Энергия и мощность электрического тока
В замкнутой электрической цепи источник затрачивает электрическую энергию WИСТ на перемещение единицы положительного заряда по всей замкнутой цепи, т. е. на внутреннем и внешнем участках ((1.3) и рис. 2.3).
ЭДС источника определяется выражением . Из этого выражения следует, что энергия, затраченная источником, равна
(1.13)
так как , что вытекает из определения величины тока .
Энергия источника расходуется на потребителе (полезная энергия)
и на внутреннем сопротивлении источника (потери)
(1.15)
Потерей энергии в проводах, при незначительной их длине, можно пренебречь.
Из закона сохранения энергии следует
(1.16)
Во всех элементах электрической цепи происходит преобразование энергии (в источниках различные виды энергии преобразуются в электрическую, в потребителях — электрическая в другие виды энергии).
Скорость такого преобразования энергии определяет электрическую мощность элементов электрической цепи
(1.17)
Обозначается электрическая мощность буквой Р, а единицей электрической мощности является ватт, другими словами, [Р] = Вт (ватт)
Таким образом, мощность источника электрической энергии определяется выражением
(1.18)
Мощность потребителя, т. е. полезная, потребляемая мощность, будет равна
Если воспользоваться законом Ома для участка электрической цепи, то полезную мощность можно определить следующим выражением:
(1.20)
Потери мощности на внутреннем сопротивлении источника
(1.21)
Для любой замкнутой цепи должен сохраняться баланс мощностей
(1.22)
Так как электрическая мощность измеряется в ваттах, то единицей измерения электрической энергии является [
Коэффициент полезного действия электрической цепи η определяется отношением полезной мощности (мощности потребителя) ко всей затраченной мощности (мощности источника)
(1.23)
Дата добавления: 2017-10-04; просмотров: 2190;
Похожие статьи:
Электрическая энергия, её особенности, область применения.
Электрическая энергия — единая мера любых форм движения материи. Энергия, направленная на движение электрических зарядов.
Преимущества – а) легко передается на большие расстояния;
— б) универсальная (легко преобразуется в другие виды энергии)
— в) Техн. процессы на электроэнергии легко автоматизируются.
Электрическая энергия используется почти повсеместно. Большая часть производимой электроэнергии приходится на промышленность. Так же на транспорт, сельское и коммунальное хозяйства.
Многие железнодорожные линии перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень — все это тоже является крупным потребителем электроэнергии.
Электрическая цепь, назначения основных элементов.
Электрическая цепь — совокупность устройств, предназначенных для прохождения электрического тока.
Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).
Электрическая цепь состоит из 3 основных элементов: — источник
-провода
-приёмник .
1) Источник – преобразует первичный вид энергии во вторичный ( в электрическую энергию) .
Примеры источника: батарея, генератор, термопары.
2) Провода – соединительная роль.
3) Приёмник – служит для обратного преобразования электрической энергии в нужный нам вид энергии.
Примеры приёмника: лампочка, нагревательный элемент (плитка нагревательная), двигатель.
Анализ простых электрических цепей методом эквивалентного сопротивления.
В нём схема
Преобразование треугольника в эквивалентную звезду при расчёте мостовых схем.
Преобразуется пассивная часть электрической цепи (приёмники).
Звезда — соединение трех. проводников, имеющих общий узел и вид трёхлучевой звезды.
Треугольник — три сопр., образовывающие собой стороны треугольника.
Режимы работы электрической цепи.
1) Режим короткого замыкания. (КЗ)
В режиме короткого замыкания источник питания замкнут накоротко. Режим является аварийным. Ток короткого замыкания КЗ во много раз превышает значение номинального тока. Режим не используется при сварочных работах.
Rн = 0 I = max КПД стремится к 0 Рн=0
2) Режим согласованной нагрузки
Свойства электрической цепи – наибольшая мощность нагрузки развивается источником, когда сопротивление нагрузки равно внутреннему сопротивлению источника. Используется в системах автоматики, радио, ТВ.
Rн=Rв КПД=50% Рн стр. к максимуму
3) Режим холостого хода (Х Х)
В режиме холостого хода источник питания отсоединен от нагрузки и работает вхолостую. Сопротивление внешнего участка цепи и ток равен 0.
Rн = ∞ КПД=100% Рн прибл. = 0
4) Режим номинальный (паспортный)
В силовых (?) цепях, когда большие токи используют паспортный режим, он задаётся паспортными данными приёмника.
Сложная цепь постоянного тока. Применение законов Кирхгофа для расчёта цепи.
Сложная цепь – разветвлённая цепь с несколькими источниками питания.
Узел — место или точка цепи, где сходится более 3 ветвей.
Ветвь — участок цепи, заключённый между 2-мя узлами, на элементах которых сила токов имеет одно и то же значение.
Контур — замкнутая часть цепи, состоящая из нескольких ветвей.
Расчёт цепи с помощью 1-ого и 2-ого закона Кирхгофа.
Первый закон Кирхгофа
В любом узле электрической цепи алгебраическая сумма токов равна нулю
где m – число ветвей подключенных к узлу.
При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».
Второй закон Кирхгофа
В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках.
,
где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rk в контуре; Uk=Rk
Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС равна нулю
.
Порядок расчёта цепи по з. Кирхгофа :
1) Задаётся условными направлениями тока на всех ветвях эл. цепи.
2) Составляем ур-е по 1-му з. Кирхгофа (причём число ур-й должно быть на 1-цу меньше числа узлов эл. цепи).
3) Недостающие ур-я составляются по 2-му з. Кирхгофа (общее число ур-ий равно числу ветвей эл. цепи).
4) Решаем с-му ур-й, определяем все неизвестные токи.
5) Зная токи, легко рассчитать мощность на нашем участке (если при расчёте ток со знаком «-«, значит действительное направление не совпадает с условно выбранным на чертеже)
кинетическая, потенциальная, лучистая, химическая, механическая и др.
Когда потенциальная энергия связана с гравитационной силой, она называется потенциальной гравитационной энергией. Гравитационное силовое поле вокруг нашей планеты притягивает объекты к ее центру. Когда мы поднимаем объекты, отделяя их от Земли, мы увеличиваем их гравитационную потенциальную энергию.
Существует потенциальная гравитационная энергия между Солнцем и планетами, а также между Луной и Землей. Фактически, приливы являются результатом притяжения, которое Луна создает на земных водоемах.
Упругая потенциальная энергия
Когда мы растягиваем пружину, энергия, чтобы вернуться к своей первоначальной форме, сохраняется как потенциальная энергия.
Другой формой потенциальной энергии является энергия, которую содержит пружина, когда мы растягиваем или сжимаем её. Эта энергия называется упругой потенциальной энергией: это энергия материалов, когда они растягиваются или скручиваются. Когда мы сжимаем пружину, мы увеличиваем ее потенциальную энергию.
Эластичная потенциальная энергия – это то, что движет в пружине. Также в прыжках с шестом в легкой атлетике у нас есть пример того, как упругая потенциальная энергия превращается в гравитационную потенциальную энергию.
Механическая энергия
Механическая энергия – это сумма энергии положения и движения.
Механическая энергия тела охватывает движение и положение объекта, то есть это сумма кинетической и потенциальной энергии этого объекта.
Когда мы качаемся, мы превращаем кинетическую энергию в потенциал и наоборот, поэтому мы можем двигаться быстрее и выше.
Например, ребенок на скейтборде на предыдущем изображении обладает кинетической энергией, которая позволяет ему закрепиться на стене, набирая потенциальную энергию. Когда оно начинает падать, потенциальная энергия превращается в кинетическую энергию и набирает скорость.
Химическая энергия
Химическая энергия сохраняется в связях между атомами.
Химическая энергия – это форма потенциальной энергии, которая сохраняется в связях между атомами в результате сил притяжения между ними.
Во время химической реакции одно или несколько соединений, называемых реагентами, превращаются в другие соединения, называемые продуктами. Эти превращения происходят из-за разрыва или образования химических связей, которые вызывают изменения в химической энергии.
Энергия высвобождается, когда связи разрушаются во время химических реакций. Это то, что известно как экзотермическая реакция. Например, автомобили используют химическую энергию бензина для выработки тепловой энергии, которая используется для движения автомобиля. Точно так же пища хранит химическую энергию, которую мы используем живыми существами, чтобы функционировать.
Когда соединения образуются, требуется энергия; Это реакция эндотермического типа. Фотосинтез – это эндотермическая реакция, энергия которой исходит от Солнца.
Тепловая энергия
Тепловая энергия огня передается тепловой энергии горшка через тепло.Тепловая энергия (внутренняя энергия) представляет собой тип кинетической энергии, являющейся продуктом движения или внутренней вибрации частиц в телах. Когда мы измеряем температуру с помощью термометра, мы измеряем то движение атомов и молекул, которые составляют тело. При более высокой температуре большее движение и, следовательно, большая тепловая энергия.
Кроме того, тепловая энергия перемещается между телами через тепло. Когда вы помещаете горячий предмет рядом с холодным, происходит передача энергии от самого горячего к самому холодному, до точки, где они имеют одинаковую температуру. Тепло также передается через инфракрасное излучение или движение горячих жидкостей или газов.
Электрическая мощность
Электрические батареи превращают химическую энергию в электрическую.Электричество – это тип энергии, который зависит от притяжения или отталкивания электрических зарядов. Существует два вида электричества: статическое и текущее. Статическое электричество связано с наличием статических нагрузок, т.е. нагрузок, которые не двигаются. Электрический ток происходит из-за перемещение грузов.
Пример статического электричества – когда мы натираем воздушный шарик на волосы. Воздушный шар удерживает электроны от волос, заряжаясь отрицательно, в то время как волосы заряжены положительно. Если вы подойдете к воздушному шарику к своей голове, не касаясь его, вы увидите, как пряди волос тянутся к воздушному шарику.
Электрический ток – это поток зарядов из-за движения свободных электронов в проводнике. Это движение происходит в электрическом поле, то есть в области вокруг заряда, где действует сила. Электрические заряды легко переносятся такими материалами, как металлы, особенно серебро, медь и алюминий.
В батареях или электрических батареях происходит превращение химической энергии в электрическую энергию. Химическая энергия происходит в результате реакции между электродами и электролитом, когда положительный полюс соединен с отрицательным полюсом батареи. Вольт – это единица измерения потенциальной энергии на заряд в батарее.
Ядерная энергетика
Когда ядро атома разбивается, ядерная энергия высвобождается.
Ядерная энергия – это форма потенциальной энергии, которая накапливается в ядре атома и происходит от сил, удерживающих субатомные частицы вместе. Ядерная реакция похожа на химическую реакцию, в которой реагенты превращаются в продукты. Они отличаются тем, что в ядерной реакции один атом превращается в другой.
Существует три типа ядерной реакции: радиоактивный распад, слияние и деление. При радиоактивном распаде ядро радиоактивного атома самопроизвольно выделяет энергию. При делении ядра ядро бомбардируется нейтроном, что приводит к образованию двух новых атомов. При ядерном синтезе легкие ядра объединяются в тяжелые ядра.
Использование ядерной энергии
Реакции ядерного деления используются в ядерных реакторах, где ядерная энергия преобразуется в тепловую энергию, которая затем преобразуется в электрическую энергию. Энергия, исходящая от Солнца, является продуктом ядерного синтеза.
Магнитная энергия
Магниты используются для захвата магнитных материалов, таких как гайки и болты.Способность объекта выполнять работу из-за его положения в магнитном поле является потенциальной энергией магнитного поля. Магниты имеют магнитное поле и две области, называемые магнитными полюсами. Равные полюса отбрасываются, а разные полюса притягиваются. Наиболее используемые магнитные материалы – это железо и его сплавы.
Например, железный винт, который приближается к магниту, но не касается его, обладает потенциальной магнитной энергией. Объекты движутся в направлении, которое уменьшает их потенциальную магнитную энергию.
Микрофоны, например, хорошо работают благодаря магнитной энергии. Операция заключается в следующем: микрофон имеет мембрану, которая вибрирует со звуком. Эта вибрация передается на кабель, обмотанный вокруг магнита, который посылает электрический сигнал на усилитель, делая звук громче. В этом случае мы имеем преобразование звуковой энергии в магнитную энергию, затем электрическую энергию и затем звуковую энергию.
Железные дороги с электромагнитной подвеской – еще один пример того, как мы можем использовать магнитную энергию для выполнения работы. Железная дорога движется через магнитное поле, которое движется вдоль ферромагнитного пути.
Звуковая энергия
Колокол вибрирует от удара и производит звуковые волны, которые распространяются по воздуху.
Звуковая энергия – это механическая энергия частиц, которые вибрируют в форме волн через среду передачи. Средой, через которую проходят звуковые волны, может быть воздух, вода или другие материалы. Все, что вызывает шум, генерирует звуковую энергию.
Звук распространяется в твердых телах быстрее, чем в жидкостях, и быстрее в жидкостях, чем в газах. Поэтому если прислонить ухо к полу, можно слышать, потому что скорость звука на земле в четыре раза выше, чем в воздухе.
Именно благодаря звуковой энергии мы можем слышать. Когда звуковые волны в воздухе проникают в ваши уши, они стимулируют специальные клетки, которые посылают информацию в мозг. Чем больше энергии имеет звуковая волна, тем громче будет звук.
Карты морского дна выполнены с использованием звуковой системы. Гидролокатор посылает звуковые волны и рассчитывает пройденное расстояние, используя скорость звука в воде.
В медицине ультразвук используется для удаления камней в почках. Эхокардиограмма является еще одной технологией, которая использует звуковые волны, чтобы увидеть плод у беременных женщин.
Лучистая энергия
Свет – это лучистая энергия, которая распространяется волнами.Энергия в форме света или тепла – это лучистая энергия, более известная как излучение. Излучение – это электромагнитные волны, которым не нужны средства для перемещения подобно звуковым волнам, чтобы они могли перемещаться в космическом пространстве. Источником электромагнитных волн являются электроны, которые вибрируют, создавая электрическое поле и магнитное поле.
Различные типы лучистой энергии или излучения (потоки) упорядочены по уровням энергии в электромагнитном спектре. Они путешествуют в космосе со скоростью 300 миллионов метров в секунду, то есть со скоростью света.
Рентгеновские и гамма-лучи – это невидимые излучения с большим количеством энергии. Оба имеют важные применения в медицине. Рентген используется для диагностики переломов костей, в то время как гамма-излучение используется для диагностики неврологических заболеваний, таких как болезнь Паркинсона и Альцгеймера, или при заболеваниях сердца.
В ультрафиолетовых (УФ) лучей представляют собой тип невидимого излучения , создаваемого Солнцем и некоторых специальных ламп. Эти лучи отвечают за загар, который мы приобретаем, когда подвергаем себя воздействию солнца. Однако чрезмерное воздействие ультрафиолетовых лучей может вызвать ожоги и рак кожи. Вот почему вы должны защищать свое тело, когда вы долго на солнце, особенно кожу (чтобы защититься от рака кожи) и глаза.
Видимый свет излучения – это то, что человеческий глаз может воспринимать. Обычно мы видим белый свет, который является не более чем смесью огней разных цветов. Свет находится в энергетических пакетах, называемых фотонами, которые не имеют массу.
Инфракрасное излучение, микроволна и радиоволны менее энергичное излучение электромагнитного спектра. Радиоволны и микроволны – это волны, используемые в коммуникациях для передачи звука и изображений.
Солнечная энергия
Солнце – самый важный источник энергии для жизни на Земле.Солнечная энергия – это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, – это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Возобновляемые и невозобновляемые источники энергии
Такие ресурсы, как солнце и ветер, являются возобновляемыми источниками энергии.Закон сохранения энергии гласит, что энергия не может быть создана или уничтожена, может только быть преобразована. Это означает, что при подсчете количества энергии в системе это количество всегда будет одинаковым, хотя и по-разному.
Когда мы говорим о возобновляемых или невозобновляемых энергоресурсах, мы действительно имеем в виду источники или ресурсы, из которых люди извлекают энергию.
Уголь и нефть являются ископаемым топливом, в котором химическая энергия сохраняется в связях между атомами углерода. Ископаемое топливо не возобновимо, потому что оно было сформировано миллионы лет назад из доисторических организмов. Эти источники энергии, помимо ограниченного существования, наносят серьезный ущерб окружающей среде.
Наша цель должна заключаться в том, чтобы воспользоваться другими источниками энергии, такими как солнце, ветер, внутреннее земное тепло и океанские волны, которые являются возобновляемыми и не загрязняющими окружающую среду. Вода может использоваться снова и снова благодаря естественному процессу круговорота воды.
Другой аспект, который мы должны принять во внимание, это не тратить энергию. Электрическая энергия вашего дома имеет свою стоимость. Если у вас долгое время открыт холодильник (кстати, почему он открывается с трудом во второй раз) или вы оставили лампы в своей комнате, особенно если вас там нет, вы увеличиваете потребление электроэнергии в своем доме, и это будет оплачиваться вашими родителями. Экономия энергии – это разумное и осознанное использование.
Электрическая энергия — это… Что такое Электрическая энергия?
Электромагнитная энергия — термин, под которым подразумевается энергия, заключенная в электромагнитном поле. Сюда же относятся частные случаи чистого электрического поля и чистого магнитного поля. Эта энергия равна механической работе, совершаемой при перемещении зарядов и проводников в электрическом и магнитном полях.
Работа электрического поля по перемещению заряда
Понятие работы A электрического поля E по перемещению заряда Q вводится в полном соответствии с определением механической работы:
где — разность потенциалов (также употребляется термин напряжение)
Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов U(t), в таком случае формула для работы следует переписать следующим образом:
где — сила тока
Мощность электрического тока в цепи
Мощность W электрического тока для участка цепи определяется обычным образом, как производная от работы A по времени, то есть выражением:
— это наиболее общее выражение для мощности в электрической цепи.
С учётом закона Ома :
Электрическую мощность, выделяемую на сопротивлении R можно выразить как через ток: ,
так и через напряжение:
Соответственно, работа (выделившаяся теплота) является интегралом мощности по времени:
Энергия электрического и магнитного полей
Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.
Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.
В системе СИ:
где E — напряжённость электрического поля, H — напряжённость магнитного поля, — электрическая постоянная, и — магнитная постоянная. Иногда для констант и — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.
Потоки энергии электромагнитного поля
Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в российской научной традиции — вектор Умова-Пойнтинга).
В системе СИ вектор Пойнтинга равен: ,
— векторному произведению напряжённостей электрического и магнитного полей, и направлен перпендикулярно векторам E и H. Это естественным образом согласуется со свойством поперечности электромагнитных волн.
Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей, и имеет совершенно тот же вид: .
Сам факт существования потоков энергии в постоянных электрических и магнтных полях, на первый взгляд, выглядит очень странно, но это не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.