Магнитопроводы серии MSTизготавливаются на основе аморфного сплава марки AМАГ-186 (A,B,C) с проницаемостью 3300, 2200, 1400 соответственно. Индукция 0.9 … 1.0 Тл. Кроме того, отличительными характеристиками являются линейная плоская петля гистерезиса с относительно низкой магнитной проницаемостью. Типовая проницаемость мало зависит от рабочей амплитуды индукции и частоты. Материал имеет отрицательную зависимость потерь от температуры. Рекомендуются для использования в: трансформаторах тока с наличием смещения по постоянному току, в высокочастотных трансформаторы тока, в силовых трансформаторах AC/DC и DC/DC преобразователей и др.

Габаритные размеры и основные характеристики магнитопроводов серии MST:

Серия MST
Тип Габаритные размеры в контейнере
[с покрытием краской]
(без контейнера)
(D-d-H)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(мм²)
Удельн.
потери,
Вт/кг
не более
Коэфф.
прямоуголь-ти,
не более
Относитель.
магнит. прониц-ть,
не менее
Материал контейнера
100 кГц
0.3 т
1 кГц
80А/м
100 кГц
ΔB = 1 T
Номин. Номин. Max. Max. Min.
MST-10S-TH
[MSTP-10S-TH]
11.3 – 5.3 – 5.6
[11.0-5.5-5.5]
(10.0-6.5-4.5)
25.5 6.1 130.0
[140]
0.1
[0.1]
1900 Пластик
[Покрытие краской]
MST-12S-TH
[MSTP-12S-TH]
14.0 – 6.6 – 6.3
[13.0-7.0-5.5]
(12.0-8.0-4,5)
31.4 7.0
MST-15A-TH
[MSTP-15A-TH]
16.7 – 10.5 – 6.3
[16.0-11.0-5.5]
(15.0-12.0-4.5)
42.4 5.26
MST-16A-TH
[MSTP-16A-TH]
17.8 – 8.3 – 8.1
[17.0-9.0-7.0]
(16.0–10.0–6.0)
40.8 14.05
MST-18S-TH
[MSTP-18S-TH]
19.8 –10.4 – 6.4
[19.0-11.0-5.5]
(18.0-12.0-4.5)
46.5 10.5
MST-25A-TH
[MSTP-25A-TH]
27.7-17.3-12.9
[26.0-19.0-11.0]
(25.0-20.0-10.0)
70.7 19.5
MST-40A-TH
[MSTP-40A-TH]
42.7-29.0-18.0
[41.0-31.0-16.0]
(40.0-32.0-15.0)
113.0 46.8
MST-50S-TH
[MSTP-50S-TH]
53.8-36.2-23.9
[51.0-39.0-21.0]
(50.0-40.0-20.0)
141.3 78.0

Тороидальные магнитопроводы cерии MSC изготавливаются из тонкой (25 мкм) аморфной ленты на основе железа (марка АМАГ-202). Распределённый зазор, получаемый благодаря специальному режиму термомагнитной обработки, способствует снижению потерь, низкой стоимости и малым размерам дросселей относительно таких же изделий с воздушным зазором. Высокая индукция насыщения, низкие потери и более высокий уровень подмагничивания постоянным током (до 35Э) при сохранении высокой проницаемости выгодно отличают магнитопроводы серии MSC от изделий из традиционных материалов, применяемых для выходных дросселей, дросселей ККМ, сглаживающих дросселей, обратноходовых трансформаторов и проч.

Габаритные размеры и основные характеристики магнитопроводов серии MSC:

Серия MSC
Тип Габаритные размеры1 с контейнером
(без контейнера) (D-d-H)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(см²)
Площадь окна для обмотки
Wa
(мм²)
Коэфф.
индуктивности
AL2)
(мкГн/ вит²)
Магн. проницаемость μ Макс. магнитодвижущая сила DCB 3)(А*вит.)
Номин. Номин. Номин. Номин. ±20% Номин. Max.
MSC-12S-N 12.7-7.3-5.7
(12.0-8.0-5.0)
31.4 7.60 41.8 0.088 258 88
MSC-15A-N 15.8-9.2-5.8
(15.0-10.0-5.0)
39.25 9.5 66.8 0.088 258 110
MSC-15S-N 15.8-9.2-6.8
(15.0-10.0-6.0)
39.25 11.4 66.4 0.105 258 110
MSC-20A-N 20.8-11.1-5.8
(20.0-12.0-5.0)
50.24 15.2 96.7 0.110 258 141
MSC-20S-N 20.8-11.1-6.8
(20.0-12.0-6.0)
50.24 18.2 96.7 0.132 258 141
1) Внешний диаметр – внутренний диаметр – высота.
2) При F=100 КГц, Urms=1 В, T= 25°C.
3) Предельное значение магнитодвижущей силы, определяемой как произведение постоянного тока смещения на число витков обмотки, при котором коэффициент индуктивности AL составляет не менее 60% начального значения.

Магниторопроводы серии MSC-NG навиваются из тонкой аморфной ленты на основе железа (АМАГ-202). Высокая индукция насыщения, низкие потери и высокий уровень подмагничивания постоянным током (до 60 Э) при сохранении высокой проницаемости выгодно отличают магнитопроводы этой линейки от изделий из традиционных материалов, применяемых для выходных дросселей, дросселей ККМ (коррекция коэффициента мощности), сглаживающих дросселей, обратноходовых трансформаторов и др. Отличительные характеристики серии MSC-NG: высокая индукция 1.4 Тл, немагнитный зазор, длинная плоская петля гистерезиса.

Конструкция: витой ленточный магнитопровод, пропитанный специальным компаундом, имеющий фиксированный немагнитный зазор с текстолитовой вставкой, помещён в жесткий защитный контейнер из стеклонаполненного полиамида и механически зафиксирован силиконовым герметиком. Контейнер имеет скруглённые кромки и предназначен для непосредственного нанесения обмотки толстым проводом. Контейнер обеспечивает надёжную механическую защиту аморфного материала и сохранение его свойств. Все материалы соответствуют стандарту UL94V-1/0.

Габаритные размеры и основные характеристики магнитопроводов серии MSC-NG:

Серия MSC-G
Тип Габаритные размеры1 с контейнером
(без контейнера) (D-d-H)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(мм²)
Площадь окна для обмотки
Wa
(мм²)
Коэфф.
индуктивности
AL2)
(мкГн/ вит²)
Магн. проницаемость μ Макс. магнитодвижущая сила DCB 3)(А*вит.)
Номин. Номин. Номин. Номин. ±20% Номин. Max.
MSC-12S-NG 14.0-6.0-6.5
(12.0-8.0-4.5)
31.4 7.2 28.26 0.055 190 150
MSC-15S-NG 17.3-7.7-7.3
(15.0-10.0-5.0)
39.2 9.0 50.3 0.058 180 180
MSC-16S-NG 18.3-9.7-12.3
(16.0-12.0-10.0)
44.0 16.0 74.0 0.105 230 210
MSC-18S-NG 20.3-9.7-12.3
(18.0-12.0-10.0)
47.1 24.0 74.0 0.111 175 225
MSC-20S-NG 22.3-9.7-12.3
(20.0-12.0-10.0)
50.2 32.0 74.0 0.115 145 240
MSC-21A-NG 23.4-12.2-12.3
(21.0-14.5-10.0
55.7 26.0 117.0 0.138 235 265
MSC-25S-NG 27.3-19.2-12.3
(25.0-21.5-10.0)
73.0 14.0 289.7 0.094 390 350
MSC-26S-NG 28.3-13.7-12.3
(26.0-16.0-10.0)
66.0 40.0 147.6 0.131 170 315
MSC-32S-NG 34.2-17.7-12.3
(32.0-20.0-10.0)
81.6 48.0 246.2 0.112 150 390
MSC-37S-NG 39.3-20.3-12.3
(37.0-23.0-10.0)
94.2 56.0 336.7 0.120 160 450
MSC-46A-NG 49.4-23.0-23.2
(46.0-27.0-20.0)
114.6 152.0 408.0 0.320 190 550
MSC-46S-NG 49.4-23.0-28.1
(46.0-27.0-25.0)
114.6 190.0 408.0 0.400 190 550
1) Внешний диаметр – внутренний диаметр – высота.
2) При F=100 Кгц, Urms=1 В, T= 25°C.
3) Предельное значение магнитодвижущей силы, определяемой как произведение постоянного тока смещения на число витков обмотки, при котором коэффициент индуктивности AL составляет не менее 60% начального значения.

Магнитопроводы серии MSB изготавливаются из тонкой аморфной ленты на основе кобальта, имеют прямоугольную петлю гистерезиса и существенно более высокую магнитную проницаемость по сравнению с магнитопроводами из пермаллоевых сплавов на основе Fe-Ni. Конструктивно изделия оптимизированы для использования с одновитковой обмоткой, которой обычно является вывод компонента (транзистора, диода). Этот класс изделий обеспечивает более высокое эффективное подавление помех, по существу устраняя причину их возникновения, значительно уменьшает потери по сравнению с классическими RC демпферами и ферритовыми магнитопроводами аналогичного назначения. К отличительным характеристикам можно отнести: коэффициент прямоугольности до 0.85, высокую проницаемость, цилиндрическую форму, миниатюрные размеры. Такие изделия могут одеваться непосредственно на выводы компонентов.

Области применения: подавление коротких выбросов и ВЧ колебаний на фронтах за счёт изменения характера переключения активных компонентов, устранение причины (источника) помех. Изделия используют в импульсных источниках питания, схемах управления электродвигателями, переключающих полупроводниковых устройствах, для защиты полупроводниковых приборов и др.

Габаритные размеры и основные характеристики магнитопроводов серии MSB:

Серия MSB
Тип Габаритные размеры в контейнере
(без контейн.)
(мм)
Длина средней линии
Lm
(мм)
Эффект. сечение
Аc
(мм²)
Коэфф.
индуктивности
AL
(мкГн/ вит²)
(50 кГц)
Динамические параметры
@ F=100 Кгц,
Нm=1Э (80 А/м), 25°С
Полный поток 2Фm (мкBб). Коэрц. сила Hc(А/м) Коэфф. п рямоуг.Br/Bm(%)
Номин. Номин. Номин. Номин. Min. Max. Min.
MSB-03A-N 4.0-1.5-4.5
(3.0-2.0-3.0)
7.75 1.2 3.0 1.1 25 88
MSB-03S-N 4.0-1.5-6.0
(3.0-2.0-4.5)
7.75 1.8 5.0 1.65
MSB-03B-N 4.0-1.5-7.5
(3.0-2.0-6.0)
7.85 2.4 7.0 2.2
MSB-04B-N 5.1-1.5-7.5
(4.0-2.0-6.0)
9.06 4.8 12.0 4.4
MSB-04S-N 5.1-1,5-6.0
(4.0-2.0-4.5)
9.06 3.6 9.0 3.3
MSB-045A-N 6.5-2.4-6.0
(4.5-4.0-3.0)
13.3 0.59 0.89 0.62
MSB-05A-N 7.0-2.4-6.0
(5.0-4.0-3.0)
14.1 1.17 1.4 1.05

В технической документации для серий MSF, MSFN, MST, MSC, MSC-G, MSB используется следующая система обозначений: mstator

Узнать наличие и цену магнитопроводов МСТАТОР и оформить заказ Вы можете на нашем онлайн-складе.


 

Отправить ответ

avatar
  Подписаться  
Уведомление о