Есть ли частота у постоянного тока: Чем переменный ток отличается от постоянного

Содержание

Чем переменный ток отличается от постоянного

В преддверии статьи о трансформаторах, мы решили устроить небольшой экскурс и выпустить две небольшие статьи по основным электротехническим определениям, которые плавно подведут нас к пониманию принципа действия трансформаторов. Ведь электричество и трансформаторы неразрывно связаны в своей истории, когда в связи с ростом передаваемых мощностей появилась потребность адаптировать мощность или напряжение под нужные пользователю параметры.

Что такое постоянный и переменный ток?

Постоянный ток не меняет своих показателей и направления движения. Встретить такой ток можно в самых обычных пальчиковых батарейках. Постоянный ток характеризуется непрерывным, направленным в одну сторону движением заряженных частиц, он практически никогда не используется в бытовых целях. Потому что передача такого тока на большие расстояния несёт за собой колоссальные потери и передавать его просто невыгодно. Поэтому, чтобы сделать электричество более дешевым и доступным, используют именно переменный ток.

Переменный ток — это ток, направление движения которого может меняться в процессе работы, равно как и его показатели. Поэтому для движения такого тока используется два полюса. Чаще всего их называют плюс и минус. Такой ток имеет частоту. Частота, это самое сложное для понимания, постараемся рассказать максимально просто. Начнем с того, что во всех бытовых сетях по всему миру используется периодический переменный ток. Именно эти самые пресловутые периоды и делают его переменным. Переменный ток имеет определённый период своих изменений. Периодом называется полный цикл всех изменений показателей тока. Как только заканчивается первый период, начинается следующий период и так до бесконечности. Один период равен одному Герцу, а частота тока измеряется в секунду. Общепринятая частота тока в России и большинстве стран Европы равна 50 Гц. В США и Канаде используют сети частотой 60 Гц, а в некоторых странах, например, в Японии, используют оба стандарта частоты. Это и позволяет току двигаться постоянно. Как только вы втыкаете вилку в сеть, вы замыкаете плюс и минус, и начинается движение тока.

Мы с вами разобрались, что такое постоянный и переменный ток, и какая между ними разница. Поговорили о том, что переменный ток имеет огромные потери при передаче на большие расстояния. В следующий раз расскажем про высоковольтное и низковольтное напряжение. Нам предстоит понять, как именно электричество попадает в наши квартиры.

от чего она зависит, какой период тока

Электрический ток – это упорядоченное движение заряженных частиц или квазичастиц. Движение возможно только в носителях электрического заряда, если речь идет о металлах, то это электроны, если о полупроводниках, то электроны и «дырки». Иногда можно встретить несколько иную терминологию – «ток смещения», что тоже можно определить, как частотную характеристику электрического поля. Это интересная и всеобъемлющая тема, изучив которую, можно узнать массу полезной информации.

Что такое частота тока

Частота тока может относиться только к переменному показателю, который периодически изменяет своё направление и (или) силу в соответствии с синусоидальной функцией. Для того, чтобы вычислить период переменного тока, необходимо определить минимальный промежуток времени, через который повторяются изменение напряжения и силы. Частотой называется количество периодов, которое совершает ток за указанный промежуток или за единицу времени. Стандартное измерение выполняется в герцах (Гц), один период в 1 секунду равен одному Герцу.

Работа тока

Какие токи бывают

Для питания электрических устройств и электротехники необходима энергия. Постоянный и переменный токи являются способом передачи энергии из одной точки в другую с использованием проводников.

Важно! Основное различие между ними заключается в характере движения заряженных частиц. Постоянный ток течет равномерно в одном направлении, в то время, как переменный постоянно изменяет направление с заданной скоростью или частотой. Основным следствием этого является полярность напряжения.

Постоянный

Постоянный ток характеризуется неизменным показателем полярности заряженных частиц. Поскольку постоянный ток сохраняет постоянную полярность, важно обращать внимание на то, как подключается устройством – неверное подключение устройства к сети с большой долей вероятности выедет его из строя. Хорошим примером являются устройства с автономным питанием от аккумуляторов – на них всегда наносятся обозначения для их корректного подключения. В противном случае, техника просто не заработает, так как не получит электропитания.

Важно! При использовании постоянного тока, показатель напряжения может сильно разниться, в зависимости от используемого устройства. Типовые значения номинального напряжения автономных источников питания составляют 1.5V, 3.7V, 6V, 9V,12V, 24V и т.д.

Изменение направления тока

Переменный

С переменным током полярность постоянно переключается между положительным и отрицательным значениями. При подобной характеристике силового поля напряжение будет постоянно меняться, а полярность в таком случае не оказывает никакого влияния на работоспособность сети. Именно поэтому, любое бытовое электрическое устройство можно включать в сеть, не задумываясь о положении вилки в розетке, то есть, о соблюдении корректной полярности.

Основной причиной широкого распространения переменного тока является относительная легкость и эффективность в увеличении, либо уменьшении напряжения. Это достигается с помощью трансформаторов, а количество изменений количественных показателей определяется числом обмоток.

Важно! Такая же трансформация допускается и для постоянной величины, но это явление не является эффективным для его применения на практике. Также, это является еще одной, дополнительной причиной, по которой в бытовой сети используется именно переменный ток.

Фазы в батарейке

Несмотря на то, что более низкие напряжения легче генерировать, высокие показатели несут меньшие потери при их передаче на расстояния. Поэтому перед подачей потребителям переменное напряжение повышается до нескольких сотен киловольт. Но, как только электричество достигает своего пункта назначения, оно снижается до 110 или 220 вольт. Дело в том, что переменный показатель имеет два установленных стандартных напряжения, которые используются во всем мире: 220В и 110В. Частота в электротехнике играет определяющее значение, и устройства, рассчитанные под напряжение в 110В, не станут работать от сети в 220В.

Какие есть фазы в токе

Многофазным может быть только переменный ток. Всего существует 3 разных фазы, и все они смещены на 120 градусов относительно друг друга. Каждая электростанция выдает по 4 провода: 3 фазовых и один для заземления, который является общим для всех трех. Электростанция вырабатывает три разные фазы переменного тока одновременно, и эти три фазы смещены строго под определённым углом.

Устройство фаз

Почему три фазы? Почему не одна, две или четыре? В 1-фазных и 2-фазных источниках питания имеет место явление, когда синусоида пересекает нулевую отметку 120 раз в секунду. При трехфазном питании в любой текущий момент одна из трех фаз приближается к пику. Таким образом, мощные 3-фазные двигатели (используемые в промышленности) и другие устройства, такие, как 3-фазное сварочное оборудование, имеют равномерную выходную мощность.

Важно! Четыре фазы существенно не улучшат ситуацию, но зато добавят четвертый провод, что повысит сложность многих работ и обслуживания, поэтому 3 фазы – это общепринятое и оптимальное значение.

Трехфазный

Трехфазная электроэнергия является распространенным методом генерации, передачи и распределения электроэнергии переменного показателя. Это тип многофазной системы и наиболее распространенный метод, используемый электрическими сетями во всем мире для передачи энергии. Он также используется для питания больших двигателей и при возникновении тяжелых нагрузок.

Трехфазная цепь, как правило, более экономична, чем эквивалентная двухпроводная однофазная при том же напряжённости линии и заземлении, поскольку для передачи заданного количества электрической энергии используется меньше материала проводника.

Интересный факт: Многофазные энергосистемы были изобретены Галилео Феррари, Михаилом Доливо-Добровольским, Йонасом Венстремом, Джоном Хопкинсоном и Николой Теслой ещё в конце 1880-х годов, и основные принципы работы применяются вплоть до сегодняшнего дня.

Движение частиц

Двухфазный

Двухфазная электрическая мощность была единственной доступной системой распределения электроэнергии переменного тока в начале 20-го века. В то время использовались две цепи, причем фазы напряжения отличались на четверть цикла, то есть, на 90°. Обычно в схемах применялись четыре провода, по два на каждую фазу. Реже применялись три провода с общим сердечником, но большего диаметра. Некоторые двухфазные генераторы прошлых лет имели две полные роторные сборки с физически смещенными обмотками для обеспечения двухфазной мощности.

На сегодняшний день двухфазный тое приобрёл широкое распространение в быту, так как каждый потребитель – житель квартиры или частного дома имеет определённое количество точек подключения бытовых приборов малой мощности.

Важно! При стандартной работе наиболее распространённых домашних приборов двухфазная электрическая цепь в полном объёме удовлетворяет потребности владельцев жилой недвижимости.

Турбогенераторные установки на Ниагарском водопаде, построенные в 1895 году, были крупнейшими в мире на то время и представляли собой именно двухфазные машины. Однако, в конечном итоге, трёхфазные системы заменили безнадёжно устаревшие и малоэффективные оригинальные агрегаты для генерации и передачи энергии. В настоящее время в мире осталось мало промышленных двухфазных распределительных систем, например, в Филадельфии, штат Пенсильвания.

Двухфазный ток

Как вычислить частоту и период тока

Формула, используемая для расчета периода одного цикла:

Т = 1 / f

Значения:

T – период времени 1 цикла.

f – частота.

Для того, чтобы вычислить частоту, необходимо применять обратную формулу, исходя из обратно пропорциональной зависимости: f = 1 / T.

Как формируется переменный ток

Трехфазное производство очень распространено в мире. Простейшим способом является использование трех отдельных катушек в статоре генератора, физически смещенных друг относительно друга на угол в 120 ° (одна треть полной фазы 360 °). Создаются три основных формы волны тока, которые равны по величине и смещены по фазе. Если катушки добавляются напротив (с шагом 60 °), они генерируют одинаковые фазы с обратной полярностью, поэтому могут быть просто соединены вместе.

На практике обычно используются более высокие «порядки полюсов». Например, 12-полюсный станок будет иметь 36 катушек (с шагом 10 °). Преимущество состоит в том, что более низкие скорости вращения могут быть использованы для генерации одинаковой частоты. Например, 2-полюсная машина, работающая на скорости 3600 об / мин, и 12-полюсная машина, работающая на 600 об/мин, производят одинаковую частоту; низкая скорость предпочтительнее для больших машин, так как предотвращается износ основных деталей механизмов.

Формирование тока

Важно! Если нагрузка в трехфазной системе равномерно распределена между фазами, то через нейтральную точку ток не протекает. Даже при несбалансированной (линейной) нагрузке в худшем случае ток нейтрали не будет превышать максимальный из фазных токов.

Нелинейные нагрузки (например, широко распространённые импульсные источники питания) могут потребовать слишком большой шины на нейтрали и проводнике в распределительной панели выше по потоку для обработки гармоник. Гармоники могут привести к тому, что уровни тока в нейтральном проводнике превысят уровни одного или всех фазных проводников.

Приведённая в статье базовая информация поможет понять логику работы и формирования электрического тока, основные закономерности и связи различных качественных показателей. Заинтересовавшись данной темой, читатель может углубиться в изучение процессов и получить полезные знания, которые могут пригодиться для применения их на практике.

Что будет, если подать в электросеть постоянный ток / Хабр Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.


И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь. Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.


источник картинки: выключатель-автоматический.рф

Дополнения от Bronx и AndrewN:
Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше.

Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.


Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.

Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО. На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.


Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение. Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен.

Электронный счетчик устроен по-другому. Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет. Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте.

Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.


Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.
Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.

Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль. Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер.


При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора. Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.
Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой. Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой:
Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой. Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно. Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление.

Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток. Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.


Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип. Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.


источник картинки: aliexpress.com

Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.


Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных.

Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.


источник картинки: bigclive.com

Более дорогие лампы устроены сложнее, очень похоже на ЭПРА для люминесцентных ламп. Источник питания в них содержит высокочастотный импульсный стабилизатор, который питается выпрямленным сетевым напряжением. Как и в случае с ЭПРА, схема будет нормально работать, если подать на неё постоянное напряжение.


источник картинки: powerelectronictips.com
Универсальный коллекторный двигатель (УКД) состоит из неподвижного статора и ротора, который вращается внутри. Статор имеет одну обмотку, а ротор сразу несколько. Роторные обмотки подключаются через коллектор — цилиндр с контактами, по которому скользят угольные щётки. Взаимодействие магнитных полей статора и ротора заставляет ротор поворачиваться. Коллектор устроен так, что всё время включает ту из обмоток, которая находится перпендикулярно обмотке статора — для неё вращающий момент будет максимальным.
Такой двигатель может работать при питании как переменным, так и постоянным током. Собственно, поэтому он и называется «универсальным». При смене полярности одновременно меняется направление магнитного поля и в статоре, и в роторе, в результате двигатель продолжает вращаться в ту же сторону. На постоянном токе УКД развивает даже больший момент, чем на переменном, за счет отсутствия индуктивного сопротивления обмоток. Универсальные коллекторные двигатели применяются там, где нужно получить большую мощность при малых габаритах. В бытовой технике УКД стоят в стиральных машинах, пылесосах, фенах, блендерах, миксерах, мясорубках, а также в электроинструментах. Все эти приборы продолжат работать, если напряжение в розетке внезапно «выпрямится».
У синхронного двигателя в статоре несколько обмоток, которые создают вращающееся магнитное поле. Ротор содержит постоянный магнит либо обмотку, питаемую постоянным током. Магнитное поле статора сцепляется с полем ротора и вращает его за собой. Особенностью такого двигателя является то, что частота его вращения зависит только от частоты питающего тока. На постоянном токе, очевидно, такой двигатель будет вращаться с нулевой частотой, то есть остановится.
В быту применяются маломощные синхронные двигатели там, где нужно поддерживать строго постоянную частоту вращения. В основном, это электромеханические часы и таймеры. Также синхронными являются двигатель вращения тарелки в СВЧ-печи и двигатель сливного насоса в стиральной машине.
Асинхронный двигатель похож своим устройством на синхронный. В нем также статор имеет несколько обмоток и создаёт вращающееся поле. Но обмотка ротора никуда не подключена и замкнута накоротко. Ток в ней создаётся за счет явления электромагнитной индукции в переменном поле статора. Этот ток создаёт своё магнитное поле, которое взаимодействует с вращающимся полем статора и заставляет ротор вращаться.
Асинхронные двигатели отличаются низким уровнем шума и большим ресурсом из-за отсутствия трущихся щёток. Их можно встретить в холодильниках, кондиционерах и вентиляторах. При питании постоянным током магнитное поле статора вращаться не будет. Также не возникнет ток в короткозамкнутом роторе. Двигатель останется неподвижен, а обмотка будет просто нагреваться, как обычный кусок провода.
Строго говоря, это не отдельный тип двигателя, а способ управления им. Сам двигатель может быть синхронным или асинхронным. Главная особенность в том, что напряжения на обмотках формируются управляющей схемой по сигналу с датчика положения ротора. Это позволяет регулировать скорость и крутящий момент в широких диапазонах, ограничивать пусковые токи и даёт кучу возможностей, вроде стабилизации частоты вращения. Вот пара хороших статей, объясняющих всю эту магию:
Раз
Два

Вентильные двигатели всё шире используются в бытовой технике: в стиральных машинах, холодильниках, кондиционерах, пылесосах. Обычно такую технику можно узнать по прилагательному «инверторный» в рекламе. Вентильный двигатель безразличен к форме питающего напряжения. Напряжение сети первым делом выпрямляется, а затем управляющий блок «лепит» из него несколько разных синусоид (обычно три) для питания обмоток мотора. Естественно, такая система будет спокойно работать на постоянном токе.
Трансформатор состоит из нескольких обмоток, связанных общим магнитопроводом. Переменный ток в одной обмотке (первичной) порождает индукционные токи во всех остальных обмотках (вторичных). Ключевая особенность трансформатора, ради которой его обычно и используют, в том, что напряжения на обмотках соотносятся так же, как количество витков в этих обмотках. Если в первичной обмотке намотать 1000 витков, а во вторичной — 100, такой трансформатор будет понижать напряжение в 10 раз. Если включить его наоборот — в 10 раз повышать. Очень просто и удобно.

В линейном блоке питания напряжение сети понижается (или повышается, если надо) до необходимого уровня при помощи трансформатора. Далее стоит выпрямитель, который преобразует переменное напряжение в постоянное, и фильтр, сглаживающий пульсации. Затем может идти стабилизатор, который поддерживает неизменным выходное напряжение.

Линейные блоки питания постепенно вытесняются импульсными, но первые работают ещё много где. В микроволновке, если она не «инверторная», есть мощный трансформатор, который повшает сетевые 220 В до нескольких киловольт, необходимых для работы магнетрона. От трансформаторов питается управляющая электроника в стиральных машинах, кухонных плитах и кондиционерах. Трансформаторные блоки питания используются в аудиоаппаратуре и дешёвых зарядных устройствах.

Что случится с трансформатором, если его включить в сеть постоянного тока? Во-первых, на вторичных обмотках напряжение не появится, так как электромагнитная индукция возникает лишь при изменении тока. Во-вторых, обмотка не будет обладать индуктивным сопротивлением, а значит, через неё потечёт гораздо больший ток, чем рассчитано. Трансформатор будет перегреваться и довольно быстро сгорит.


Чем выше частота переменного тока, тем эффективнее работает трансформатор (в разумных пределах, конечно). Если использовать частоту в несколько десятков килогерц вместо сетевых 50 Гц, можно прилично уменьшить габариты трансформаторов при той же передаваемой мощности. Эта идея лежит в основе импульсных блоков питания. Работает такой блок следующим образом: напряжение сети выпрямляется, полученное постоянное напряжение питает транзисторный генератор, который даёт снова переменное напряжение, но уже высокой частоты. Его теперь можно понижать или повышать трансформатором, выпрямлять и подавать в нагрузку.

По такой схеме сейчас питается подавляющее большинство электроники: компьютеры, мониторы, телевизоры, зарядные устройства для ноутбуков, телефонов и прочих гаджетов. Поскольку входное напряжение первым делом выпрямляется, импульсный блок питания должен без проблем работать на постоянном токе. Но есть пара моментов, которые могут всё испортить.

Во-первых, напряжение после выпрямителя равно почти амплитудному значению переменного напряжения. То есть для ~220 В на входе выпрямитель даст 311 B. Мы же по условию подаём постоянное напряжение 220 В, что на 30% ниже. Это скорее всего не вызовет проблем, потому что современные блоки питания могут работать в широком диапазоне напряжений, обычно от 100 до 250 В.

Во-вторых, выпрямитель состоит из четырёх диодов, которые работают парами: одна пара на положительной полуволне тока, другая — на отрицательной. Таким образом, каждый диод пропускает ток лишь половину времени. Если мы подадим на выпрямитель постоянное напряжение, одна пара диодов будет открыта всегда, и на них будет рессеиваться двойная мощность. Если диоды не имеют двойного запаса по току, они могут сгореть. Но это не слишком большая беда: можно просто выкинуть выпрямитель и подавать постоянное напряжение сразу после него.


После того, как вы потушили несколько возгораний и сгребли в кучу испорченные приборы, настало время подвести итоги. Переход на постоянный ток переживёт либо старая и простая техника (лампы накаливания, нагреватели, коллекторные моторы с механическим управлением) либо, наоборот, самая современная (с импульсными блоками питания и инверторными моторами).

К счастью, описанный сценарий вряд ли осуществится на практике, если не рассматривать возможность специально организованной диверсии. Ни при какой возможной аварии в энергосети переменное напряжение не станет вдруг постоянным. Правда, при возможных авариях случаются иные нехорошие вещи, но это уже совсем другая история. Берегите себя и делайте бэкапы.

Правда о пяти мифах частотно-регулируемого привода / Статьи и обзоры / Элек.ру

Независимо от того, насколько давно и каким образом, уже обыденные частотные преобразователи пришли в Вашу жизнь, где-то есть тот, кто впервые стукнулся с ЧРП или только рассматривает возможность их применения. Вспомните, когда вы впервые задумались о применении одного из современных частотных преобразователей с широтно-импульсной модуляцией для двигателя переменного тока. Скорее всего, у вас, на тот момент, было не совсем верное представление об их возможностях и назначении. В этой статье мы рассмотрим и постараемся развеять пять распространенных мифов о частотно регулируемом приводе.

Частотный преобразователь

Рис. 1. Частотный преобразователь

Миф № 1: Выходной сигнал частотного преобразователя является синусоидальным

Людям, так или иначе связанные с эксплуатацией электродвигателей в, как правило, знакома работа асинхронных двигателей переменного тока с использованием пускателей. При пуске электродвигателя, пускатель замыкает контакты обмоток электродвигателя с фазами 3-х фазной питающей сети. Напряжение каждой фаза представляет собой синусоидальную волну. Приложенное напряжение создает на клеммах электродвигателя тоже синусоидальной формы с той же частотой (можно убедится проверкой напряжения на клеммах электродвигателя). Пока вроде всё просто и понятно.

А вот что происходит на выходе преобразователя частоты, это совсем другая история. Частотный преобразователь обычно выпрямляет входное трехфазное переменное в постоянное напряжение, которое фильтруется и аккумулируется при помощи больших конденсаторов звена постоянного тока. Напряжение звена постоянного тока затем инвертируется, для получения переменного напряжения, переменной частоты на выходе. Процесс инверсии осуществляется посредством трех изолированных биполярных транзисторов (IGBT) с двумя изолированными затворами — по одной паре на выходную фазу (см. Рис 2). Поскольку выпрямленное напряжение инвертируется в переменное, выходное звено называют «инвертором». Включение, выключение, а также длительность нахождения IGBT-транзисторов в положении ВКЛ или ВЫКЛ может управляться, что и определяет значение частоты выходного напряжения. Отношение выходного среднеквадратического напряжения к выходной частоте определяет магнитный поток, развиваемый в электродвигателе переменного тока. Когда выходная частота увеличивается, выходное напряжение также должно увеличиваться с той же скоростью, чтобы поддерживать постоянство отношения и, следовательно, постоянную скорость вращения двигателя. Обычно соотношение между напряжением и частотой поддерживается по линейному закону, что обеспечивает возможность поддержания постоянного крутящего момента.

Схема инвертора с IGBT транзисторами

Рис. 2. Схема инвертора с IGBT транзисторами

Результирующий сигнал напряжения, прикладываемый к обмотке двигателя, не является синусоидальным (см. Рис. 3). Обратите внимание, что иногда отношение напряжения по частоте (V / f) может быть отличным от линейного, что характерно для вентиляторов, насосов или центробежных нагрузок, которые не требуют постоянного крутящего момента, но обеспечивают тем самым возможность экономии электроэнергии.

Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Рис. 3. Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Как же отразится пилообразная форма питающего напряжения на работе электродвигателя. Асинхронный двигатель является по своей сути большой катушкой индуктивности. А характерной особенностью индукции является ее устойчивость к изменениям тока. Увеличивается или уменьшается сита ток, индукция будет выступать против этого изменения. Какое же это имеет отношение к форме сигнала напряжения ШИМ на рисунке 3? Вместо того, чтобы позволить импульсу тока увеличиваться в том же порядке, что и приложенный импульс напряжения, ток начнет медленно возрастать. Когда импульс напряжения закончился, ток плавно уменьшается, а не исчезает мгновенно. В общих чертах это происходит следующим образом: до момента, когда ток снизился до нуля, поступает следующий импульс напряжения, и ток начинает плавно увеличиваться. Если последующий импульс становятся шире, ток плавно достигает большего значения, чем раньше. В конце концов, текущий сигнал становится синусоидальным, хотя и с некоторыми зубчатыми переходами (см. Рис. 4).

Форма сигнала тока на выходе частотного преобразователя

Рис. 4. Форма сигнала тока на выходе частотного преобразователя

Однако не думайте, что вы можете подключить свой соленоид к фазам выходного напряжения ЧРП. Это всё же не совсем переменное напряжение.

Миф № 2: все частотные преобразователи одинаковы

В общем виде частотно-регулируемый привод сегодня является довольно зрелым продуктом. Большинство коммерчески доступных приводов содержат одни и те же базовые компоненты: мостовой выпрямитель, блок питания, конденсаторный блок постоянного тока и плата выходного инвертора. Разумеется, существуют различия в алгоритмах управления переключением транзисторов IGBT инвертора, надежности компонентов и эффективности схемы теплового рассеивания. Но основные компоненты остаются прежними.

Есть также исключения. Например, в некоторых ЧРП инвертер имеет три вывода. Такая схема позволяет выходным импульсам варьироваться от половинного до полного импульса сигнала напряжения (см. Рис. 5).

Трехуровневый выходной сигнал напряжения

Рис. 5. Трехуровневый выходной сигнал напряжения

Для достижения трехуровневого выходного сигнала звено инвертора должно иметь в два раза больше выходных переключателей, а также запирающих диодов (см. Рис. 6). Преимущества трехуровневой схемы заключается в уменьшении перенапряжения на двигателе из-за гармонических волн, снижении синфазных помех, а также снижении паразитных токов на валах и подшипниках.

Схема трехуровневого инвертора

Рис. 6. Схема трехуровневого инвертора

Матричный инвертор является еще более нетипичным типом ЧРП. Частотные преобразователи с матричными инверторами не имеют шины постоянного тока или мостового выпрямителя. Вместо этого они используют двунаправленные переключатели, которые могут подключать любое из входящих фазных напряжений к любой из трех выходных фаз (см. Рис. 7). Преимущество этой схемы заключается в том, что мощность может свободно протекать от сети к двигателю или от двигателя к сети для рекуперативного привода постоянного тока. Недостатком является то, что на входе необходима установка фильтра, для обеспечения дополнительной индуктивности и фильтрации формы ШИМ, чтобы исключить негативное влияние на питающую сеть.

Схема матричного ЧРП

Рис. 7. Схема матричного ЧРП

Кроме частотных преобразователей с трехуровневыми выходами и инверторами матричного типа существуют также и другие типы частотно-регулируемых приводов. Таким образом миф о том, что все частотные преобразователи одинаковые развеян.

Миф № 3: Частотный преобразователь компенсирует коэффициентом мощности.

Нередко можно увидеть, что производители частотных преобразователей заявляют значение коэффициента мощности, например, равным 0,98 или почти 1. Действительно коэффициент мощности несколько улучшается после установки ЧРП перед асинхронным двигателем. ЧРП компенсирует реактивную мощность за счет конденсаторного звена. Однако полностью компенсировать фазовый сдвиг преобразователь частоты не может.

Полный коэффициент мощности должен включать реактивную мощность, вызываемую гармониками, создаваемыми в звене постоянного тока. Причиной является работа диодного моста. Важно помнить, что диод работает только тогда, когда напряжение на стороне анода выше, чем напряжение на стороне катода (прямое смещение). Это означает, что диоды открыты только на пике каждой временной фазы как положительной, так и отрицательной частей синусоидальной волны. Это приводит к волнообразной форме волны. Это также приводит к искажению входного тока и прерыванию (см. Рис. 8).

Форма сигналов после выпрямителя

Рис. 8. Форма сигналов после выпрямителя

Чтобы вычислить истинный полный коэффициент мощности (PF), необходимо учесть эффекты гармоник. Следующее уравнение показывает, как гармоники влияют на полный коэффициент мощности:

уравнение показывает, как гармоники влияют на полный коэффициент мощности

где THD = суммарное гармоническое искажение

Для прерывистого сигнала входного тока в уравнении THD будет находиться в районе 100% или более. Подставляя это в уравнение, получаем истинный коэффициент мощности PF ближе к 0,71, по сравнению с заявленным 0,98, который не учитывает гармоники.

Но не всё так плохо. В настоящее время существует множество способов гармонические искажения, создаваемые в звене постоянного тока. Они используют как пассивные, так и активные методы подавления искажений входного сигнала. Так, например, вышеупомянутый матричный преобразователь частоты является примером активного метода подавления гармонических искажений.

Миф № 4: С частотным преобразователем Вы можете эксплуатировать двигатель на любой скорости.

Особенность применения частотных преобразователей заключается, что они могут изменять как напряжение, так и частоту выходного сигнала. Благодаря возможности обеспечения требуемой скорости вращения электродвигателя ЧРП нашли широкое применение во всех сферах экономики и всех отраслях промышленности ЧРП может легко выдавать сигнал любой частоту в пределах предусмотренного изготовителем диапазона регулирования. Однако необходимо учитывать, что частотный преобразователь работает в составе электродвигателя в реальных условиях. Технологические требования, такие как необходимый крутящий момент, охлаждение, требуемая мощность так или иначе ограничивают фактический диапазон регулирования преобразователя частоты.

Ограничение № 1. С точки зрения охлаждения электродвигателя, низкая скорость вращения — это не очень хорошая идея. В частности, полностью закрытые вентиляторные (TEFC) двигатели имеют охлаждаются только за счет внутреннего вентилятора, который вращается вместе с валом двигателя. Чем медленнее скорость вращения двигатель, тем меньше поток воздуха и тем хуже охлаждение. Закрытые двигатели обычно не рекомендуются эксплуатировать с частотой ниже 15 Гц (диапазон скоростей 4:1).

Ограничение № 2: Электродвигатели имеют определенные ограничения диапазона скоростей, связанные с механическими и динамическими ограничениями нагрузок вращающихся частей. Обычно эта скорость называется максимальной безопасной частотой вращения. Данная характеристика не всегда указывается на шильдике мотора.

Ограничение № 3: При достижении максимальной частоты вращения крутящий момент двигателя может снижаться. Это ограничение скорости связано с ограничением мощности, которое включает в себя скорость вращения и крутящий момент. Если быть еще точнее, что будет снижаться напряжения ЧРП. Обратите внимание, что вращение двигателя также генерирует собственное напряжение, называемое обратной электродвижущей силой (ЭДС), которое увеличивается со скоростью. Обратная ЭДС создается двигателем, чтобы противостоять приложенному напряжению от ПЧ. На более высоких скоростях ПЧ должен подавать еще большее напряжения, чтобы преодолеть обратную ЭДС, и ток мог протекать по обмоткам двигателя, создавая крутящий момент. После определенного максимального значения преобразователь частоты не может преодолеть обратную ЭДС электродвигателя, и, следовательно, крутящий момент двигателя уменьшается, что, в свою очередь, снижает скорость. Снижение скорости опять приводит к более низкой обратной ЭДС, которая, в свою очередь, позволяет протекать току в двигатель снова. Существует точка равновесия, в которой двигатель достигает максимальной скорости при максимальном крутящем моменте.

Как упоминалось выше ЧРП может создавать крутящий момент на двигателе, сохраняя постоянство отношения V/f (см. Рис. 9).

График зависимости напряжения от частоты

Рис. 9. График зависимости напряжения от частоты

Когда частота выходного сигнала увеличивается, напряжение увеличивается линейно. Проблема возникает, когда частота превышает номинальную частоту двигателя. Помимо номинальной частоты, не может увеличиваться выходное напряжение, что соответственно приводит к уменьшению отношения V / f. Отношение V / f является мерой напряженности магнитного поля в двигателе и влияет на его крутящий момент. Следовательно, способность мотора создавать номинальный крутящий момент при частоте выше номинальной должна уменьшаться со скоростью 1 / частота, при этом произведение крутящего момента и частоты, равное мощности, является постоянным. Область работы над номинальной частотой называется постоянным диапазоном мощности, а работа на скоростях ниже номинальной — диапазоном постоянного крутящего момента (см. Рис. 10).

Графики зависимости мощности и крутящего момента электродвигателя от частоты

Рис. 10. Графики зависимости мощности и крутящего момента электродвигателя от частоты

Миф № 5: Входной ток преобразователя частоты выше выходного тока

Возможно, это не миф, а недоразумение. Некоторые пользователи ПЧ измеряют значение выходного и входного тока с помощью измерительного инструмента или с помощью мониторов ПЧ и обнаруживают, что входной ток намного ниже выходного. Это похоже не согласуется с идеей о том, что частотный преобразователь должен иметь некоторые потери и поэтому вход всегда должен быть немного выше, чем выход. Концепция правильная, но она учитывает мощность, а не ток, который следует учитывать:

Графики зависимости мощности и крутящего момента электродвигателя от частоты

Входное напряжение всегда находится под напряжением переменного тока. Выходное напряжение изменяется со скоростью по образцу V / f. На самом деле компоненты уравнения немного сложнее. Но ключом к пониманию данного процесса является знание того, что асинхронный двигатель имеет два токовых компонента: один отвечает за создание магнитного поля в двигателе, которое необходимо для вращения двигателя; а второй — ток, создающий крутящий момент, который, как следует из названия, отвечает за создание крутящего момента.

Привод потребляет входной ток, пропорциональный активному крутящему моменту двигателя. Ток, необходимый для создания магнитного поля, обычно не изменяется со скоростью и обеспечивается основными конденсаторами звена постоянного тока, которые заряжаются при включении питания ПЧ. При малых значения крутящего момента выходной ток может быть намного выше, чем входной, поскольку входной ток отражает только составляющую, создающую крутящий момент плюс некоторые гармоники, но не включает ток намагничивания. Ток намагничивания циркулирует между конденсаторами шины постоянного тока и двигателем. Даже при полной нагрузке входной ток обычно будет ниже, чем ток двигателя, поскольку на входе по-прежнему нет составляющей тока намагничивания.

Помните, что в уравнении мы сравниваем входную и выходную мощности. Например, рассмотрим полностью нагруженный двигатель, вращающийся на низких оборотах. Входное напряжение номинальное, а выходное напряжение будет низким из-за низкой скорости вращения. Выходной ток в данном случае будет высокий из-за полной нагрузки на двигатель. А чтобы сбалансировать уравнение мощности, входной ток должен быть ниже выходного тока.

Узнать подробную информацию о частотных преобразователях, ознакомиться с производственной линейкой YASKAWA Вы можете у ООО «КоСПа».

Или в соответствующем разделе преобразователя YASKAWA.

Оригинал статьи: www.yaskawa.com.

Источник: Chastotnik.pro, Пол Эйвери, Yaskawa America Inc.

где используется каждый из них, параметры источника, частоты и знаки

Несмотря на то, что электрический ток является незаменимой частью современной жизни, многие пользователи не знают о нем даже основополагающих сведений. В данной статье, опустив курс базовой физики, рассмотрим, чем отличается постоянный ток от переменного, а также какое он находит применение в современных бытовых и промышленных условиях.

Вконтакте

Facebook

Twitter

Мой мир

Различие типов тока

Что такое ток, рассматривать здесь не будем, а сразу перейдем к основной теме статьи. Переменный ток отличается от постоянного тем, что он непрерывно изменяется по направлению движения и своей величине.

Изменения эти осуществляются периодами через равные временные отрезки. Для создания подобного тока применяют специальные источники или генераторы, выдающие переменную ЭДС (электродвижущую силу), которая регулярно изменяется.

Основополагающая схема упомянутого устройства для генерации переменного тока довольно проста. Это рамка в виде прямоугольника, изготавливаемая из медных проволок, которая закрепляется на ось, а затем при помощи ременной передачи вращается в поле магнита. Кончики этой рамки припаиваются к медным контактным колечкам, скользящим по непосредственно контактным пластинкам, вращаясь синхронно с рамкой.

При условии равномерного ритма вращения начинает индуцироваться ЭДС, которая периодически изменяется. Измерить ЭДС, возникшую в рамке, возможно специальным прибором. Благодаря появлению электромагнитной индукции реально определить переменную ЭДС и вместе с ней переменный ток.

В графическом исполнении эти величины характерно изображаются в виде волнообразной синусоиды. Понятие синусоидального тока зачастую относится к переменному току, поскольку подобный характер изменения тока является наиболее распространенным.

Переменный ток – алгебраическая величина, а его значение в конкретный временной момент именуется мгновенным значением. Знак непосредственно самого переменного тока определяется по направлению, в котором в данный временной момент проходит ток. Следовательно, знак бывает положительным и отрицательным.

Чем отличается постоянный ток от переменного

Характеристики тока

Для сравнительной оценки всевозможных переменных токов применяют критерии, именуемые параметрами переменного тока, среди которых:

  • период;
  • амплитуда;
  • частота;
  • круговая частота.

Период – отрезок времен, когда производится законченный цикл изменения тока. Амплитудой называют максимальное значение. Частотой переменного тока назвали количество законченных периодов за 1 сек.

Перечисленные выше параметры дают возможность отличать различные виды переменных токов, напряжений и ЭДС.

При расчете сопротивления разных цепей воздействию переменного тока допустимо подключить еще один характерный параметр, именуемый угловой либо круговой частотой. Этот параметр определяется скоростью вращения вышеупомянутой рамки под определенным углом в одну секунду.

Важно! Следует понимать, чем отличается ток от напряжения. Принципиальная разница известна: ток является количеством энергии, а напряжением называется мера потенциальной энергии.

Переменный ток получил свое название, потому что направление движения у электронов безостановочно изменяется, как и заряд. У него встречается различная частота и электрическое напряжение.

Это и является отличительной чертой от постоянного тока, где направление движения электронов неизменно. Если сопротивление, напряжение и сила тока неизменны, а ток течет только в одну сторону, то такой ток является постоянным.

Для прохождения постоянного тока в металлах потребуется, чтобы источник постоянного напряжения оказался замкнут на себя при помощи проводника, которым и является металл. В отдельных ситуациях для выработки постоянного тока применяют химический источник энергии, который называется гальваническим элементом.

Это интересно! Специальная теория относительности Эйнштейна: кратко и простыми словами

Передача тока

Источники переменного тока – обычные розетки. Они располагаются на объектах разнообразного назначения и в жилых помещениях. К ним подключаются различные электрические приборы, которые получают необходимое для их работы напряжение.

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток, который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Это интересно! Что такое закон всемирного тяготения: формула великого открытия

Преобразование тока

Рассмотрим отдельно процесс преобразования переменного тока в постоянный. Данный процесс производится при помощи специализированных выпрямителей и включает три шага:

  1. Первым шагом подключается четырехдиодный мост заданной мощности. Это в свою очередь позволяет задать движение однонаправленного типа у заряженных частиц. Кроме того, он понижает верхние значения у синусоид, свойственных переменному току.
  2. Далее подключается фильтр для сглаживания либо специализированный конденсатор. Это осуществляется с диодного моста на выход. Сам же фильтр способствует исправлению впадин между пиковыми значениями синусоид. А подключение конденсатора значительно снижает пульсации и приводит их к минимальным значениям.
  3. Затем производится подключение устройств, стабилизирующих напряжение, с целью снижения пульсаций.

Данный процесс, в случае необходимости, способен производиться в двух направлениях, конвертируя постоянный и переменный ток.

Еще одной отличительной чертой является распространение электромагнитных волн по отношению к пространству. Доказано, что постоянный тип тока не позволяет электромагнитным волнам распространяться в пространстве, а переменный ток может вызывать их распространение. Кроме того, при транспортировке переменного тока по проводам индукционные потери значительно меньше, нежели при передаче постоянного тока.

Это интересно! Когда появилось и кто открыл электричество в России

Обоснование выбора тока

Разнообразие токов и отсутствие единого стандарта обуславливается не только потребностью в различных характеристиках в каждой индивидуальной ситуации. В решении большинства вопросов перевес оказывается в пользу переменного тока. Подобная разница между видами токов обуславливается следующими аспектами:

  • Возможность передачи переменного тока на значительные расстояния. Возможность преобразования в разнородных электрических цепях с неоднозначным уровнем потребления.
  • Поддержание постоянного напряжения для переменного тока оказывается в два раза дешевле, нежели для постоянного.
  • Процесс преобразования электрической энергии непосредственно в механическую силу осуществляется со значительно меньшими затратами в механизмах и двигателях переменного тока.

Внимание! В случае потребности преобразования переменного тока в постоянный используют трансформаторы напряжения, а еще блоки питания. В обратном же процессе для преобразования постоянного тока непосредственно в переменный используют специальные инверторы.

Постоянный и переменный ток

Разница между постоянным и переменным током


Указанные выше преимущества выводят переменный ток в лидеры, однако в определенных ситуациях, а особенно для производства и специфических объектов и устройств, постоянный ток становится единственным решением.

Промышленная частота Википедия

У этого термина существуют и другие значения, см. Напряжение.

Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.

Среднее значение и частота[ | ]

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в России[ | ]

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии

Переменный ток (AC) против постоянного тока (DC)

Громовой удар!

Откуда австралийская рок-группа AC / DC получила свое имя? Почему, переменный ток и постоянный ток, конечно! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд переменного тока (AC), с другой стороны, периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на обратное, поскольку ток меняет направление.

Большая часть цифровой электроники, которую вы строите, будет использовать DC. Тем не менее, важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам потребуется преобразовать переменный ток в постоянный. AC также имеет некоторые полезные свойства, такие как возможность преобразования уровней напряжения с помощью одного компонента (трансформатора), поэтому AC был выбран в качестве основного средства передачи электроэнергии на большие расстояния.

Что вы выучите

  • История AC и DC
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры применения переменного и постоянного тока

Рекомендуемое Чтение

и

и

переменного тока (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также изменяется вместе с током.Переменный ток используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

AC может быть произведен с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Петля провода вращается внутри магнитного поля, которое индуцирует ток вдоль провода. Вращение проволоки может происходить из любого количества средств: ветряная турбина, паровая турбина, проточная вода и так далее. Поскольку провод вращается и периодически входит в другую магнитную полярность, напряжение и ток на проводе чередуются.Вот короткая анимация, показывающая этот принцип:


(Видео: Хуррам Танвир)

Генерация переменного тока можно сравнить с нашей предыдущей водной аналогией:

Для генерации переменного тока в наборе водопроводных труб мы подключаем механический кривошип к поршню, который перемещает воду в трубах взад-вперед (наш «переменный» ток). Обратите внимание, что защемленный участок трубы по-прежнему обеспечивает сопротивление потоку воды независимо от направления потока.

Осциллограммы

Переменный ток

может иметь различные формы, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи с переменным током и построим график его напряжения с течением времени, мы можем увидеть несколько различных форм сигнала. Наиболее распространенным типом переменного тока является синусоида. В большинстве домов и офисов переменный ток имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны

часто используются в цифровой и коммутационной электронике для проверки их работы.

Треугольные волны найдены в синтезе звука и полезны для тестирования линейной электроники, такой как усилители.

Описание синусоиды

Мы часто хотим описать форму волны переменного тока в математических терминах. Для этого примера мы будем использовать синусоидальную волну. Синусоидальная волна состоит из трех частей: амплитуды , частоты и фазы.

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

В (т) — это наше напряжение как функция времени, что означает, что наше напряжение меняется со временем.Уравнение справа от знака равенства описывает, как напряжение меняется со временем.

В P является амплитудой . Это описывает максимальное напряжение, которое может достигать наша синусоидальная волна в любом направлении, означая, что наше напряжение может составлять + V P вольт, -V P вольт или где-то посередине.

Функция sin () показывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавное колебание около 0В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дано в виде герц или единиц в секунду . Частота показывает, сколько раз конкретная форма волны (в данном случае один цикл нашей синусоидальной волны — взлет и падение) происходит в течение одной секунды.

т — наша независимая переменная: время (измеряется в секундах).С течением времени наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза — это мера смещения формы волны относительно времени. Он часто задается числом от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны смещена на 360 °, она снова становится той же самой формой волны, как если бы она была смещена на 0 °. Для простоты предположим, что фаза равна 0 ° для остальной части этого урока.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах мощность, подаваемая в наши дома, составляет около 170 В переменного тока от нуля до пика (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор для построения графика этого уравнения. Если нет графического калькулятора, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически увеличивается до 170 В и до -170 В. Кроме того, 60 циклов синусоиды происходит каждую секунду. Если бы мы измеряли напряжение в наших розетках с помощью осциллографа, это то, что мы увидели бы ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерять напряжение в розетке с помощью осциллографа! Это может повредить оборудование).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что переменное напряжение в США составляет 120 В. Это тоже правильно.Как? Когда речь идет о переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичное значение». (RMS). Часто полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере напряжение варьировалось от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

Дом и офис розетки почти всегда в сети переменного тока. Это связано с тем, что генерация и транспортировка переменного тока на большие расстояния относительно проста.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее количество тепла, генерируемого в линии электропередачи из-за сопротивления. Переменный ток может быть преобразован в и из высокого напряжения легко с помощью трансформаторов.

AC также способен питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую энергию (если вал двигателя вращается, на клеммах генерируется напряжение!).Это полезно для многих крупных приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

постоянного тока (постоянного тока)

Постоянный ток немного легче понять, чем переменный ток. Вместо того, чтобы колебаться взад и вперед, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация DC

DC может быть сгенерирован несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства под названием «выпрямитель», который преобразует переменный ток в постоянный
  • Батареи обеспечивают постоянный ток, который генерируется в результате химической реакции внутри батареи

Снова используя нашу аналогию с водой, DC похож на резервуар с водой со шлангом на конце.

Бак может выталкивать воду только одним способом: из шланга. Подобно нашей батарее, производящей постоянный ток, когда бак опустошен, вода больше не течет через трубы.

Описание DC

DC определяется как «однонаправленный» поток тока; ток течет только в одном направлении. Напряжение и ток могут меняться со временем, пока направление потока не изменится. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея АА обеспечивает 1.5V, который можно описать в математических терминах как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на большинство источников постоянного тока для обеспечения постоянного напряжения во времени. В действительности батарея будет постепенно терять заряд, а это означает, что напряжение будет падать при использовании батареи. Для большинства целей мы можем предположить, что напряжение является постоянным.

Приложения

Почти все проекты в области электроники и запчасти для продажи на SparkFun работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует кабель USB для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают в себя:

  • Сотовые телефоны
  • Рукавица для игры в кости D & D на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток входит в телевизор, который преобразован в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом и бизнес подключены к сети переменного тока.Тем не менее, это не было решением в одночасье. В конце 1880-х годов множество изобретений в Соединенных Штатах и ​​Европе привело к полномасштабной битве между переменным током и распределением постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Переломным моментом в этой битве стало то, что Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. ,

AC против DC

Томас Эдисон (Изображение предоставлено biography.com)

В конце 1800-х годов постоянный ток не мог быть легко преобразован в высокое напряжение. В результате Эдисон предложил систему небольших локальных электростанций, которые будут питать отдельные районы или городские районы. Питание распределялось по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Фары и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между заводом и нагрузкой (дома, в офисе и т. Д.)).

Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции должны были находиться в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Получив патенты Tesla, Westinghouse разработала систему распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и снижения до приемлемых уровней. При более высоких напряжениях одна и та же мощность может передаваться при гораздо более низком токе, что означает меньшую потерю мощности из-за сопротивления в проводах.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания Эдисона Мазка

В течение следующих нескольких лет Эдисон провел кампанию, направленную на то, чтобы не поощрять использование AC в Соединенных Штатах, включая лоббирование в законодательных органах штатов и распространение дезинформации о AC. Эдисон также поручил нескольким техническим специалистам публично казнить животных с электрическим током, пытаясь показать, что он более опасен, чем постоянный ток. В попытке показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Восстание AC

В 1891 году во Франкфурте, Германия, состоялась Международная электротехническая выставка, на которой была представлена ​​первая междугородная трансмиссия трехфазного переменного тока, которая питала свет и двигатели на выставке. Несколько представителей от того, что станет General Electric, присутствовали и были впоследствии впечатлены показом. В следующем году General Electric сформировалась и начала инвестировать в технологию переменного тока.

Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство гидроэлектростанции для использования энергии Ниагарского водопада и передачи переменного тока в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало началось производство электроэнергии переменного тока. Эта веха ознаменовала снижение DC в Соединенных Штатах. В то время как в Европе будет принят стандарт переменного тока 220-240 В при частоте 50 Гц, в Северной Америке стандарт станет 120 В при частоте 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тури использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока в 1880-х годах, которая могла использоваться для передачи энергии постоянного тока на большие расстояния. Тем не менее, из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не был принят в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах экономическое преобразование между переменным и постоянным током стало возможным. Специализированное оборудование может быть использовано для выработки постоянного напряжения высокого напряжения (некоторые достигают 800 кВ).В некоторых частях Европы начали использовать линии HVDC для электрического соединения различных стран.

Линии

HVDC испытывают меньшие потери, чем эквивалентные линии переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC являются более дорогостоящими и менее надежными, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. AC и DC могут сосуществовать, и каждый служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовать между уровнями напряжения, что делает передачу высокого напряжения более осуществимой. DC, с другой стороны, встречается почти во всей электронике. Вы должны знать, что оба не очень хорошо смешиваются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к настенной розетке. С этим пониманием вы должны быть готовы к решению некоторых более сложных схем и концепций, даже если они содержат переменный ток.

Взгляните на следующие уроки, когда вы будете готовы углубиться в мир электроники:

и

,
Почему трансформатор не работает от источника постоянного тока вместо переменного тока?

Что происходит, когда основной трансформатор подключен к источнику постоянного тока?

Трансформатор — это устройство, которое повышает или понижает уровень переменного тока или напряжения без изменения первичной (т.е. входного источника) частоты.

Трансформатор

работает только на переменном токе и не может работать на постоянном токе, т. Е. Он предназначен для работы только и только на переменном токе и напряжении. Чтобы знать, что произойдет, если мы подключим источник постоянного тока к первичной обмотке трансформатора, посмотрите следующие примеры, где мы сначала подключаем трансформатор к переменному току, а затем к постоянному току.

Похожие сообщения:

Why a transformer cannot be operated on DC - What happens when a Transformer connected to the DC Supply Why a transformer cannot be operated on DC - What happens when a Transformer connected to the DC Supply

Трансформатор подключен к источнику переменного тока

Предположим, мы подключаем трансформатор к источнику переменного тока со следующими данными.

  • Первичное напряжение = V 1 = 230 В
  • Сопротивление = R 1 = 10 Ом
  • Индуктивность = L = 0,4 H
  • Частота источника = 50 Гц

Позволяет увидеть, сколько тока будет протекать через первичный трансформатора в случае переменного тока.

Мы знаем, что сопротивление в переменном токе = полное сопротивление

полное сопротивление = Z = В / I в Ω

где Z = √ (R 2 + X L ) 2 в случае индуктивной цепи.

X L = 2π f L

X L = 2 x 3,1415 x 50 Гц x 0,4H

X L = 125,67 Ом

Теперь для импеданса

Z = √ ( R 2 + X L ) 2

Установка значений

Z = √ (10 2 Ом + 125.67 2 Ω)

Z = 126,1 Ω

Теперь ток в первичной обмотке

I = V / Z

I = 230 В / 126,1 Ом = 1.82A

Первичный ток в случай переменного тока = 1,82A

Похожие сообщения:

Трансформатор подключен к источнику постоянного тока

Теперь подключите тот же трансформатор к напряжению постоянного тока и посмотрим, что произойдет.

Мы знаем, что в постоянном токе нет частоты, т.е.f = 0. Следовательно, индуктивное сопротивление X L будет равно нулю, если мы положим f = 0 в X L = 2π f L.

Таким образом, ток в первичной обмотке трансформатора в случае источника постоянного тока.

I = V / R

I = 230 В / 10 Ом

I = 23А.

Первичный ток в случае постоянного тока = 23A

Похожие сообщения:

Вышеприведенный расчет показывает, что избыточный ток будет течь в первичной обмотке трансформатора в случае источника постоянного тока, который сожжет первичные обмотки трансформатора ,Это не единственная причина, поскольку ток будет постоянным током, теперь давайте посмотрим, что происходит в случае постоянного тока в трансформаторе.

Если первичная обмотка трансформатора подключена к источнику постоянного тока, первичная обмотка будет потреблять постоянный ток и, следовательно, создавать постоянный поток. Следовательно, обратная ЭДС не будет произведена. Их первичная обмотка будет потреблять избыточный ток из-за низкого сопротивления первичной обмотки, потому что мы знаем, что индуктивное сопротивление (X L ) равно нулю из-за формулы индуктивного сопротивления (X L = 2π f L), где частота Источник постоянного тока равен нулю.В результате получается, что первичная обмотка перегреется и перегорит, или перегорят предохранитель и автоматический выключатель. Необходимо соблюдать осторожность, чтобы не подключить первичную обмотку трансформатора через источник постоянного тока.

Похожие сообщения:

Почему трансформатор не может работать от постоянного тока вместо переменного тока?

Если мы подадим постоянное напряжение или ток к первичной обмотке трансформатора, ниже приведены результаты

Мы знаем, что

v = L (di / dt)

Где:

  • v = мгновенно напряжение на первичных катушках
  • L = индуктивность индуктора
  • di / dt = мгновенная скорость изменения тока в А / с

Теперь в этом случае напряжение постоянное i.е. DC, Теперь ток (i) будет быстро увеличиваться, пока железный сердечник трансформатора не насыщается.

На этом этапе ток (i) увеличится до опасного уровня и перестанет изменяться. Когда нет изменения тока (i), наведенное напряжение в первичной обмотке будет равно нулю, так как di / dt = 0, что приводит к короткому замыканию обмотки трансформатора с испуганным источником постоянного тока.

Когда ток превысит безопасный уровень, произойдет большая потеря мощности: P = I 2 R . что повысит температуру до опасного уровня и может привести к взрыву трансформатора, а также может загореться трансформаторное масло.

Или давайте посмотрим на Второй закон Фарадея

e = N dΦ / dt

Где

  • e = Индуцированная ЭДС
  • N = число витков
  • dΦ = Изменение потока
  • dt = Изменение во времени

В случае постоянного напряжения на трансформаторе, постоянный поток (Φ) будет индуцирован в первичной обмотке из-за постоянного тока.

Теперь индуцированная ЭДС в первичной обмотке будет равна нулю как (dΦ / dt = 0), т. Е. E = N dϕ / dt = 0 из-за постоянного потока, вызванного постоянным током.

Мы также знаем, что в источнике постоянного тока нет частоты и поток обратно пропорционален частоте ( Φ = V / f ), которая насыщает сердечник трансформатора.

Это означает, что первичная обмотка трансформатора будет действовать путем короткого замыкания на дополнительный постоянный ток, который может подорвать весь трансформатор. Именно по этой причине мы не должны подключать трансформатор к источнику постоянного тока вместо переменного тока .

Похожие сообщения:

При каких условиях источник питания постоянного тока безопасно применяется к первичной обмотке трансформатора?

В большинстве случаев это вопрос типа интервью для электротехники и электроники, поэтому давайте посмотрим, как подключить трансформатор к источнику постоянного тока.

Есть два условия, когда мы можем подключить трансформатор к постоянному току.

  • Импульсный постоянный ток на входе
  • Высокое сопротивление последовательно с первичной обмоткой

Импульсный постоянный ток в трансформаторе

В этом методе пульсирующий постоянный ток (который содержит пульсации и не является чисто устойчивым состоянием) тока) к первичной стороне трансформатора. В этом случае отрицательный цикл сброса потока и интеграл напряжения по времени равны нулю за один полный цикл, что снова помогает сбросить поток в обмотке.Эта концепция используется в SMPS (импульсный источник питания.

с высоким сопротивлением последовательно с трансформатором

) Поскольку мы знаем, что трансформатор работает только от переменного тока. В случае питания постоянного тока первичная обмотка трансформатора может начать курить и гореть. Но есть способ, которым мы можем управлять трансформатором на постоянном токе (хотя цепь бесполезна без выхода), добавляя последовательно большое сопротивление с первичной обмоткой трансформатора.

Когда первичная обмотка трансформатор должен быть подключен к источнику постоянного тока.высокое сопротивление соединено последовательно с первичным. Это последовательное сопротивление ограничивает ток первичной обмотки до безопасного значения постоянного тока и, таким образом, предотвращает выгорание первичной обмотки.

Имейте в виду, что не подключайте трансформатор к источнику постоянного тока без высокого сопротивления последовательно с первичным. Потому что в постоянном токе нет частоты, а полное сопротивление (Z) катушки индуктивности равно нулю. Если вы положите Z = 0 в I = V / Z, ток будет слишком большим, то есть индуктор действует как короткое замыкание на напряжение и ток постоянного тока.

Похожие сообщения:

.

Электричество переменного тока (AC) Рон Куртус

SfC Главная> Физика> Электричество>

Рон Куртус (пересмотрен 13 февраля 2016 г.)

Электричество переменного тока — это тип электричества, который обычно используется в жилых домах и на предприятиях по всему миру.

В то время как электричество постоянного тока (постоянного тока) течет в одном направлении через провод, электричество переменного тока меняет свое направление в прямом и обратном направлении.Направление чередуется от 50 до 60 раз в секунду, в зависимости от электрической системы страны.

Электричество переменного тока создается электрическим генератором переменного тока, который определяет частоту.

Особенностью электричества переменного тока является то, что напряжение можно легко изменять, что делает его более подходящим для передачи на большие расстояния, чем электричество постоянного тока. Кроме того, переменный ток может использовать конденсаторы и катушки индуктивности в электронных схемах, что позволяет применять их в широком диапазоне.

Примечание : Мы обычно говорим AC электричество вместо того, чтобы просто говорить AC, так как это также сокращение для кондиционирования воздуха. Вы должны быть точными в науке, чтобы избежать недоразумений.

Вопросы, которые могут у вас возникнуть:

  • Какая разница между электричеством переменного и постоянного тока?
  • Почему мы используем переменный ток вместо постоянного тока?
  • Каковы преимущества переменного тока?

Этот урок ответит на эти вопросы.Полезный инструмент: Преобразование единиц



Разница между электричеством переменного и постоянного тока

Электроны имеют отрицательные (-) электрические заряды. Поскольку противоположные заряды притягиваются, они будут двигаться в область, состоящую из положительных (+) зарядов. Это движение облегчается в электрическом проводнике, таком как металлическая проволока.

Электроны движутся прямо с помощью электричества постоянного тока

При постоянном электричестве подключение провода от отрицательной (-) клеммы батареи к положительной (+) клемме приведет к тому, что отрицательно заряженные электроны будут проходить через провод к положительной заряженной стороне.То же самое происходит с генератором постоянного тока, где движение спиральной проволоки через магнитное поле выталкивает электроны из одной клеммы и притягивает электроны к другой клемме.

Электроны переменного направления в электричестве переменного тока

В генераторе переменного тока слегка отличающаяся конфигурация чередует двухтактное соединение каждой клеммы генератора. Таким образом, электричество в проводе на короткое время движется в одном направлении, а затем меняет свое направление, когда якорь генератора находится в другом положении.

Эта иллюстрация дает представление о том, как электроны движутся через провод в электричестве переменного тока. Конечно, оба конца провода проходят к генератору переменного тока или источнику питания.

К сожалению, для использования этой Flash-анимации вам необходимо активировать JavaScript.

AC движение электронов в проводе

Заряд на концах провода чередуется между отрицательным (-) и положительным (+). Если заряд отрицательный (-), это отталкивает отрицательно заряженные электроны от этого терминала.Если заряд положительный (+), электроны притягиваются в этом направлении.

Скорость изменения

Электричество переменного тока чередуется взад-вперед в направлении 50 или 60 раз в секунду, в зависимости от электрической системы страны. Эта частота называется частотой 50 Гц (50 Гц) или 60 Гц (60 Гц).

(Для получения дополнительной информации см. «Напряжение и частоты переменного тока в мире».)

Лампочки

Многие электрические устройства, такие как лампочки, требуют только движения электронов.Им все равно, будут ли электроны течь по проводу или просто двигаться вперед-назад. Таким образом, лампочка может использоваться как с переменным, так и с постоянным током.

переменного тока периодического движения

Регулярное движение электронов в проводе вперед-назад при питании от переменного тока является периодическим, аналогичным маятнику.

(См. Периодическое движение и маятник для получения дополнительной информации.)

Из-за этого периодического движения электронов напряжение и ток следуют синусоидальной форме, чередуя положительный (+) и отрицательный (-), измеряемый с помощью вольтметра или мультиметра.

Форма волны изменяется между положительной и отрицательной, поскольку она перемещается во времени

Скорость прохождения пиков напряжения или тока в данной точке является частотой переменного тока.

Преимущества переменного тока

Существуют явные преимущества переменного тока по сравнению с электричеством постоянного тока. Способность легко преобразовывать напряжения — главная причина, по которой мы используем переменный ток вместо постоянного тока в наших домах.

Трансформаторное напряжение

Основное преимущество, которое электричество переменного тока имеет перед электричеством постоянного тока, состоит в том, что напряжения переменного тока могут быть легко преобразованы в более высокие или более низкие уровни напряжения, в то время как это трудно сделать с напряжениями постоянного тока.

Поскольку высокое напряжение более эффективно для передачи электроэнергии на большие расстояния, электричество переменного тока имеет преимущество перед постоянным током. Это потому, что высокое напряжение от электростанции может быть легко уменьшено до более безопасного напряжения для использования в доме.

Изменение напряжения осуществляется с помощью трансформатора . Это устройство использует свойства электромагнитов переменного тока для изменения напряжения.

(См. Трансформаторы переменного тока для получения дополнительной информации.)

Тюнинг цепей

Электричество переменного тока

также позволяет использовать конденсатор и катушку в электрической или электронной цепи.Эти устройства могут влиять на то, как переменный ток проходит через цепь. Они эффективны только с электричеством переменного тока.

Комбинация конденсатора, катушки индуктивности и резистора используется в качестве тюнера в радиоприемниках и телевизорах. Без этих устройств настройка на разные станции была бы очень сложной.

Резюме

Мы обычно используем электричество переменного тока для питания наших телевизоров, светильников и компьютеров. В электричестве переменного тока ток меняется в направлении. Было доказано, что переменное электричество лучше для подачи электроэнергии, чем постоянное, в первую очередь потому, что напряжения могут быть преобразованы.AC также позволяет использовать другие устройства, открывая широкий спектр применений.


Электрифицируйте общество, применяя свои знания науки


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Элементы AC Electricity — Учебное пособие по базовой электронике

переменного тока — Обзор AC

DC и AC Электроэнергетические ресурсы

Физические ресурсы

Книги

Лучшие книги по основам электричества

Лучшие книги по AC Electricity

SciLinks

Этот урок, выбранный программой SciLinks, службой Национальной ассоциации преподавателей естественных наук.


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этому вопросу? Если это так, отправьте электронное письмо со своим отзывом. Я постараюсь вернуться к вам как можно скорее.


Поделиться этой страницей

Нажмите на кнопку, чтобы добавить в закладки или поделиться этой страницей через Twitter, Facebook, электронную почту или другие услуги:


Студенты и исследователи

Адрес веб-страницы:
www.school-for-champions.com/science/ac.htm

Пожалуйста, включите его в качестве ссылки на вашем сайте или в качестве ссылки в вашем отчете, документе или диссертации.

Copyright © Ограничения


Где ты сейчас?

Школа чемпионов

Темы физики

переменного тока (AC) Электричество

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *