Фаза в электротехнике – faza в домашней электросети, зачем нужен ноль в электричестве, чем отличаются эти понятия

Содержание

Фаза — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июля 2018; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июля 2018; проверки требуют 5 правок.

Фа́за (от др.-греч. φάσις, φάσεως «высказывание», «утверждение», «появление») — период, ступень, этап в развитии какого-либо явления.

  • Фаза колебаний (фаза волны) полная — аргумент периодической функции, например, функции вида sin⁡(ωt+φ0){\displaystyle \sin(\omega t+\varphi _{0})} или sin⁡(ωt+βx+φ0){\displaystyle \sin(\omega t+\beta x+\varphi _{0})}, описывающей соответственно колебательный или волновой процесс. По сути то же, что и угол α{\displaystyle \alpha } как аргумент тригонометрической функции cos⁡(α){\displaystyle \cos(\alpha )}. В общем случае зависимость полной фазы от времени и координат точки в пространстве не обязательно линейная, а периодическая функция — не обязательно гармоническая.
  • Фаза колебаний (фаза волны) начальная — часть φ0{\displaystyle \varphi _{0}} аргумента функции вида cos⁡(ωt+βx+φ0){\displaystyle \cos(\omega t+\beta x+\varphi _{0})}, то есть часть полной фазы, определяющая начальное (то есть в момент времени t=0 в начале системы координат при x,y,z = 0) состояние колебательного или волнового процесса.
  • Сдвиг фаз — разность фаз (полных, начальных) двух колебательных процессов одинаковой частоты (см. также: фазочастотная характеристика).
  • Фаза электротехнического изделия (устройства) — часть многофазного электротехнического изделия (устройства), предназначенная для включения в одну из фаз многофазной системы электрических цепей
    [1]
    .
  • Фаза (разговорное) — провод, находящийся под напряжением переменного электрического тока относительно другого, общего провода — заземленного, нулевого, соединенного с массой, корпусом электротехнического устройства (электрогенератора, электрического трансформатора и др., см. трёхфазная система электроснабжения, двухфазная электрическая сеть, однофазный переменный ток).
  1. ↑ ГОСТ 18311-80. Изделия электротехнические. Термины и определения основных понятий.

Что такое фаза и ноль в электричестве

Электрическая фаза колебаний в электротехнике — это аргумент колебательной функции, то есть угол, на который смещены колебания значения ЭДС в пространстве относительно нуля.

Различают начальную фазу $φ_0$, описывающую начало колебательного процесса в нулевое время и полную фазу, описывающую состояние колебательного процесса в любой момент времени.

Пример уравнения c полной фазой, которое может описывать колебательный процесс: $cos(ωt + βx + φ_0)$. В момент времени, равный $t = 0$, угол колебаний составит $φ_0$, а если колебание начинается в точке с координатами $(0;0)$, то уравнение будет иметь вид типа $cos(φ_0)$.

Чаще всего для электроснабжения жилья используются трёхфазные системы электроснабжения, фазовый угол между генерируемыми ЭДС в которых равен $\frac{2π}{3}$ или $120°$.

Что такое фаза в электричестве — определение понятия

Фаза в электричестве — это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ — нулевой провод.

На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ — фаза в квартире, а буква $R_H$ — это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один — так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Что такое ноль в электричестве — определение

Ноль – это провод, необходимый для замыкания электрического контура, по нему ток возвращается к источнику.

Для чего нужен ноль в электричестве? Ноль в электричестве нужен для равномерного распределения напряжения между фазами. При отсутствии нулевого провода напряжение между фазовыми проводами будет распределяться неравномерно, в результате чего на одной фазе может быть повышенное напряжение, которое может привести к пожару, а на других – пониженное, с которым часть электроприборов может не работать или работать некорректно. Для ноля также используются другие названия – его называют нейтральным или нулевым контактом.

Что такое нулевая фаза в электричестве

Нулевая фаза – это ещё одно народное название нулевого провода, не стоит путать его с землёй.

Ток в нулевом проводе не всегда равен нулю, он будет ненулевым при подключении электроприборов.

Что такое «земля» в электричестве

«Земля» – это провод, отводимый от нулевого, используемый для безопасности. Суть в том, что в случае обрыва электрической цепи или отсутствия сопротивления ток направляется в землю, что помогает избежать удара током.

Напряжение $U$ между нулевым проводом и землёй равняется нулю, тогда как напряжение между нулём и фазой для обычной квартиры будет равно $220$ В.

Электрика для чайников: фаза и ноль – что это и как определить где что

В случае, когда вы имеете дело с проводкой, состоящей из двух проводов – один из них всегда будет фазой, а второй нулём. Для того чтобы определить где какой — достаточно воспользоваться специальной пластиковой отвёрткой с индикатором.

Для этого необходимо сначала отключить электричество и развести 2 имеющихся провода во избежание короткого замыкания.

Затем нужно включить электричество обратно и аккуратно, не прикасаясь голыми руками к оголённой части проводов, приложить конец индикаторной отвёртки к проводу. Тот, на котором сработает лампочка индикаторной отвёртки, является фазой, второй провод будет нулём.

В случае же если вам приходится иметь дело с трёхжильным проводом – определить где фаза, а где ноль будет несколько сложнее. Для этого используют специальные приборы, например, можно определить где земля, а где ноль с помощью вольтметра. Для этого сначала нужно измерить напряжение $U$ по очереди между каждым из двух неизвестных проводов и фазовым проводом. Напряжение $U$ на «земле» всегда будет больше, чем на нулевом. Также можно отличить замелю от нуля с помощью омметра — сопротивление на заземлении всегда будет достаточно небольшим и будет в районе 4 Ом.

Замечание 1

Также нулевой провод, фаза и заземление обычно имеют разную расцветку. Для обозначения фазы используют чаще всего чёрную, коричневую или серую обмотку, для земли – жёлтую или зелёную, а для ноля – синюю или белую.

Значение фаза и ноль в электричестве

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричестве

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричестве

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено

Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

Фаза разноцветье в ассортименте

Именно через фазу проходит напряжение

А значит, работать с этим видом кабеля нужно особенно осторожно. Данный провод обозначается буквой l в электрике, что является сокращением слова Line

В трехфазной сети используется следующее обозначение проводников: l1, l2, l3. Иногда вместо цифр применяются английские буквы. Тогда получается la, lb, lc.

Про цветовое обозначение фаз можно говорить много. Понятно одно: фазный проводник может быть какого угодно цвета, кроме желтого, зеленого и синего. Однако в России нашли свой ответ на вопрос, какого цвета фаза. Согласно ГОСТ Р 50462-2009, рекомендуется использовать черный или коричневый цвет. Однако этот стандарт носит лишь рекомендательный характер. А потому производители не ограничивают себя определенными цветовыми рамками. Например, красный и белый встречаются гораздо чаще коричневого. Яркие цвета – розовый, бирюзовый, оранжевый, фиолетовый также часто присутствуют в наборе

Считается, что яркие цвета защитят от опасности, привлекут внимание мастера. Все-таки с напряжением не шутят

Основные определения по теме Общее заземление

Защитное заземление — соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты человека от поражения током.Заземляющее устройство — совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников.Общий провод — проводник в системе, относительно которого отсчитываются потенциалы, например, общий провод БП и прибора.Сигнальное заземление — соединение с землёй общего провода цепей передачи сигнала.Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.Силовая земля — общий провод в системе, соединённый с защитной землей, по которому протекает большой ток.Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление.Нулевой провод — провод, соединённый с глухозаземлённой нейтралью.Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству.Зануление — соединение оборудования с глухозаземлённой нейтралью трансформатора или генератора в сетях трёхфазного тока или с глухозаземлённым выводом источника однофазного тока.

Заземление АСУ ТП принято подразделять на:

  1. Защитноое заземление.
  2. Рабочеее заземление, или функциональное FE.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, можно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее можно тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу

Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, можно обратиться в управляющие организации, при отсутствии реакции – стучите (россияне именуют правозащитников стукачами) государственным инстанциям

Указывайте нарушение правил защитного зануления зданий.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще будет ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричестве

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией

Обратите внимание – если в доме обустроено заземление, жил на входе будет минимум 5. Корпус щитка сажается на желто-зеленую

Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Затем можно автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе будет некоторое значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь будет близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Откуда появился ноль, и каким он бывает

Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:

  1. Земная твердь, имеющая отрицательный потенциал.
  2. Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
  3. Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.

Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.

Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричестве

Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.

Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.

Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:

  1. Присоединившись к земной тверди, отчего и произошло понятие «заземление».
  2. Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
  3. Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Что такое фаза и ноль в электричествеФаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Основные понятия.

Сила
тока

скалярная физическая величина, равная
отношению заряда, прошедшего через
проводник, ко времени, за которое этот
заряд прошел.

где I
сила тока,
qвеличина
заряда (количество электричества),
t
время прохождения заряда.

Плотность
тока

векторная физическая величина, равная
отношению силы тока к площади поперечного
сечения проводника.

где jплотность
тока
,  S— площадь
сечения проводника.

Направление
вектора плотности тока совпадает с
направлением движения положительно
заряженных частиц.

Напряжение — скалярная
физическая величина, равная отношению
полной работе кулоновских и сторонних
сил при перемещении положительного
заряда на участке к значению этого
заряда.

гдеAполная
работа сторонних и кулоновских сил,
q
электрический заряд.

Электрическое
сопротивление

физическая величина, характеризующая 
электрические свойства участка цепи.

гдеρ
удельное сопротивление проводника,
lдлина
участка проводника,
Sплощадь
поперечного сечения проводника.

Проводимостьюназывается
величина, обратная сопротивлению

где Gпроводимость.

Источники помех на шине Земля

Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.

Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, «шумящее» оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др. В промышленности встречается много помех, связанных с неисправностями или применением не сертифицированной аппаратуры. В России уровень помех регулируются нормативами — ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648. На этапе проектирования промышленного оборудования, чтобы снизить уровень помех, применяют маломощную элементную базу с минимальным быстродействием и стараются уменьшить длину проводников и экранирование.

Фаза и нуль понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричествеФаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Заземляющие проводники заземлители

Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричестве
Желто-зеленая раскраска заземлителя

Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.

Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.

Как различить фазу, ноль, землю

Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.

Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.

Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Нулевой проводник

Нулевой проводник или, как его еще называют, нейтраль выполняет простую, но важную функцию. Он выравнивает нагрузки в сети, на выходе обеспечивая напряжение в 220 Вольт. Избавляет фазы от скачков и перекосов, нейтрализуя их. Не удивительно, что его символом является буква n – образован от английского слова Neutral. А сочетание обозначений n, l в электрике всегда идут рядом.

В распределительном щитке все кабели данной расцветки группируются на одной, нулевой шине с соответствующей буквенной аббревиатурой. В розетках также есть необходимая маркировка.

Поэтому мастер никогда не спутает, куда крепить специальный нулевой контакт.

Такая маркировка, принцип работы применимы как к однофазной, так и к трехфазной сети.

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричествеЛиния электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

Что такое фаза и ноль в электричестве

Что такое фаза и ноль в электричествеКТП

Напряжение на землю больше чем фазовое. Так надо

Частный дом. Сделал заземление — 15м арматура 10ка + 2м полоса в грунте остальное на пов-сти.Напряжение ноль-фаза 216 Внапряжение земля-фаза 222 В, т.е. больше. Это нормально?Если имеет значение земля-ноль тестер показывает 3 В.

Качество заземления определяется сопротивлением.

Ну вообще — на ноле обычно потенциал от нуля отличный )) Но это — не нормально. Сделайте на вводной опоре повторное заземление ноля — и будет тогда на ноле ноль

как бы у нас по умолчанию с заземленной нейтралью сеть. Так что землите до ввода в дом смело

——————Да здравствуют временные трудности!

Если автора сильно беспокоят перекосы и очень хочется симметрии можно поставить на вход разделительный трансформатор (цену не могу представить) и сделать собственную систему электроснабжения, лучше с нулем, отдельным от заземления.

Вообще то с УЗО проблемы

Я правильно понял, что если соединю ноль с землёй после счётчика, то эти 3 В будут накручивать счётчик круглосуточно? Или замедлять?

——————Ребята, давайте жить дружно! (с)

Старый счетчик скорее всего никак на это не отреагирует. А вот новый электронный — скорее всего насчитает.

Подобную тему открывал тоже.Решил землю не делать.Ограничился УЗО.Всё работает.

Да не собираюсь я этого делать, хотябы по причине 3-х В на корпус любого прибора.Ещё вопрос: УЗО всё равно какой стороной в сеть, какой на счётчик? Ноль там отмечен как ноль а фаза цифрами 1 и 2.

——————Ребята, давайте жить дружно! (с)

кстати,если один провод от электро прибора на заземлённый штырь,а второй на фазу-он будет работать за счёт чубайса.

——————временные трудности

Через счётчик с фазы всё равно будут течь. Хоть на ноль хоть в землю. А таких горе экономов надо живьём заземлять! Сколько раз, работая в квартирных домах получал от отопления и сантехники.

——————Ребята, давайте жить дружно! (с)

не в случае отдельностоящего дома.

——————временные трудности

про сегодня не скажу,но года два назад работало с новым счётчиком.провинция-с..

——————временные трудности

даже за 2 года назад — Вы меня очень сильно удивили ну — тут уж надо смотреть, какая провинция…

Чтоб не плодить темы, а УЗО вообще можно поставить на нестабилизированной линии? Бывают перепады от 180 до 230.

по идее можно.оно следи не за напряжением,а отслеживает его разности . т.е. если через ноль и фазу проходит равное количество энергии оно не срабатывает.при утече-пробой на землю,и тому подобное равновесие нарушаеться и срабатывает размыкатель.

А выбивать постоянно не будет?

у вас по перепадам напряжений чисто сельская ситуация,может кто из товарищей подскажет. узо штука капризная-чуть утечка и выбивает-проводка должна быть качествынной.у меня 2-3 раза в год срабатывает самопроизвольно,причин не знаю,просто включаю и всё.

Я про дачу и спращиваю)

У меня в деревне перепады 180-230 узо нормально работает, четкое срабатывание только на утечку, ложных ни одного не было за год.

Я с двумя электриками говорил — оба сказали что будет выбивать, но вот головой я понимаю что такого быть не должно, ибо совершенно верно замечено:

Да это понятно что лучше! Никто и не спорит. Не будет ли постоянных срабатываний на дачной линии? А то просто замучает и придется выкинуть его — деньги на ветер!

Если можно. У меня автоматы все леграндовские стоят. Линия 3фазная.

Начали с «грязного» нуля, дошли до УЗО… Какая связь?Три вольта на нуле относительно земли — это просто ничто для сельской местности.У меня нулевой провод имеет повторное заземление на арматуру ЖБ опоры, с которой выполнен ввод в дом. Трёхфазное УЗО выбило за четыре года лишь один раз, во время грозы.Лично по мне, лучше допустить ложные срабатывания, чем один несчастный случай.

Пасынки ж/б, столбы гнилые уже, трансформатор на ладан дышит.

А как выбирается ампераж узо? 25 не мало?

У меня выделенная 5 кВт, соответственно вводной автомат 25 А, узо должно коммутировать такой же ток.

А у меня автомат 40 А…

Лучше сменить ИЭК на что-нибудь поприличнее, имхо.

Хреновня китайская.

Фаза в электричестве

А вы знаете, на электростанциях? Везде принцип его возникновения один и тот же: вращение магнита внутри катушки приводит к тому, что в ней появляется Этот эффект получил название ЭДС, или электродвижущая сила индукции. Вращающийся магнит называют ротором, а прикрепленные вокруг него катушки — статором.

Переменное напряжение получают от постоянного, когда последнее изгибают по синусу, в результате чего достигается то положительное, то отрицательное его значение.

Итак, магнит приходит в движение, например, благодаря потоку воды. При вращении ротора все время меняется. Поэтому и создается переменное напряжение. При трех установленных катушках каждая из них имеет отдельную электрическую цепь, а внутри нее появляется одинаковое переменное значение, где фаза напряжения сдвинута по окружности на сто двадцать градусов, то есть на треть относительно той, что расположена рядом.

Зачем нужно зануление

Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.

Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.

Выводы Правила заземления

Радикальные методы решения проблем заземления:

  1. Используйте модули ввода.вывода только с гальванической развязкой
  2. Не применяйте длинных проводов от аналоговых датчиков
  3. Располагайте модули ввода в непосредственной близости к датчику, а сигнал передавайте в цифровой форме
  4. Используйте датчики с цифровым интерфейсом
  5. На открытой местности и при больших дистанциях используйте оптический кабель вместо медного
  6. Используйте только дифференциальные (не одиночные) входы модулей аналогового ввода

Еще советы:

  1. Используйте в пределах вашей системы автоматизации отдельную землю из медной шины, соединив её с шиной защитного заземления здания только в одной точке
  2. Аналоговую, цифровую и силовую землю системы соединяйте только в одной точке. Если этого сделать невозможно, используйте медную шину с большой площадью поперечного сечения для уменьшения сопротивления между разными точками подключения земель
  3. Следите, чтобы при монтаже системы заземления случайно не образовался замкнутый контур
  4. Не используйте по возможности землю как уровень отсчёта напряжения при передаче сигнала
  5. Если провод заземления не может быть коротким или если по конструктивным соображениям необходимо заземлить две части гальванически связанной системы в разных точках, то эти системы нужно разделить с помощью гальванической развязки
  6. Цепи, изолированные гальванически, нужно заземлять, чтобы избежать накопления статических зарядов
  7. Экспериментируйте и пользуйтесь приборами для оценки качества заземления. Допущенные ошибки не видны сразу
  8. Пытайтесь идентифицировать источник и приёмник помех, затем нарисуйте эквивалентную схему цепи передачи помехи с учётом паразитных ёмкостей и индуктивностей
  9. Пытайтесь выделить самую мощную помеху и в первую очередь защищайтесь от неё
  10. Цепи с существенно различающейся мощностью следует заземлять группами, в каждой группе – блоки с примерно равной мощностью
  11. Заземляющие проводники с большим током должны проходить отдельно от чувствительных проводников с малым измерительным сигналом
  12. Провод заземления должен быть по возможности прямым и коротким
  13. Не делайте полосу пропускания приёмника сигнала шире, чем это надо из соображений точности измерений
  14. Используйте экранированные кабели, экран заземляйте в одной точке со стороны источника сигнала на частотах ниже 1 МГц и в нескольких точках – на более высоких частотах
  15. Для особо чувствительных измерений используйте «плавающий» батарейный источник питания
  16. Самая «грязная» земля – от сетевого блока питания. Не совмещайте её с аналоговой землёй.
  17. Экраны должны быть изолированными, чтобы не появилось случайных замкнутых контуров, а также электрического контакта между экраном и землёй

Что такое фаза и ноль в электрике

Электрические сети бывают двух типов. Сети переменного тока и сети с постоянным током. Электрический ток, как известно, — это упорядоченное движение электронов. В случае постоянного тока они двигаются в одном направлении и. как принято говорить, имеют постоянную поляризацию. В случае с переменным током направление движения электронов все время меняется, то есть ток имеет переменную поляризацию.

Принцип работы сети переменного тока

как узнать фазу и нольСеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать. Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль. В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода. Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Способы определения фазных и нулевых проводов

определение фазы мультиметром

Узнать, на какую жилу подается напряжение, а на какую нет, несложно. Есть несколько способов определения фазы и нуля.

Первый способ. Фазы определяются по цвету оболочки жил. Обычно рабочие фазы имеют цвета черный, коричневый или серый, а ноль – светло-синий. Если устанавливается дополнительное заземление, то его жила — зеленого цвета.

В этом случае не используют дополнительных приборов для определения фаз. Следовательно, такой способ не очень надежен, потому что, монтируя проводку, электрики могут не соблюдать цветовую маркировку жил.

фазное и линейное напряжение
Основным отличием между фазным и линейным напряжением в сетях переменного тока является показатель величины напряжения, который у линейного в 3 раза выше, чем у фазного.

Для организации уличного освещения используют фотореле. Как правильно подключить такое устройство, можно узнать здесь.

Надежнее определять фазы с помощью электроиндикаторной отвертки. Она представляет собой непроводящий ток корпус, в который встроены индикатор и резистор. В качестве индикатора используют неоновую лампочку. При касании жалом отвертки оголенного, под напряжением, провода индикатор, если жила рабочая, загорается. Если ноль, то не срабатывает. С помощью такой отвертки можно определять и исправность сети. Если при касании жалом поочередно жил провода лампочка не загорается, то сеть неисправна.

Случается, что индикатор загорается при прикосновении к обеим жилам провода, то есть и к фазе и к нулю. Это значит, что в пустой фазе где-то есть обрыв. Его нужно найти и устранить.

Можно осуществить определение фазы мультиметром. Сначала устанавливаем режим измерений – переменное напряжение. Потом конец одного щупа зажимаем в руке. Вторым щупом касаемся жилы. Если фаза рабочая, то на экране прибора будет показана величина напряжения.

Можно определить рабочую фазу и с помощью обычной электрической лампочки. Берем лампочку, вкрученную в патрон, с двумя отрезками провода. Один конец заземляем. Можно заземлить его, прикрутив к отопительной батарее. Концы проводов, естественно, должны быть оголенными. Вторым концом касаемся жилы. Если лампочка загорается, то фаза – рабочая.

Один из методов, показывающих что такое фаза и ноль в электрике, на видео

Электротехника. Трехфазные электрические цепи

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет – УПИ»

Электротехника: Трехфазные электрические цепи

Учебное пособие

В.С. Проскуряков, С.В. Соболев, Н.В. Хрулькова Кафедра «Электротехника и электротехнологические системы»

Екатеринбург 2007

2

Оглавление

1.Основные понятия и определения

2.Получение трехфазной системы ЭДС.

3.Способы соединения фаз в трехфазной цепи.

4.Напряжения трехфазного источника.

5.Классификация приемников в трехфазной цепи.

6.Расчет трехфазной цепи при соединении фаз приемника «Звездой»

7.Значение нейтрального провода

8.Расчет трехфазной цепи при соединении фаз приемника «треугольником»

9.Мощность трехфазной цепи

3

Трехфазные электрические цепи.

1. Основные понятия и определения

Трехфазная цепь – это совокупность трех электрических цепей, в которых

действуют синусоидальные ЭДС, одинаковые

по амплитуде и частоте,

сдвинутые по фазе одна от другой на угол

=120° и создаваемые общим

3

 

 

 

 

источником энергии.

Каждую отдельную цепь, входящую в трехфазную цепь принято называть фазой.

Таким образом, термин «фаза» имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей.

Трехфазная цепь является частным случаем многофазных систем переменного тока.

Широкое распространение трехфазных цепей объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:

•экономичность производства и передачи энергии по сравнению с однофазными цепями;

•возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;

•возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.

Каждая фаза трехфазной цепи имеет стандартное наименование:

первая фаза – фаза «А»; вторая фаза – фаза «В»; третья фаза – фаза «С».

Начала и концы каждой фазы также имеют стандартные обозначения. Начала первой, второй и третьей фаз обозначаются соответственно А, В, С, а концы фаз – X, Y, Z.

Основными элементами трехфазной цепи являются: трехфазный генератор, преобразующий механическую энергию в электрическую; линии электропередач; приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).

4

2. Получение трехфазной системы ЭДС.

Трехфазный генератор создает одновременно три ЭДС, одинаковые по величине и отличающиеся по фазе на 1200.

Получение трехфазной системы ЭДС основано на принципе электромагнитной индукции, используемом в трехфазном генераторе. Трехфазный генератор представляет собой синхронную электрическую машину. Простейшая конструкция такого генератора изображена на рис. 3.1.

Рис. 3.1. Схема устройства трехфазного генератора

На статоре 1 генератора размещается трехфазная обмотка 2. Каждая фаза трехфазной обмотки статора представляет собой совокупность нескольких катушек с определенным количеством витков, расположенных в пазах статора. На рис. 3.1 каждая фаза условно изображена одним витком. Три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, т.е. магнитные оси фаз повернуты в пространстве на угол

23π =120°. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z.

Ротор 3 генератора представляет собой постоянный электромагнит, возбуждаемый постоянным током обмотки возбуждения 4. Ротор создает постоянное магнитное поле, силовые линии которого показаны на рис.3.1 пунктиром. При работе генератора это магнитное поле вращается вместе с ротором.

5

При вращении ротора турбиной с постоянной скоростью происходит пересечение проводников обмотки статора с силовыми линиями магнитного поля. При этом в каждой фазе индуктируется синусоидальная ЭДС.

Величина этой ЭДС определяется интенсивностью магнитного поля ротора и количеством витков в обмотке.

Частота этой ЭДС определяется частотой вращения ротора.

Поскольку все фазы обмотки статора одинаковы (имеют одинаковое количество витков) и взаимодействуют с одним и тем же магнитным полем вращающегося ротора, то ЭДС всех фаз имеют одинаковую амплитуду Em и частоту ω.

 

Но, так

как магнитные оси фаз в

пространстве повернуты на

угол

 

=120°, начальные фазы их ЭДС отличаются на угол

.

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

Примем начальную фазу ЭДС фазы А, равной нулю, то есть ψеА = 0

,

 

тогда

eA = Em sinωt .

(3.1)

ЭДС фазы В отстает от ЭДС фазы А на

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

= Em sin(ωt −120).

 

 

 

 

eB = Em sin ωt −

 

 

 

(3.2)

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЭДС фазы С отстает от ЭДС фазы В еще на

 

:

 

 

 

3

 

 

 

 

 

 

 

= Em sin(ωt −240).

 

 

 

 

eС = Em sin ωt −

 

 

 

 

(3.3)

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

Действующее значение ЭДС всех фаз одинаковы:

E

A

= E

B

= E

=

Em = E

.

(3.4)

 

 

C

 

2

 

 

 

 

 

 

 

 

Трехфазная симметричная система ЭДС может изображаться тригонометрическими функциями, функциями комплексного переменного, графиками на временных диаграммах, векторами на векторных диаграммах.

Аналитическое изображение тригонометрическими функциями приведено в (3.1) – (3.3).

6

В комплексном виде ЭДС фаз изображаются их комплексными действующими значениями:

&

j0

0

&

= Ee

− j120

0

&

− j2400

 

 

 

 

(3.5)

EA = Ee

 

 

= E ; EB

 

 

; EC = Ee

Графики мгновенных значений трехфазной симметричной системы ЭДС на временной диаграмме показаны на рис. 3.2. Они представляют из себя три синусоиды, сдвинутые друг относительно друга на 1/3 часть периода.

Рис. 3.2. Графики мгновенных значений трехфазной симметричной системы ЭДС.

На векторной диаграмме ЭДС фаз изображаются векторами одинаковой длины, повернутыми друг относительно друга на угол 120° (рис.3.3а).

Рис. 3.3. Векторные диаграммы ЭДС трехфазных симметричных систем. (а – прямая последовательность фаз; б – обратная последовательность фаз).

7

Так как ЭДС индуктированные в обмотках статора имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°, полученная трехфазная система ЭДС является симметричной.

Следует отметить, что чередование во времени фазных ЭДС зависит от направления вращения ротора генератора относительно трехфазной обмотки статора. При вращении ротора по часовой стрелке, как показано на рис.3.1, полученная симметричная трехфазная система ЭДС имеет прямое чередование (А – В – С) (рис.3.3а). При вращении ротора против часовой стрелки образуется также симметричная трехфазная система ЭДС. Однако чередование фазных ЭДС во времени изменится. Такое чередование называется обратным (А – С – В) (рис.3.3б).

Чередование фазных ЭДС важно учитывать при анализе трехфазных цепей и устройств. Например, последовательность фаз определяет направление вращения трехфазных двигателей, и т.п. Для практического определения последовательности фаз используются специальные приборы – фазоуказатели.

По умолчанию при построении трехфазных цепей и их анализе принимается прямое чередование фазных ЭДС трехфазного источника.

На схемах обмотку статора генератора изображают как показано на рис. 3.4а с использованием принятых обозначений начал и концов фаз.

На схеме замещения трехфазный источник представлен тремя идеальными источниками ЭДС (рис.3.4б)

Рис. 3.4. Условное изображение обмотки статора генератора.

За условное положительное направление ЭДС в каждой фазе принимают направление от конца фазы к началу.

3. Способы соединения фаз в трехфазной цепи.

Для построения трехфазной цепи к каждой фазе трехфазного источника присоединяется отдельный приемник электроэнергии, либо одна фаза трехфазного приемника.

8

Рис.3.5 Схема несвязанной трехфазной цепи.

Здесь трехфазный источник представлен тремя идеальными источниками ЭДС E&A , E&B , E&C . Три фазы приемника представлены условно идеальными

элементами с полными комплексными сопротивлениями Z a , Z b , Z c . Каждая фаза приемника подсоединяется к соответствующей фазе источника, как показано на рис. 3.5. При этом образуются три электрические цепи, объединенные конструктивно одним трехфазным источником, т.е. трехфазная цепь. В этой цепи три фазы объединены лишь конструктивно и не имеют между собой электрической связи (электрически не связаны между собой). Такая цепь называется несвязанной трехфазной цепью и практически не используется.

На практике три фазы трехфазной цепи соединены между собой (электрически связаны).

Существуют различные способы соединения фаз трехфазных источников и трехфазных потребителей электроэнергии. Наиболее распространенными являются соединения «звезда» и «треугольник». При этом способ соединения фаз источников и фаз потребителей в трехфазных системах могут быть различными. Фазы источника обычно соединены «звездой», фазы потребителей соединяются либо «звездой», либо «треугольником».

При соединении фаз обмотки генератора (или трансформатора) «звездой» их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников x, y, z также соединяют в одну точку n (нейтральная точка приемника). Такое соединение называется соединение «звезда».

9

Рис. 3.6. Схема соединения фаз источника и приемника в звезду.

Провода A-a, B-b и C-c, соединяющие начала фаз генератора и приемника, называются линейными проводами (линейный провод А, линейный провод В, линейный провод С). Провод N-n, соединяющий точку N генератора с точкой n приемника, называют нейтральным проводом.

Здесь по–прежнему каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством нейтрального провода и одного из линейных проводов (пунктир на рис.3.6). Однако, в отличие от несвязанной трехфазной цепи, в линии передачи используется меньшее количество проводов. Это определяет одно из преимуществ трехфазных цепей – экономичность передачи энергии.

При соединении фаз трехфазного источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к трем фазам приемника, также соединенным способом «треугольник».

Рис. 3.7. Схема соединения фаз источника и приемника в треугольник

10

Здесь также каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством двух линейных проводов (пунктир на рис.3.7). Однако в линии передачи используется еще меньшее количество проводов. Это делает передачу электроэнергии еще более экономичной

При способе соединения «треугольник» фазы приемника именуют двумя символами в соответствии с линейными проводами, к которым данная фаза подключена: фаза «ab», фаза «bc», фаза «ca». Параметры фаз обозначают

соответствующими индексами: Z ab , Z bc , Z ca

4. Напряжения трехфазного источника.

Трехфазный источник, соединенный способом «звезда», создает две трехфазные системы напряжения разной величины. При этом различают фазные напряжения и линейные напряжения.

На рис.3.8 показана схема замещения трехфазного источника, соединенного «звездой» и присоединенного к линии электропередачи.

Рис.3.8. Схема замещения трехфазного источника

Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (U&A , U&B , U&C ). За условно

положительные направления фазных напряжений принимают направления от начала к концу фаз.

Линейное напряжение (UЛ) – напряжение между линейными проводами или между началами фаз (U&AB , U&BC , U&CA ). Условно положительные

направления линейных напряжений приняты от точек соответствующих первому индексу, к точкам соответствующим второму индексу (то есть, от точек с более высоким потенциалом к точкам с более низким) (рис. 3.8).

Что такое фаза в электрическом токе

О фазе часто можно услышать в разговоре об электричестве. Но, конечно, слово имеет гораздо более широкое значение. Что такое фаза, ее циклы, как она связана с заземлением. Об этом и многом другом узнаем в следующей статье.

что такое фаза

Что такое фаза

В физике под фазой понимают одно из состояний вещества (например, вода бывает в жидком, жидкокристаллическом, кристаллическом и газообразном агрегатном состоянии). Кроме того, под ней понимается стадия в цикле колебания (к примеру, в волновом движении).

В астрономии слово имеет несколько иной смысл. Что такое фаза в этой науке, можно понять из наблюдений с Земли за небесным телом (к примеру, Луной). То есть ее можно обозначить как видимую часть освещенной полусферы небесного объекта с Земли.

что такое фазы цикла

В теории экономики широко известно, что такое фазы цикла. Это когда в определенный промежуток времени (цикл) наблюдается закономерная активность.

Рассмотрим, что подразумевает этот термин в электричестве.

Фаза в электричестве

А вы знаете, откуда берется электричество на электростанциях? Везде принцип его возникновения один и тот же: вращение магнита внутри катушки приводит к тому, что в ней появляется переменный ток. Этот эффект получил название ЭДС, или электродвижущая сила индукции. Вращающийся магнит называют ротором, а прикрепленные вокруг него катушки — статором.

Переменное напряжение получают от постоянного, когда последнее изгибают по синусу, в результате чего достигается то положительное, то отрицательное его значение.

Итак, магнит приходит в движение, например, благодаря потоку воды. При вращении ротора магнитный поток все время меняется. Поэтому и создается переменное напряжение. При трех установленных катушках каждая из них имеет отдельную электрическую цепь, а внутри нее появляется одинаковое переменное значение, где фаза напряжения сдвинута по окружности на сто двадцать градусов, то есть на треть относительно той, что расположена рядом.

А может, запитывать дома как раньше?

Такая схема получила название трехфазной. Но можно спокойно запитать дом и с помощью одной такой катушки. При этом первый конец катушки просто заземляют, а второй — ведут в дом, где этот провод подсоединяют, к примеру, к вилке чайника. Второй штырек вилки при этом заземляют. Получится то же самое электричество.

Распространение трехфазного тока

Трехфазный ток поступает в дома через линии электропередач (где напряжение достигает тридцати пяти киловольт). Считается, что он является наиболее экономичным и со всех сторон более выгодным по сравнению с обычным током.

В промышленности питание идет именно трехфазным током, так как вращающуюся конструкцию на нем соорудить легче, и вообще он более мобилен и имеет большую мощность.

Провода

Разберемся, что такое фаза, земля и нулевой провод, более подробно.

фаза напряжения

Легко представить себе трехфазный генератор с соединением по схеме «звезда». Точку фазного соединения называют нейтралью.

Обычно ее заземляют для увеличения безопасности, так как если прибор выйдет из строя, то при отсутствии заземления, создастся опасность для человека. При прикосновении к прибору его просто ударит током. Но при наличии заземления произойдет утечка лишнего тока и никакого риска не образуется.

Итак, все вместе — нулевой провод, земля и фаза провода необходимы для обеспечения безопасности людей. В новых строящихся домах предусмотрена именно такая система, в то время как в старых она отсутствует.

Определение фазы

Иногда бывает необходимо определить, где находится провод фазы. Для обычной розетки, это, может быть, и не нужно. А вот при подключении, например, люстры, фаза должна подаваться непосредственно на выключатель, а ноль — прямо к лампам. Тогда, если свет будет выключен, при замене лампы человека не ударит током. И даже при включенном приборе, если он случайно коснется лампы, хоть и будет горячо, зато удара не случится.

Есть очень простой и удобный прибор для определения фаз. По виду он напоминает обычную отвертку. Но внутри устройство имеет лампочку, которая при прикосновении к фазе загорится. При этом палец должен касаться в это время металлического пятачка прибора.

Некоторые смельчаки фазу решаются определять совершенно небезопасными методами. К таковым относится так называемая «контролька», когда провод подставляют под струю воды, касаются их неоновой лампочкой или приводят в контакт с батареей.

Стоит ли говорить, что лучше не прибегать к способам, которые становятся опасными не только для экспериментатора, но и для окружающих. Тем более индикаторная отвертка в настоящее время стоит совсем недорого.

фаза провода

При правильном монтаже электрокабелей по помещениям провод синего цвета будет означать ноль, желто-зеленый — землю, а черным или любым другим цветом будет обозначена фаза. Но работа электриков, к сожалению, не всегда бывает добросовестной и квалифицированной. Поэтому цвета могут не совпадать с назначением.

Трехфазные электрические цепи (Лекция №16)

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

— экономичность передачи электроэнергии на большие расстояния;

— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

— уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; — фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

; (1)
; (2)
. (3)

Отметим, что всегда — как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае


(4)

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).


 

Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов


. (5)

В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой принцип действия у трехфазного генератора?
  2. В чем заключаются основные преимущества трехфазных систем?
  3. Какие системы обладают свойством уравновешенности, в чем оно выражается?
  4. Какие существуют схемы соединения в трехфазных цепях?
  5. Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
  6. Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
  7. Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
  8. На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
  9. Какие схемы соединения обеспечивают автономность работы фаз нагрузки?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *