Энергетика — Википедия
Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]
Уголь/Торф (39,3 %)
Природный газ (22,9 %)
Гидро (16,0 %)
Ядерная (10,6 %)
Нефть (4,1 %)
Прочие (Возобн.) (7,1 %)
Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:
Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на
Доля различных источников в мировом производстве электроэнергии[1] | Уголь | Природный газ | ГЭС | АЭС | Нефть | Прочие | Всего |
---|---|---|---|---|---|---|---|
1973 год | 38,3 % | 12,1 % | 20,9 % | 3,3 % | 24,8 % | 0,6 % | 6 131 ТВт*ч |
2015 год | 39,3 % | 22,9 % | 16,0 % | 10,6 % | 4,1 % | 7,1 % | 24 255 ТВт*ч |
Традиционная электроэнергетика[править | править код]
Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений
Тепловая энергетика[править | править код]
В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:
Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]
На 2013 год, средний КПД тепловых электростанций был равен 34 %, при этом наиболее эффективные угольные электростанции имели КПД в 46 %, а наиболее эффективные газовые электростанции — 61 %
Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.
Гидроэнергетика[править | править код]
В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.
ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.
Ядерная энергетика[править | править код]
Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.
По доле АЭС в выработке электроэнергии первенствует Франция[9], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[10][11].
Нетрадиционная электроэнергетика[править | править код]
Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность
Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[12]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %
Электрические сети[править | править код]
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[15]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.
Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными
Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами
Централизованное теплоснабжение[править | править код]
Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:
Децентрализованное теплоснабжение[править | править код]
Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:
- Малые котельные;
- Электрическое, которое делится на:
- Печное.
Тепловые сети[править | править код]
Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.
От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[2].
Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.
Органическое топливо[править | править код]
В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %[19].Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %[20].
Газообразное[править | править код]
Естественным топливом является природный газ, искусственным:
Жидкое[править | править код]
Естественным топливом является нефть, искусственным называют продукты его перегонки:
Твёрдое[править | править код]
Естественным топливом являются:
Искусственным твёрдым топливом являются:
Ядерное топливо[править | править код]
В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:
Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[21], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[2][22].
Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[23].
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[24]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[25] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.
Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[16][26].
- ↑ 1 2 2017 Key World Energy Statistics (неопр.) (PDF) (недоступная ссылка). http://www.iea.org/publications/freepublications/ 30. IEA (2017). Дата обращения 20 февраля 2018. Архивировано 15 ноября 2017 года.
- ↑ 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
- ↑ То есть мощность одной установки (или энергоблока).
- ↑ 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
- ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
- ↑ Данные за 2011 год.
- ↑ World Energy Perspective Cost of Energy Technologies (англ.) (недоступная ссылка). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Дата обращения 29 июля 2015. Архивировано 1 мая 2015 года.
- ↑ World Energy Perspective (англ.) 5. Мировой энергетический совет (2013). Дата обращения 20 октября 2019.
- ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
- ↑ В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
- ↑ 1 2 Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
- ↑ Эти понятия могут различно трактоваться.
- ↑ Данные за 2005 год
- ↑ А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
- ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
- ↑ 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 под редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
- ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
- ↑ В зависимости от климата в некоторых странах нет такой необходимости.
- ↑ https://web.archive.org/web/20110626032546/http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf
- ↑ Архивированная копия (неопр.). Дата обращения 4 декабря 2014. Архивировано 15 декабря 2012 года.
- ↑ Диаметром около 9 мм и высотой 15—30 мм.
- ↑ Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
- ↑ Энергосистема — статья из Большой советской энциклопедии.
- ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
- ↑ Не более нескольких километров.
- ↑ Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.
Состояние отрасли | Министерство энергетики
Электроэнергетика является базовой отраслью российской экономики, обеспечивающей электрической и тепловой энергией внутренние потребности народного хозяйства и населения, а также осуществляющей экспорт электроэнергии в страны СНГ и дальнего зарубежья. Устойчивое развитие и надежное функционирование отрасли во многом определяют энергетическую безопасность страны и являются важными факторами ее успешного экономического развития.
За последние годы в электроэнергетике России произошли радикальные преобразования: изменилась система государственного регулирования отрасли, сформировался конкурентный рынок электроэнергии, были созданы новые компании. Изменилась и структура отрасли: было осуществлено разделение естественно монопольных (передача электроэнергии, оперативно-диспетчерское управление) и потенциально конкурентных (производство и сбыт электроэнергии, ремонт и сервис) функций; вместо прежних вертикально-интегрированных компаний, выполнявших все эти функции, созданы структуры, специализирующиеся на отдельных видах деятельности.
Магистральные сети перешли под контроль Федеральной сетевой компании, распределительные сети интегрированы в межрегиональные распределительные сетевые компании (МРСК), функции и активы региональных диспетчерских управлений были переданы общероссийскому Системному оператору (СО ЕЭС).
Активы генерации в процессе реформы объединились в межрегиональные компании двух видов: генерирующие компании оптового рынка (ОГК) и территориальные генерирующие компании (ТГК). ОГК объединили электростанции, специализированные на производстве почти исключительно электрической энергии. В ТГК вошли главным образом теплоэлектроцентрали (ТЭЦ), которые производят как электрическую, так и тепловую энергию. Шесть из семи ОГК сформированы на базе тепловых электростанций, а одна (РусГидро) – на основе гидрогенерирующих активов.
Одной из важнейших целей реформы являлось создание благоприятных условий для привлечения в отрасль частных инвестиций. В ходе реализации программ IPO и продажи пакетов акций генерирующих, сбытовых и ремонтных компаний, принадлежавших ОАО РАО «ЕЭС России», эта задача была успешно решена. В естественно монопольных сферах, напротив, произошло усиление государственного контроля.
Таким образом, были созданы условия для решения ключевой задачи реформы – создания конкурентного рынка электроэнергии (мощности), цены которого не регулируются государством, а формируются на основе спроса и предложения, а его участники конкурируют, снижая свои издержки.
История
Основа потенциала электроэнергетики России была заложена в 20-30-е годы XX века в рамках реализации плана ГОЭЛРО, который предусматривал масштабное строительство районных тепловых и гидроэлектростанций, а также сетевой инфраструктуры в центральной части страны. В 50-е годы отрасль получила дополнительный толчок благодаря научным разработкам в области атомной энергии и строительством атомных электростанций. В последующие годы происходило масштабное освоение гидроэнергетического потенциала Сибири.
Исторически территориальное распределение видов генерации сложилось следующим образом: для Европейской части России характерно сбалансированное размещение различных типов генерации (тепловой, гидравлической и атомной), в Сибири значительная часть энергетических мощностей (около 50%) представлена гидроэлектростанциями, в изолированной энергосистеме Дальнего Востока преобладает тепловая генерация, в Калининградской области основу энергоснабжения составляют атомные электростанции.
Основные энергетические мощности и объекты электроэнергетики России были построены в советский период. Однако уже в конце 80-х годов стали проявляться признаки замедления темпов развития отрасли: обновление производственных мощностей стало отставать от роста потребления электроэнергии. В 90-е годы объем потребления электроэнергии существенно уменьшился, в то же время процесс обновления мощностей практически остановился. По технологическим показателям российские энергокомпании серьезно отставали от своих аналогов в развитых странах, в системе отсутствовали стимулы к повышению эффективности, рациональному планированию режимов производства и потребления электроэнергии, энергосбережению, из-за снижения контроля за соблюдением правил безопасности и значительной изношенности фондов существовала высокая вероятность крупных аварий.
Кроме того, из-за сложностей перестройки экономической и политической систем России, в отрасли отсутствовала платежная дисциплина (так называемый «кризис неплатежей»), предприятия являлись информационно и финансово «непрозрачными», был закрыт доступ на рынок новым, независимым игрокам.
Электроэнергетика требовала срочных масштабных преобразований, способствующих обновлению основных мощностей, повышению эффективности отрасли, надежности и безопасности энергоснабжения потребителей.
С этой целью, Правительством РФ в начале 2000-х годов был взят курс на либерализацию рынка электроэнергии, реформирование отрасли и создание условий для привлечения масштабных инвестиций в электроэнергетику. (см. раздел «Реформирование»)
Реформирование
Намеченный правительством план преобразований в электроэнергетике, которые создали бы стимулы повышения эффективности энергокомпаний, позволили существенно увеличить объем инвестиций в отрасли и обеспечить в дальнейшем надежное бесперебойное энергоснабжения потребителей, включал в себя изменение системы государственного регулирования отрасли, создание конкурентного рынка электроэнергии и реструктуризацию отрасли в целом. Цели и задачи реформы были определены постановлением Правительства от 11 июля 2001 г. № 526 «О реформировании электроэнергетики Российской Федерации» (с учетом последующих изменений в нормативно-правовой базе цели и задачи реформирования были конкретизированы в «Концепции Стратегии ОАО РАО «ЕЭС России» на 2005-2008 гг. «5+5»).
Требуемые преобразования были успешно произведены за период с 2001 по 2008 годы. В настоящее время на территории Российской Федерации действуют оптовый и розничные рынки электроэнергии, цены которых не регулируются государством, а формируются на основе спроса и предложения.
Изменилась и структура отрасли: было осуществлено разделение естественно монопольных (передача электроэнергии, оперативно-диспетчерское управление) и потенциально конкурентных (производство и сбыт электроэнергии, ремонт и сервис) функций; вместо прежних вертикально-интегрированных компаний, выполнявших все эти функции, созданы структуры, специализирующиеся на отдельных видах деятельности.
Магистральные сети перешли под контроль Федеральной сетевой компании, распределительные сети интегрированы в межрегиональные распределительные сетевые компании (МРСК), функции и активы региональных диспетчерских управлений были переданы общероссийскому Системному оператору (СО ЕЭС).
Активы генерации в процессе реформы объединились в межрегиональные компании двух видов: генерирующие компании оптового рынка (ОГК) и территориальные генерирующие компании (ТГК). ОГК объединили электростанции, специализированные на производстве почти исключительно электрической энергии. В ТГК вошли главным образом теплоэлектроцентрали (ТЭЦ), которые производят как электрическую, так и тепловую энергию. Шесть из семи ОГК сформированы на базе тепловых электростанций, а одна (РусГидро) – на основе гидрогенерирующих активов.
Сформированные в ходе реформы компании представляют собой предприятия, специализированные на определенных видах деятельности и контролирующие соответствующие профильные активы (или объединяющие профильные предприятия) нескольких регионов, поэтому по масштабу деятельности новые компании превосходят прежние монополии регионального уровня.
Одной из важнейших целей реформы являлось создание благоприятных условий для привлечения в отрасль частных инвестиций. В ходе реализации программ IPO и продажи пакетов акций генерирующих, сбытовых и ремонтных компаний, принадлежавших ОАО РАО «ЕЭС России», эта задача была успешно решена. В естественно монопольных сферах, напротив, произошло усиление государственного контроля.
Таким образом, в российской электроэнергетике были решены ключевые задачи реформы – за счет создания рынка электроэнергии (мощности), в котором его участники конкурируют, снижая свои издержки, и реструктуризации отрасли, были сформированы условия для повышения эффективности энергокомпаний, обеспечения их финансовой «прозрачности» и инвестиционной привлекательности, а также модернизации отрасли в целом.
Ключевые события реформы:
11 июля 2001 г. — постановлением Правительства от 11 июля 2001 г. № 526 «О реформировании электроэнергетики Российской Федерации».
2001 год – учрежден Администратор торговой системы. Тем самым дан старт созданию инфраструктуры оптовой торговли электроэнергией.
2002 год – созданы ОАО «ФСК ЕЭС» и ОАО «СО-ЦДУ ЕЭС».
2003 год – с реализации нескольких пилотных проектов начался процесс реформирования АО-энерго. К апрелю 2004 года была завершена процедура реорганизации первой региональной энергокомпании – ОАО «Калугаэнерго».
2004 год – началось создание новых межрегиональных компаний: распределительных сетевых (МРСК), оптовых генерирующих (ОГК) и территориальных генерирующих (ТГК). Состоялась государственная регистрация ОАО «ГидроОГК».
2005 год – создана Комиссия по реорганизации ОАО РАО «ЕЭС России».
2006 год – завершился основной объем преобразований компаний холдинга ОАО РАО «ЕЭС России». С 1 сентября 2006 года вступили в силу новые правила работы оптового и розничных рынков электроэнергии. На оптовом рынке электроэнергии (мощности) в результате введения с 1 сентября новых правил работы осуществлен переход к регулируемым договорам между покупателями и генерирующими компаниями, ликвидирован сектор свободной торговли (ССТ), запущен спотовый рынок – «рынок на сутки вперед» (РСВ).
В течение 2007 года почти половина электростанций и 22 сбытовые компании страны перешли в частные руки. Поступления от приватизации в ходе дополнительных эмиссий акций составили около 25 млрд. долларов.
В декабре 2007 – январе 2008 года закончено формирование целевой структуры всех тепловых ОГК и ТГК, завершен первый этап консолидации ОАО «ГидроОГК» (ОАО «РусГидро»).
1 июля 2008 года прекратило свое существование ОАО РАО «ЕЭС России».
В 2009 году девять распределительных компаний («Белгородэнерго», «Липецкэнерго», «Тверьэнерго», «Пермьэнерго», «Тулаэнерго», «Рязаньэнерго», «Астраханьэнерго», «Кургаэнерго» и «Оренбургэнерго») в тестовом режиме перешли на новую систему тарифообразования (RAB-регулирование), которая предусматривает прямую зависимость доходов компании от надежности энергоснабжения, уровня обслуживания потребителей.
2010 год — в Российской Федерации впервые проведен конкурентный отбор мощности (КОМ) на 2011 год в соответствии с новыми правилами долгосрочного рынка мощности. В конкурентном отборе приняли участие 388 электростанций по 974 генерирующим единицам.
По ценовым параметрам заявки на продажу мощности отобраны 288 электростанций. Суммарный объем отобранной мощности составил 161 908 МВт. (в первой ценовой зоне – 136 797 МВт, во второй ценовой зоне – 25 111 МВт). Цены по результатам КОМ в зонах свободного перетока (ЗСП) Центра и Урала составили 123 000 руб/МВт в мес, в остальных ЗСП первой ценовой зоны – 118 125 руб/МВт в мес., во всех ЗСП второй ценовой зоны – 126 368 руб/МВт в мес.
С 1 января 2011 года рынок электроэнергии и мощности должен был быть полностью либерализован.
Энергетика России — Википедия
Энергетика России | |
Энергетика России — отрасль российской экономики. В 2013 году потребление первичных энергоресурсов составило 699,0 млн тонн нефтяного эквивалента, из которых на природный газ пришлось 53,2 %; на нефть — 21,9 %; на уголь — 13,4 %; на гидроэнергию — 5,9 %; на ядерную энергию — 5,6 %[1]. Традиционной, исторически самой значимой отраслью является топливная энергетика. В 20-30-х годах XX века новый толчок энергетическому развитию СССР дало масштабное строительство районных тепловых и гидроэлектростанций в рамках ГОЭЛРО. В пятидесятые годы прогресс в энергетической области был связан с научными разработками в области атомной энергии и строительством атомных электростанций. В последующие годы происходило освоение гидропотенциала сибирских рек и ископаемых ресурсов Западной Сибири.
Страна обладает существенными запасами энергетических ископаемых и потенциалом возобновляемых источников, входит в десятку государств, наиболее обеспеченных энергоресурсами.
Крупнейшая в России тепловая электростанция — Сургутская ГРЭС-2 обеспечивает электроэнергией важнейший для России нефтегазовый промысел в Западной Сибири, сжигает ценное нефтехимическое сырьё и автомобильное топливо — Нефтяной газЗначение электроэнергетики в экономике России, так же как и её общественной жизни трудно переоценить — это основа всей современной жизни.
По важному показателю — выработке на одного жителя — в 2005 году страна находилась приблизительно на одном уровне с такими энергоимпортирующими государствами как Германия и Дания, имеющими меньшие транспортные потери и затраты на отопление. Однако после спада в 90-х с 1998 года потребление постоянно растёт, в частности в 2007 году выработка всеми станциями единой энергосистемы составила 997,3 млрд кВт·ч (1 082 млрд кВт·ч в 1990 году).
Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года.
АЭС за этот период нарастили производство на 3,3%, до 203 млрд кВт·ч. Тепловые станции снизили производство на 0,8% — до 700 млрд кВт·ч. Гидроэлектростанции увеличили выработку на 0,3%, до 187 млрд кВт·ч.[2]
В структуре потребления выделяется промышленность — 36 %, ТЭК — 18 %, жилой сектор — 15 % (несколько заместивший в 90-х провал потребления в промышленности), значительны потери в сетях, достигающие 11,5 %. По регионам структура резко отличается — от высокой доли ТЭК в западной Сибири и энергоёмкой промышленности в Сибирской системе, до высокой доли жилого сектора в густонаселённых регионах европейской части.
В 2003 году начат процесс реформирования «ЕЭС России». Основными вехами реформирования электроэнергетики стали завершение формирования новых субъектов рынка, переход к новым правилам функционирования оптового и розничных рынков электроэнергии, принятие решения об ускорении темпов либерализации, размещение на фондовом рынке акций генерирующих компаний. Осуществлена государственная регистрация семи оптовых генерирующих компаний (ОГК) и 14 территориальных генерирующих компаний (ТГК). В отдельную Федеральную сетевую компанию (ФСК ЕЭС), контролируемую государством, выделена основная часть магистральных и распределительных сетей.
Железнодорожный транспорт — крупный и особенно важный для хозяйства страны потребитель энергииКроме того действуют и более независимые или изолированные энергокомпании «Янтарьэнерго», «Якутскэнерго», «Дальневосточная энергетическая компания», «Татэнерго», «Башкирэнерго», «Иркутскэнерго» и «Новосибирскэнерго».
В 2008 году владельцем акций межрегиональных сетевых компаний по распределению энергетических ресурсов стал «Холдинг МРСК».
Крупными игроками российской электроэнергетики с конца 2007 года стали германская компания E.ON, теперь контролирующая один из крупнейших энергоактивов — ОГК-4, итальянская ENEL теперь ключевой акционер ОГК-5. С 2008 года финский концерн Fortum контролирует бывшую ТГК-10.
Техническое развитие классической электроэнергетики России связывается введением в энергосистему более эффективных и маневренных парогазовых установок в том числе и в составе теплоцентралей.
Государственная политика[править | править код]
В 2009 году в России вступил в силу федеральный закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», целью которого является стимулирование энергосбережения и повышения энерго-эффективности.[3]
Крым: Энергетика Крыма, Альтернативная энергетика Крыма
На 2016 год суммарная установленная мощность электрогенерации в РФ составляла 244,1 гигаватт (для сравнения в США 1072 ГВт, в Китае 1454 ГВт)
Основные источники по установленной мощности:
- Тепловые станции на горючих ископаемых: 160,2 ГВт (для сравнения в США 776 ГВт, в Китае 1054 ГВт)
- Гидроэнергетика: 48,1 ГВт (для сравнения в США 79 ГВт, в Китае 198 ГВт)
- Атомные станции: 27,9 ГВт (для сравнения в США 102 ГВт, в Китае 32 ГВт)
- Ветроэнергетика: 0,01 ГВт (для сравнения в США 59 ГВт, в Китае 128 ГВт)
- Солнцеэнергетика 0,08 ГВт (для сравнения в США 3 ГВт, в Китае 42 Гвт)
Производство электроэнергии в 2016 году составило 1064,1 ТВт*ч (для сравнения в США 4047 ТВт*ч., в Китае 5650 ТВт*ч).
По видам энергетики выработка:
- Тепловые станции: 628,0 ТВт*ч (для сравнения в США 2775 ТВт*ч., в Китае 4503 ТВ*ч)
- Гидроэнергетика: 186,7 ТВт*ч (для сравнения в США 276 ТВт*ч., в Китае 800 ТВ*ч)
- Атомные станции: 196,4 ТВт*ч (для сравнения в США 769 ТВт*ч., в Китае 123 ТВ*ч)
- Ветроэнергетика: 0,09 ТВт*ч (для сравнения в США 140 ТВт*ч., в Китае 186 ТВ*ч)
- Солнцеэнергетика: 0,16 ТВт*ч (для сравнения в США 4 ТВт*ч., в Китае 38 ТВ*ч)
год | Производство электро-энергии[6], млрд кВтч | Изменение относительно предыдущего года, млн кВтч | Изменение относительно предыдущего года, % | Общая мощность электростанций по данным ЕЭС России с 2009г (на начало года)[7][8], тыс. кВт | Изменение мощности относительно предыдущего года, тыс. кВт | Изменение мощности относительно предыдущего года, % | Технологически изолированные территориальные энергосистемы вне ЕЭС России, тыс. кВт[9][10] | Общая мощность электростанций (на начало года), тыс. кВт | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тепловые станции | Гидро- энергетика | Атомные станции | Ветро- энергетика | Солнце- энергетика | Всего | ||||||||
1990 | 1 082,2 | — | — | — | — | — | — | — | — | — | — | — | — |
1991 | 1 068,2 | -14 000 | -1.29 | 18 898 | — | — | — | — | |||||
1992 | 1 008,5 | -59 700 | -5.59 | 149 510 | 43 336 | 18 898 | 11 | — | — | — | — | 211 755 | |
1993 | 956,6 | -51 900 | -5.15 | 148 736 | 43 432 | 19 848 | 11 | — | — | — | — | 212 027 | |
1994 | 875,9 | -80 700 | -8.44 | 149 652 | 43 782 | 19 848 | 11 | — | — | — | — | 213 293 | |
1995 | 860,0 | -15 900 | -1.82 | 145 844 | 43 760 | 19 848 | 11 | — | — | — | — | 209 463 | |
1996 | 847,2 | -12 800 | -1.49 | 145 844 | 43 760 | 19 848 | 11 | — | — | — | — | 209 463 | |
1997 | 834,1 | -13 100 | -1.55 | 145 944 | 43 760 | 19 848 | 11 | — | — | — | — | 209 563 | |
1998 | 827,2 | -6 900 | -0.83 | 148 254 | 44 073 | 19 848 | 13 | — | — | — | — | 212 188 | |
1999 | 846,2 | +19 000 | +2.3 | 148 324 | 44 240 | 19 848 | 13 | — | — | — | — | 212 425 | |
2000 | 877,8 | +31 600 | +3.73 | 146 670 | 44 345 | 19 848 | 26 | — | — | — | — | 210 889 | |
2001 | 891,3 | +13 500 | +1.54 | 147 345 | 44 684 | 20 798 | 24 | — | — | — | — | 212 851 | |
2002 | 891 | -300 | -0.03 | 147 213 | 44 828 | 20 793 | 77 | — | — | — | — | 212 911 | |
2003 | 916 | +25 000 | +2.81 | 147 955 | 45 222 | 20 793 | 79 | — | — | — | — | 214 049 | |
2004 | 932 | +16 000 | +1.75 | 148 316 | 45 531 | 21 743 | 65 | — | — | — | — | 215 655 | |
2005 | 953,1 | +21 100 | +2.26 | 149 915 | 45 797 | 21 743 | 89 | — | — | — | — | 217 544 | |
2006 | 995,8 | +42 700 | +4.48 | 151 513 | 46 062 | 21 743 | 97 | — | — | — | — | 219 415 | |
2007 | 1 015,3 | +19 500 | +1.96 | 153 335 | 46 804 | 21 743 | 100 | — | — | — | — | 221 982 | |
2008 | 1 040,4 | +25 100 | +2.47 | 154 778 | 47 066 | 21 743 | 90 | — | — | — | — | 223 677 | |
2009 | 992 | -48 400 | -4.65 | 23 466 | 0 | 0 | 210 616,2 | — | — | ||||
2010 | 1 038 | +46 000 | +4.64 | 143 967,5 | 44 432,2 | 23 446 | 0 | 0 | 211 845,7 | +1 229,5 | +0,58 | ||
2011 | 1 054,8 | +16 800 | +1.62 | 146 071,0 | 44 531,6 | 24 266 | 0 | 0 | 214 868,6 | +3 022,9 | +1,43 | ||
2012 | 1 069,3 | +14 500 | +1.37 | 149 283,6 | 44 596,2 | 24 266 | 0 | 0 | 218 145,8 | +3 277,2 | +1,53 | ||
2013 | 1 045,016 | -24 284 | -2.27 | 151 827,96 | 45 976,87 | 25 266 | 0 | 0 | 223 070,83 | +4 925,03 | +2,26 | ||
2014 | 1 047,447 | +2 431,8 | +0,23 | 154 549,75 | 46 654,43 | 25 266 | 0 | 0 | 226 470,18 | +3 399,35 | +1,52 | ||
2015 | 1 049,905 | +2 457,6 | +0,23 | 158 403,42 | 47 712,39 | 26 336 | 0 | 0 | 232 451,81 | +5 981,63 | +2,64 | ||
2016 | 1 071,842 | +21 936,8 | +2,05 | 160 233,3 | 47 855,2 | 27 146 | 10,9 | 60,2 | 235 305,56 | +2 853,75 | +1,23 | 7 894.44 | 243 200 |
2017 | 1 073,724 | +1 882,2 | +0,18 | 160 242,2 | 48 085,93 | 27 929,4 | 10,9 | 75,2 | 236 343,63 | +1 038,07 | +0,44 | 7 802,7 | 244 146,4 |
2018 | 1 091,079 | +17 355,2 | +1,59 | 162 779,7 | 48 449,65 | 27 914,3 | 134,36 | 534,22 | 239 812,2 | +3 468,57 | +1,47 | 7 055,3 | 246 867,5 |
2019* | 417,2 | — | — | 164 586,6 | 48 506,3 | 29 132,2 | 183,9 | 834,2 | 243 243,19 | +3 430,99 | +1,43 |
.* Данные за 2019 год по 05.2019
Ядерная энергетика[править | править код]
Значительный энергообъект Урала и важнейшая технологическая площадка ядерной промышленности — Белоярская АЭСРоссия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии, обладает разведанными запасами руд, на 2006 год оцениваемыми в 615 тыс. т. урана, а также запасами в оружейном виде. Кроме того страна прорабатывает и промышленно применяет технологию реакторов на быстрых нейтронах, увеличивающую запасы топлива для классических реакторов в несколько раз.
Одна из крупнейших российских атомных электростанций — Балаковская АЭС — работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.
В 80-е годы было начато развитие и строительство атомных станций теплоснабжения (Горьковская, Воронежская АСТ) способных резко повысить эффективность ядерной энергетики, и по значению поднять до уровня газовой, однако в 90-х годах проекты были заморожены и де-факто отменены.
В современном виде возможности ядерной технологии и разведанные запасы значительно меньше потенциала запасов природного газа, и всё же высокое значение отрасль получила в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %. В целом же за 2018 год атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии — 204,3 млрд кВт·ч, что составило 18,7 % от общей выработки в Единой энергосистеме. Загрузка АЭС составляет чуть более 83% от их мощности — атомные станции работают в базовой части графика энергосистем.
Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение, добывает 93 % российского урана, обеспечивая 1/3 потребности в сырье.
В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт.
Последние реализованные проекты: Калининская АЭС (блоки №3 (2005), №4 (2012)), Ростовская АЭС (№2 (2010), №3 (2015), №4 (2018)), блок №4 Белоярской АЭС с реактором БН-800 (2016), блок №1 Нововоронежская АЭС-2 (2017), блок №1 Ленинградская АЭС-2(2018). Основные стройки: Нововоронежская АЭС-2, Ленинградская АЭС-2 и Курская АЭС-2.
Основным научным направлением является развитие технологии управляемого термоядерного синтеза. Россия участвует в проекте международного экспериментального термоядерного реактора.
Гидроэнергетика[править | править код]
Крупнейшая по выработке российская гидроэлектростанция — Братская ГЭС обеспечивает дешёвой электроэнергией алюминиевое производство и покрывает пиковый спрос в Сибирской энергосистемеСтрана обладает теоретическим потенциалом, оцениваемым до 2295 млрд кВт·ч/год, при этом из них 850 млрд кВт·ч/год экономически оправданы. Однако основная часть потенциала сконцентрирована в Сибири и на Дальнем Востоке — в значительном удалении от основных потребителей электроэнергии, а его реализация увязывается с промышленным развитием указанных регионов. Доставка мощности восточных ГЭС к европейским потребителям экономически нецелесообразна из-за высокой конкуренции со стороны газовой генерации[11]. Кроме удалённых от потребителей территорий менее значительным, и не до конца освоенным гидропотенциалом обладают высокогорные реки Кавказа, многоводные реки Урала и Кольского полуострова.
В 2007 году российскими гидроэлектростанциями выработано 177,7 млрд кВт·ч электроэнергии, что составило 17,8 % всей выработки. На 2010-е годы доля гидроэнергетики в выработке находится на уровне 18-19 %. Загрузка существующих ГЭС составляет 40% от их мощности — гидростанции работают преимущественно в пиковой части графика потребления, особенно в европейской части страны.
Крупнейшая компания оператор гидроэлектростанций — РусГидро владеет половиной гидрогенерирующих мощностей. Другие крупные гидрогенерирующие компании — ЕвроСибЭнерго и ТГК-1.
Последние введённые в строй крупные объекты гидроэнергетики: Бурейская (2007), Богучанская (2014), Гоцатлинская (2015), Нижнебурейская (2017) и Зеленчукская (2017) станции.
Перспективное развитие гидроэнергетики связывают с освоением сибирского потенциала, ведётся достройка Усть-Среднеканской ГЭС и Зарамагских ГЭС, в проектах Нижнезейские ГЭС, Нижнеангарские или Среднеенисейская ГЭС.
В европейской части страны производится существенное (соизмеримое со строительством новых станций) повышение рабочей мощности ГЭС Волжско-Камского каскада в результате модернизации оборудования. На севере с октября 2016 год ведётся достройка Белопорожской ГЭС[12].
Осваивается потенциал Северного Кавказа — в строительстве пиковые Зарамагские, в планах дальнейшее строительство Сулакского каскада, развитие Кубанского каскада, малой гидроэнергетики в Северной Осетии и Дагестане.
Особое значение имеет развитие выравнивающих мощностей в основных потребляющих регионах — ведётся строительство Загорской ГАЭС-2, в планах Ленинградская ГАЭС.
Огромным потенциалом обладают множественные российские морские и океанические заливы с высокими, достигающими высоты в 10 метров приливами. С 1968 года действует экспериментальная приливная электростанция — Кислогубская мощностью 1,7 МВт, планируется строительство опытной Северной ПЭС в 12 МВт. Существует проект мощной (11,4 ГВт) Мезенской ПЭС и Пенжинской ПЭС.
Энергетика — Википедия. Что такое Энергетика
Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]
Уголь/Торф (39,3 %)
Природный газ (22,9 %)
Гидро (16,0 %)
Ядерная (10,6 %)
Нефть (4,1 %)
Прочие (Возобн.) (7,1 %)
Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:
Электроэнергетика
Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.
Доля различных источников в мировом производстве электроэнергии[1] | Уголь | Природный газ | ГЭС | АЭС | Нефть | Прочие | Всего |
---|---|---|---|---|---|---|---|
1973 год | 38,3 % | 12,1 % | 20,9 % | 3,3 % | 24,8 % | 0,6 % | 6 131 ТВт*ч |
2015 год | 39,3 % | 22,9 % | 16,0 % | 10,6 % | 4,1 % | 7,1 % | 24 255 ТВт*ч |
Традиционная электроэнергетика
Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[4].
Тепловая энергетика
В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:
Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]
Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.
Гидроэнергетика
В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.
ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.
Ядерная энергетика
Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.
По доле АЭС в выработке электроэнергии первенствует Франция[8], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[9][10].
Нетрадиционная электроэнергетика
Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность[2]. Направления нетрадиционной энергетики[4]:
Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[11]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[12]), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[13].
Электрические сети
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[14]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.
Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[15].
Теплоснабжение
Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[16]. Такие условия могут быть реализованы в большинстве стран мира[17] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:
Централизованное теплоснабжение
Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:
Децентрализованное теплоснабжение
Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:
- Малые котельные;
- Электрическое, которое делится на:
- Печное.
Тепловые сети
Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.
От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[2].
Энергетическое топливо
Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.
Органическое топливо
В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %[18].Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %[19].
Газообразное
Естественным топливом является природный газ, искусственным:
Жидкое
Естественным топливом является нефть, искусственным называют продукты его перегонки:
Твёрдое
Естественным топливом являются:
Искусственным твёрдым топливом являются:
Ядерное топливо
В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:
Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[20], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[2][21].
Энергетические системы
Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[22].
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[23]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[24] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.
Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[15][25].
См. также
Примечания
- ↑ 1 2 2017 Key World Energy Statistics (PDF). http://www.iea.org/publications/freepublications/ 30. IEA (2017).
- ↑ 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
- ↑ То есть мощность одной установки (или энергоблока).
- ↑ 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
- ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
- ↑ Данные за 2011 год.
- ↑ World Energy Perspective Cost of Energy Technologies (англ.). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Проверено 29 июля 2015.
- ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
- ↑ В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
- ↑ 1 2 Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
- ↑ Эти понятия могут различно трактоваться.
- ↑ Данные за 2005 год
- ↑ А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
- ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
- ↑ 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
- ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
- ↑ В зависимости от климата в некоторых странах нет такой необходимости.
- ↑ https://web.archive.org/web/20110626032546/http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf
- ↑ Архивированная копия. Проверено 4 декабря 2014. Архивировано 15 декабря 2012 года.
- ↑ Диаметром около 9 мм и высотой 15—30 мм.
- ↑ Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
- ↑ Энергосистема — статья из Большой советской энциклопедии.
- ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
- ↑ Не более нескольких километров.
- ↑ Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.
Ссылки
Энергетика — это… Что такое Энергетика?
Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:
Электроэнергетика
Доля выработки электроэнергии в России: красный — ТЭС(68 %), синий — ГЭС(16 %), зелёный — АЭС(16 %).Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.
Традиционная электроэнергетика
Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[2]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[3].
Тепловая энергетика
В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:
Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39 % всей электроэнергии мира, на базе угля — 27 %, газа — 24 %, то есть всего 90 % от общей выработки всех электростанций мира[5]. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.
Гидроэнергетика
В этой отрасли электроэнергия производится на Гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.
ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков из них.
Ядерная энергетика
Отрасль, в которой электроэнергия производится на Атомных электростанциях (АЭС), использующих для этого энергию цепной ядерной реакции, чаще всего урана.
По доле АЭС в выработке электроэнергии первенствует Франция[6], около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[7][8].
Нетрадиционная электроэнергетика
Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство ( например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км² ) и малая единичная мощность[1]. Направления нетрадиционной энергетики[3]:
Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[9]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции ( среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[10] ), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[11].
Электрические сети
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[12]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.
Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[13].
Теплоснабжение
Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[14]. Такие условия могут быть реализованы в большинстве стран мира[15] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:
Централизованное теплоснабжение
Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:
Децентрализованное теплоснабжение
Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:
- Малыми котельными;
- Электрическое, которое делится на:
- Печное.
Тепловые сети
Тепловая сеть — это сложное инженерно—строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.
От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[1].
Энергетическое топливо
Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.
Органическое топливо
В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в балансе мировой энергетики составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000г.)В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%[16].Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%[17].
Газообразное
Естественным топливом является природный газ, искусственным:
Жидкое
Естественным топливом является нефть, искусственным называют продукты его перегонки:
Твёрдое
Естественным топливом являются:
Искусственным твёрдым топливом являются:
Ядерное топливо
Файл:KKG Reactor Core.jpgВ использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:
Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[18], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[1][19].
Энергетические системы
Энергетическая система (энергосистема) — в общем смысле cовокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[20].
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[21]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[22] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.
Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[13][23].
Примечания
- ↑ 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е.В. Аметистова том 1 под редакцией проф.А.Д.Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2
- ↑ То есть мощность одной установки (или энергоблока).
- ↑ 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
- ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
- ↑ Данные за 2000 год.
- ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
- ↑ В.А.Веников, Е.В.Путятин Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
- ↑ 1 2 Энергетика в россии и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
- ↑ Эти понятия могут различно трактоваться.
- ↑ Данные за 2005 год
- ↑ А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
- ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
- ↑ 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9
- ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
- ↑ В зависимости от климата в некоторых странах нет такой необходимости.
- ↑ [1]
- ↑ http://www.map.ren21.net/GSR/GSR2012.pdf
- ↑ Диаметром около 9 мм и высотой 15—30 мм.
- ↑ Т.Х.Маргулова Атомные электрические станции. — Москва: ИздАТ, 1994.
- ↑ Энергосистема — статья из Большой советской энциклопедии
- ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
- ↑ Не более нескольких километров.
- ↑ Под редакцией С.С.Рокотяна и И.М.Шапиро Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.
См. также
Энергетическая промышленность
Основные задачи промышленности
Промышленной комплекс государств является его надежной опорой и тылом, только промышленность способна развивать государственную структуру и общества, давая стране финансовые и инновационные возможности.
Промышленность представляет собой различные отрасли хозяйствования, которые составляют основы экономической системы, выступают рычагами и инструментами социальной политики.
Промышленность в странах зародилась уже достаточно давно, в самом начале становления власти. Ранее само слово «промышленность» не использовалось, оно могло быть заменено на «ремесло» или «дары государства» или иначе.
Во все времена промышленность решала определенные задачи государства. В современном мире этими задачами выступают следующие задачи.
Развитие инфраструктурных элементов промышленности. Промышленность на современном жизненном этапе не может работать эффективно без хорошо налаженной инфраструктуры, так как именно она обеспечивает компаниям быструю доставку, условия хранения, транспортировки и т.д. Эти важные компоненты на сегодняшний день играют не маловажную роль, так как ритм рынка становится быстрее и преимущество имеет тот промышленник, кто создаст наиболее Благоприятные условия для клиента;
Создание конкурентных преимуществ. Рыночная конкуренция растет каждый день, все больше новинок и инновационных предложений поступает ежегодно от различных государств на мировую арену. Тем государствам, что обладают слабыми финансовыми возможностями трудно бороться с высокими темпами конкуренции, однако, необходимо постоянно искать пути развития;
Внедрение интеллектуальной деятельности в промышленность и производственные процессы. Уникальные интеллектуальные проекты способны развивать промышленный комплекс стран даже без серьезных финансовых вливаний, необходимо использовать это преимущество для установления высоких конкурентных преимуществ;
Повышение производительности промышленных предприятий. В данной задаче необходимо уделить особое внимание таким ресурсам промышленности как трудовые, материальные, прогрессивные, технологичные, интеллектуальные, инновационные и т.д. их правильное и грамотное распределение и использование позволит наладить процессы производства и повысить эффективность производственных процессов;
Внедрение программ поддержки экспорта в стране. Экспортируемые товары промышленности нуждаются в особой, специальной поддержке от государства. Это мероприятие позволит увеличить экспорт товара из страны, тем самым восстановит баланс ввозимого и вывозимого товара, а также всю экономическую систему страны.
Замечание 1
Данные основные задачи промышленности позволяют государству развивать весь промышленный комплекс, а значит и экономику государства, делая ее более сильной и независимой.
Структура промышленности
Структура промышленности всех государств различная, однако, выделяют несколько промышленностей, которые схожи в большинстве государств мира:
- Промышленность в области переработки лесных ресурсов. Лесными запасами обладают далеко не все государства, а тем более в качестве ресурса на экспорт. Россия считается одним из крупнейших экспортеров леса по всему миру;
- Промышленность в области машиностроения. Данная промышленность должна располагать высококлассными специалистами в области машиностроения, инновационными технологиями и т.д. Россия занимает далеко не лидирующие позиции в этой сфере промышленности, хотя данная отрасль в последнее время активно развивается;
- Легкая промышленность. В структуру легкой промышленности входят товары, которые производятся из того сырья и материалов, которыми более всего располагает страна. В России легкая промышленность есть, также она поступает на экспорт, но не является приоритетной;
- Промышленность в области сельскохозяйственного производства. Россия на сегодняшний день не занимает лидирующих позиций в данной отрасли, наоборот, это сфера хозяйствования стала слабо популярной со времен Советского Союза;
- Промышленность в области безопасности и обороны страны. Надо заметить, что Россия, одна из немногих стран, которая обладает высоким уровнем развития оборонной промышленности, также наша страна экспортирует многие образцы за границу, зарабатывая на этом большие деньги;
- Промышленность в области химии. Химическая промышленность изготавливает лекарственные средства, различные медицинские материалы и продукцию, а также краски, химические составы и т.д. Россия не обладает высоким потенциалом в этой отрасли.
Энергетическая промышленность
Определение 1
Энергетическая промышленность – это промышленность в сфере переработки, использования, выработки энергетических ресурсов для создания определенного вида энергии.
Замечание 2
Энергетическая промышленность является источником почти всей промышленности в разных странах, так как на основании энергоресурсов строится весь промышленный комплекс, а точнее энергетические ресурсы являются частью или элементом производства.
Энергетическая промышленность является самой актуальной, а ее совершенствование становится базой для большинства производственных отраслей рынка.
В деятельность энергетической промышленности входит:
- Непосредственная добыча энергетических ресурсов, а также их обработка или переработка. Такие процессы очень дорогостоящие, они требуют большого опыта, навыков и знаний;
- Процесс транспортировки энергетических ресурсов до мест их переработки и обработки;
- Строительство, установка и обслуживание электростанцией и энергетических установок;
- Весь цикл, включающий доставку энергетических ресурсов в конечном виде до потребителей;
- Формирование политики по совершенствованию обслуживания энергетических комплексов.
Таким образом, энергетическая промышленность является одной их доминирующих отраслей промышленности, она способна дать развитие всем отраслям хозяйствования, а также является неотъемлемой частью всего промышленного комплекса любого государства.
Электроэнергетика
Электроэнергетика является ключевой мировой отраслью, которая определяет технологическое развитие человечества в глобальном смысле этого слова. Данная отрасль включает в себя не только весь спектр и разнообразие методов производства (генерации) электроэнергии, но и ее транспортировку конечному потребителю в лице промышленности о всего общества в целом. Развитие электроэнергетики, ее совершенство и оптимизация, призванная удовлетворить постоянно растущий спрос на электроэнергию – это ключевая общая мировая задача современности и дальнейшего обозримого будущего.
Развитие электроэнергетики
Несмотря на то, что электричество, как некий энергетический ресурс, было известно человечеству сравнительно давно, перед его бурным стартом развития стояла серьезная проблема – отсутствие возможности передачи электричества на большие расстояния. Именно эта проблема сдерживала развитие электроэнергетики до конца восемнадцатого века. Основываясь на открытии эффективного способа электропередачи, начали развиваться и технологии, основой которых стал электрический ток. Телеграф, электромоторы, принцип электрического освещения – все это стало настоящим прорывом, который повлек за собой не только изобретение и постоянное совершенствование механических электровырабатывающих машин (генераторов), но и целых электростанций.
Одной из самых значимых вех в развитии электроэнергетики можно назвать гидроэлектростанции (ГЭС), функционирование которых основано на так называемых возобновляемых источниках энергии, которые имеют вид заранее подготовленных водных масс. На сегодняшний день данный тип электростанций является одним из самых эффективных и проверенных десятилетиями.
Отечественная история становления и развития электроэнергетики наполнена уникальными свершениями и ярчайшим контрастом дореволюционного и послереволюционного периода. И если первый из двух периодов обусловлен ничтожным объемом электрогенерации и практически полным отсутствием развития электроэнергетики как глобальной промышленной отрасли, то второй период – это настоящий и неоспоримый технологический рывок, обеспечивший в самые кротчайшие временные сроки повсеместную электрификацию, которая коснулась и множества советских фабрик и заводов, и каждого советского гражданина. Повсеместная тотальная электрификация нашей страны позволила догнать и во многих отраслях существенно перегнать в развитии технологий многие зарубежные страны, сформировав тем самым на середину двадцатого века непревзойденный промышленный потенциал. Разумеется, за рубежом электроэнергетика так же стремительно развивалась, но по своей массовости и доступности так и не сумела превзойти уровень Советского Союза.
Отрасли промышленности электроэнергетики
На сегодняшний день, электроэнергетику можно разделить на три фундаментальных технологических ветви, каждая из которых осуществляет электрогенерацию своим, уникальным способом.
Атомная энергетика
Высокотехнологичная и самая перспективная ветвь электроэнергетики, в основу которой положен процесс деления ядер атомов в специально приспособленных для этого реакторах. Тепловая энергия, образуемая при ядерном делении преобразуется в электричество.
Тепловая энергетика
Основой данной энергетики является то или иное топливо (Газ, уголь, определенные типы нефтепродуктов), которое, сгорая, трансформируется в электроэнергию.
Гидроэнергетика
Ключевым аспектом электрогенерации в данном типе энергетики является вода, которая определенным образом запасается в реках и водоемах (водохранилищах). Запасенные водные массы проходят через электрогенерирующие турбины, вырабатывая тем самым существенное количество электроэнергии.
Альтернативная энергетика
В дополнение к этому можно отметить и так называемую альтернативную энергетику, которая, в большей части, основывается на экологически чистых ресурсах. К таким ресурсам можно отнести солнечных свет, силу ветра и геотермальные источники. Однако, альтернативная энергетика — это, прежде всего, смелый эксперимент, нежели полноценная электроэнергетическая отрасль, не обладающая требуемой эффективностью.
Электроэнергетика в России
Россия — это один из гигантов электрогенерации и передовая держава в области электроэнергетики. Передовые технологии, богатые природные ресурсы, множество быстрых полноводных рек позволили разработать и ввести в эксплуатацию современные высокоэффективных атомные электростанции и гидроэлектростанции. Постоянная разработка и совершенствование технологий привело к образованию одной из крупнейших мировых энергосетей, включающей в себя колоссальное количество вырабатываемого и потребляемого электрического тока.
Электроэнергетическая отрасль России поделена на несколько крупных энергокомпания, которые, как правило, функционируют по территориальному признаку и отвечают за свою, строго определенную долю отрасли. Основные генерационные мощности страны заключены в атомных и гидроэлектростанциях, где последние обеспечивают порядка 18-20% электроэнергии в год.
Важно отметить, что постоянно производится модернизация имеющихся и ввод в эксплуатацию новых электрогенерационных станций. На сегодняшний день, общий объем вырабатываемой электроэнергии полностью покрывает все нужны промышленности и общества, позволяя стабильно наращивать энергоэкспорт в соседние государства.
Электроэнергетика стран мира
(Электростанция в США)
Любое крупное государство с развитым промышленным сектором всегда будет являться очень крупным производителем и потребителем электроэнергии. Следовательно, электроэнергетика в любом из подобных государств — это стратегически важная промышленная отрасль, которая постоянно нуждается в развитии. К странам с развитой электроэнергетикой можно отнести: Россию, США, Германию, Францию, Японию, Китай, Индию и некоторые другие страны, где или прослеживается стабильно высокий уровень экономики и промышленного потенциала, или присутствует активных экономический рост.