Емкость аккумулятора при последовательном соединении: Последовательное и параллельное соединение аккумуляторных батарей

Содержание

Три схемы соединения аккумуляторных батарей для электропитания

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений.

Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников.

Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:

Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

Последовательное и параллельное соединение аккумулятров

Категория: Поддержка по аккумуляторным батареям
Опубликовано 10.04.2016 14:30
Автор: Abramova Olesya


Электрические батареи могут достигать необходимого рабочего напряжения путем последовательного подсоединения нескольких элементов — каждый элемент добавляет свой показатель напряжения к общему напряжению всей системы. Параллельное же соединение обеспечит более высокий показатель емкости и силы тока — суммарная емкость такой системы будет равна сумме емкостей всех подключенных элементов, сила тока также будет равняться сумме значений всех элементов.

Некоторые системы могут состоять из нескольких параллельных или последовательных соединений.

Аккумуляторы для портативных компьютеров обычно состоят из четырех 3,6 В литий-ионных элементов, соединенных последовательно для обеспечения напряжения 14,4 В и двух соединенных параллельно для увеличения емкости от 2400 мАч до 4800 мАч. Такая конфигурация называется 4S2P, что соответственно и расшифровывается как 4 Serial 2 Parallel (что в переводе с английского — 4 последовательных и 2 параллельных соединения). Между такими элементами в аккумуляторе обязательно присутствует изоляционный материал, во избежание короткого замыкания.

Элементы большинства электрохимических систем способны к последовательному и параллельному соединению. Важно использовать элементы одного типа, с одинаковым напряжением и емкостью, и никогда не формировать соединение из элементов разных марок и размеров, так как более слабый элемент вызовет дисбаланс всей системы. Это особенно важно при последовательном соединении, так как вся система будет зависеть от самого слабого элемента. В этом случае уместна аналогия с цепью, где слабое звено нивелирует прочность всей цепи (рисунок 1).

Рисунок 1: Сравнение последовательного соединения электрических батарей с цепью. Каждое звено этой цепи можно сравнить с электрохимическим элементом питания в последовательно соединенной системе, слабость звена или элемента приведет к коллапсу всей системы.

Слабый элемент может выявиться не сразу, при щадящих режимах работы нагрузка на него не велика, однако при возрастании нагрузки он исчерпывает свой ресурс очень быстро. При зарядке такой элемент полностью заряжается быстрее других, следовательно, остальное время на него действует излишняя зарядка, что приводит к вредному перезаряду. При разряде же он выходит из строя первым, заставляя остальные элементы питать нагрузку, уже превышающую номинал всей системы. Элементы в аккумуляторных системах обязательно должны иметь одинаковые характеристики, особенно в условиях высоких нагрузок.

Система из одного электрохимического элемента питания является простейшим примером электрической батареи. Такая система не требует предварительного согласования, а защитная схема, в случае если это литий-ионная технология, крайне проста. Типичными примерами таких систем являются 3,60 В литий-ионные аккумуляторы для мобильных телефонов и планшетов. Другим примером использования одноэлементных батарей являются настенные часы, где чаще всего используется 1,5 В щелочная батарейка.

Номинальное напряжение элемента на основе никеля составляет 1,2 В, щелочной — 1,5 В, серебряно-оксидной — 1,6 В, а свинцово-кислотной — 2,0 В. Первичные литиевые элементы обеспечивают напряжение в диапазоне от 3,0 до 3,9 В, в их числе литий-ионные — 3,6 В, литий-фосфатные — 3,2 В, литий-титанатные — 2,4 В.

Литий-марганцевая и другие электрохимические системы на основе лития часто могут обеспечить напряжение элемента на уровне 3,7 В и выше. Это связано не столько с электрохимическими аспектами, сколько является следствием оптимизации под более высокий показатель количества ватт-часов путем уменьшения внутреннего сопротивления элемента. Но в основном, элементы этой электрохимической системы производятся со стандартным показателем напряжения в 3,6 В.

Портативное оборудование, требующее высоких значений напряжения, использует в качестве источника питания два или больше электрических элемента, соединенных последовательно. На рисунке 2 показан батарейный блок из четырех 1,2 В никелевых элементов, соединенных последовательно. Такой блок создан для получения напряжения 4,8 В и известен как 4S. Для сравнения, свинцово-кислотный аккумулятор с шестью 2 В элементами (“банками”) будет генерировать 12 В, а четыре 3,6 В литий-ионных элемента дадут 14,4 В. (BU-303: Номинальное напряжение аккумулятора)

Рисунок 2: Последовательное соединение четырех элементов (4S). Последовательное присоединение элемента увеличит напряжение, сила тока останется неизменной.

Если вам нужно особое значение напряжения, например, 9,5 вольт, последовательно подключите пять свинцово-кислотных, восемь никель-металл-гидридных или никель-кадмиевых, или три литий-ионных элемента. Конечное напряжение батарейного блока может быть немного большим, чем номинальное устройства, приложение 12 В вместо 9,5 В позволит его эксплуатировать. Большинство устройств, рассчитанных на питание электрическими батареями, могут выдерживать некоторое превышение номинального напряжения, но не следует этим злоупотреблять, слишком большое превышение напряжения может повредить устройство.

Использование электрической батареи с высоким напряжением позволяет уменьшить потери и увеличить КПД. Беспроводные инструменты работают на 12 В и 18 В аккумуляторах, более высококлассные используют даже 24 В и 36 В. Большинство электровелосипедов комплектуются 36 В литий-ионным аккумулятором, некоторые даже идут с 48 В. Существуют инициативы в автомобильной промышленности по поводу увеличения напряжения стартерного аккумулятора с 12 В (14В) до 36 В (42 В), путем размещения в аккумуляторе 18 свинцово-кислотных элементов (“банок”). Но этой инициативе препятствует необходимость изменения свойств электрических компонентов в автомобиле и повышенный риск возникновения искр в механических переключателях.

Некоторые гибридные автомобили работают на 48 В литий-ионном аккумуляторе и в дополнение к этому используют преобразователь напряжения для получения стандартных 12 вольт для электрической системы автомобиля. Также возможен вариант с отдельной установкой стандартного стартерного аккумулятора для запуска двигателя внутреннего сгорания. Первые гибридные автомобили использовали 148 В аккумуляторы, электромобили имеют аккумуляторную систему напряжением 450-500 В. Такая система состоит из более чем 100 литий-ионных элементов, соединенных последовательно.

Аккумуляторные системы высокого напряжения требуют тщательного согласования элементов, особенно при подключении к сильной нагрузке или при работе в низкотемпературных условиях. Так как в таких последовательно соединенных системах выход из строя всего лишь одного элемента приводит к коллапсу всей системы, существуют специальная система защиты, которая выявляет неисправный элемент и позволяет “обходить” его. Такой метод конечно же уменьшает общее напряжение системы, но как временное решение весьма практичен, и главное позволяет всей системе сохранить работоспособность.

Согласование элементов становится проблемой при необходимости замены неисправного элемента в устаревшей аккумуляторной системе. Более современные элементы, как правило, имеют более высокую емкость, в результате чего в такой системе может возникнуть дисбаланс. Сварная конструкция аккумуляторной системы также усложняет ремонт, и в связи с этим чаще всего вся аккумуляторная система меняется полностью.

В электромобилях, где цена аккумуляторной системы составляет весомую часть от стоимости всего транспортного средства, полная замена этой системы видится абсурдной. Поэтому производители делят аккумуляторную систему на модули, каждый из которых состоит из определенного числа элементов. И если такой элемент выйдет из строя, замена будет необходима не всей системе, а определенному модулю. Возникновение трудностей возможно в случае, если доступны только новые модули, укомплектованные более современными элементами. (Смотрите: Как восстановить аккумуляторную систему).

На рисунке 3 показан батарейный блок, в котором элемент-3 производит только 0,6 В вместо 1,20 В. С пониженным общим напряжением этот батарейный блок разрядится раньше обычного. Напряжение будет проседать, и в конце концов питаемое устройство отключится.

Рисунок 3: Последовательное соединение с неисправным элементом. Неисправный элемент-3 понижает общее напряжение и приводит к преждевременному прекращению работы подключенного устройства.

Аккумуляторные системы в беспилотных летательных аппаратах или других устройствах, требующих высокие токи нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в системе является слабым. Пиковые нагрузки увеличивают стресс на аккумуляторную систему, вызывая коллапс еще быстрее. Измерение напряжения сразу после зарядки не поможет для идентификации слабого элемента — его напряжение без нагрузки будет относительно нормальным; для решения этой проблемы существуют специальные анализаторы электрических батарей.

Если для устройства требуется высокое значение силы тока и удовлетворить это требование одним элементом невозможно, следует использовать параллельное соединение элементов. Большинство электрохимических систем позволяют использование параллельной конфигурации подсоединения, но с некоторыми побочными эффектами. На рисунке 4 показаны четыре параллельно соединенных элемента, такая конфигурация еще называется 4P (4 Parallel). Напряжение этой системы остается 1,20 В, но сила тока и емкость увеличены в четыре раза.

Рисунок 4: Параллельное соединение четырех электрических элементов. Благодаря параллельной конфигурации подсоединения сила тока и емкость увеличиваются, напряжение же остается неизменным.

Выход из строя единичного элемента при параллельном соединении не столь критично, как при последовательном. Такая проблема конечно уменьшит нагрузочные характеристики всей системы, но хотя бы не выведет ее из строя. Можно провести аналогию с цилиндрами двигателя внутреннего сгорания — автомобиль сможет ехать и на трех цилиндрах, даже если у него их всего четыре. С другой стороны, при наличии неисправного элемента в параллельных системах существует больший риск возникновения короткого замыкания, так как такой элемент как бы высасывает энергию из других, в результате чего возрастает риск возгорания. Большинство таких коротких замыканий довольно умеренны и проявляются в виде повышенного саморазряда.

Причиной короткого замыкания может быть поляризация или возникновение дендритов в элементе. Большие аккумуляторные системы часто снабжены предохранителем, который отключает неисправный элемент из параллельной цепи, если он был закорочен. На рисунке 5 показана параллельная конфигурация с одним неисправным элементом.

Рисунок 5: Параллельное соединение с одним неисправным элементом. Слабый элемент не повлияет на напряжение всей системы, но уменьшит общее время работы за счет уменьшения емкости системы. Закороченный элемент может вызвать перегрев и стать причиной возникновения пожара.

Последовательно-параллельная конфигурация подсоединения элементов, показанная на рисунке 6, предоставляет большую гибкость конструкции, с ее помощью можно создать систему с желаемыми значениями напряжения и тока, используя стандартные элементы. Суммарная мощность будет произведением значений напряжения и силы тока, например, четыре 1,2 В элемента емкостью 1000 мАч производят 4,8 Вт мощности. Четыре элемента типоразмера 18650 емкостью 3000 мАч каждый могут быть соединены последовательно-параллельно для достижения 7,2 В и 12 Вт. Использование тонких элементов позволит сконструировать гибкую аккумуляторную систему, но ей будет необходима система защиты.

Рисунок 6: Последовательно-параллельное соединение четырех элементов (2S2P). Такая конфигурация обеспечивает максимальную гибкость конструкции. Параллельные элементы помогают в управлении напряжением.

Литий-ионные элементы отлично подходят для последовательно-параллельных конфигураций, но необходим мониторинг каждого элемента — для соответствия значений напряжения и силы тока. Такой мониторинг реализуется аппаратно — путем создания электронного устройства, стандартный образец которого может контролировать систему из 13 литий-ионных элементов. Для больших аккумуляторных систем создаются специальные схемы, например, как в электромобиле Tesla, где аккумуляторная система состоит из 7000 элементов типоразмера 18650, суммарная мощность которых достигает 90 кВт/ч.

5. Рекомендации по использованию первичных батарей

  • Держите контакты элементов в чистоте. Конфигурация с четырьмя элементами имеет восемь контактов и каждый добавляет сопротивление.

  • Никогда не смешивайте разнотипные элементы, если вышел из строя один, и ему нет аналогичной замены, то необходимо заменить все. Общая производительность настолько хороша, насколько этому соответствует самый слабый элемент.

  • Соблюдайте полярность. Неправильно размещенный элемент уменьшает общее напряжение системы.

  • Для предотвращения утечки электролита и коррозии, извлекайте элементы из устройства, когда оно не используется. Особенно это касается угольно-цинковых элементов.

  • Не храните электрические батареи в металлических коробках. Элементы следует по отдельности помещать в полиэтиленовые пакеты, во избежание короткого замыкания. Не стоит носить батареи в карманах.

  • Держите батареи подальше от детей. Помимо риска попадания в дыхательные пути, что может вызвать удушение, ток электрохимической батареи при попадании в желудочно-кишечный тракт может вызвать язву, а при разрыве оболочки — отравление. (Смотрите: Влияние электрохимических батарей на здоровье человека).

  • Не заряжайте первичные (неперезаряжаемые) электрические батареи, так как накопление водорода может привести к взрыву. Экспериментировать с зарядкой можно лишь контролируя этот процесс.

6. Рекомендации по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичных элементов. Несоблюдение может привести к короткому замыканию.

  • Извлекайте полностью заряженные элементы из зарядного устройства. Обычное зарядное устройство не имеет встроенной системы индикации заряда, следовательно, аккумулятор может перегреться.

  • Производите зарядку при комнатной температуре.

Последнее обновление 2016-02-29

Фотоэлектрические системы

У любого аккумулятора выделяют следующие основные характеристики:

  • Номинальное напряжение (В ― Вольт)
  • Емкость (Ач – Ампер*час)
  • Максимальное количество запасенной энергии = Номинальное напряжение умноженное на Емкость (кВт*ч – киловатт*час)

Существует три возможных варианта соединения аккумуляторов между собой – последовательно, параллельно или последовательно-параллельно.   В зависимости от схемы соединения аккумуляторов в Банк Аккумуляторов может меняться Номинальное напряжение или Емкость системы, при этом максимальное количество запасенной энергии всех аккумуляторов останется неизменным.

Рассмотрим каждый из возможных вариантов соединения аккумуляторов в Банк Аккумуляторов:

1)  Последовательное соединение аккумуляторов

При таком соединении минусовая клемма первого аккумулятора соединяется с плюсом второго, минус второго с плюсом третьего и так далее.

В случае такого соединения Емкость системы остается неизменной, но напряжение системы является суммой всех соединенных последовательно аккумуляторов.

Например:

Имеем 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их последовательно, мы получим номинальное напряжение равное 12В*4=48В и емкость равную 200Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 200Ач*48В=9600Вт*ч=9,6кВт*ч.

Такая схема включения используется для поднятия напряжения системы.

 

2) Параллельное соединение аккумуляторов

При таком соединении плюсовые клеммы аккумуляторов поочередно соединяются между собой. Минусовые клеммы также соединяются поочередно между собой.

В случае такого соединения напряжение системы остается неизменным, при этом емкость Банка Аккумуляторов является суммой всех соединенных параллельное аккумуляторов.

Например:

Имеем те же 4 аккумулятора емкостью 200Ач и номинальным напряжением 12В. Подключив их параллельно, мы получим номинальное напряжение равное 12В, а емкость при этом будет равна 4*200Ач=800Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 800Ач*12В=9600Вт*ч=9,6кВт*ч.

 Такая схема включения используется для увеличения емкости (тока заряда) системы.

3) Последовательно-параллельное соединение аккумуляторов

Такое соединение является самым востребованным при сборке Банков Аккумуляторов для различных целей.

При таком соединении цепочки последовательно соединенных аккумуляторов соединяются параллельно.

Например:

Снова обратимся к нашим 4 аккумуляторам емкостью 200 Ач и номинальным напряжением 12В. Соединив по 2 аккумулятора последовательно и затем объединим их параллельно, мы получим номинальное напряжение равное 12В*2=24В и емкость равную 200Ач*2=400Ач. При этом максимальное количество запасенной энергии определяется как сумма максимального запаса энергии всех аккумуляторов – 200Ач*12В*4=9600Вт*ч=9,6кВт*ч, или, что то же самое, как максимальный запас энергии всего банка аккумуляторов – 400Ач*24В=9600Вт*ч=9,6кВт*ч.

 

Примечание: обратите внимание, что максимальное количество запасенной энергии ― не зависит от схемы соединения аккумуляторов! 

Различные схемы подключения аккумуляторов нужны для оптимизации работы комплекса оборудования используемого вместе с аккумуляторами. Выбирая различные схемы соединения, мы устанавливаем необходимые токи и напряжения для всей системы.

Последовательное и параллельное соединение аккумуляторов

Автор Aluarius На чтение 8 мин. Просмотров 5k. Опубликовано

В этой статье мы расскажем, как правильно соединять аккумуляторы, объясним, чем отличаются разные типы соединений, и зачем вообще все это нужно.

Для чего соединять несколько аккумуляторов

Основные причины, по которым аккумуляторы объединяют в сборки, можно свести к следующим:

  1. Уменьшить омические потери (или потери тепла при передаче электроэнергии) путем увеличения сопротивления системы. Сила тока и сопротивление обратно пропорциональны друг другу, а чем слабее ток, тем меньше потери.
  2. Собрать батарею, подходящую для питания приборов с более высокими диапазонами напряжений.
  3. Увеличить емкость аккумулятора.
  4. Увеличить и мощность, и напряжение.

Одним словом, создают АКБ, которая подходит под конкретные нужды. Проще и удобнее комбинировать имеющиеся под рукой аккумуляторы, чем покупать десятки различных батарей. А в некоторых случаях это банально дешевле.

СПРАВКА. Электроэнергия, которая накапливается в АКБ, складывается из энергий составляющих элементов. Поэтому и при последовательном, и при параллельном, и при комбинированном соединении она будет одинаковой, если используются одни и те же элементы в одном и том же количестве.

Какие виды соединения существуют

Чаще всего используется последовательное и параллельное соединение аккумуляторов. Есть еще третий вид, комбинированный, или последовательно-параллельный.

Можно ли соединять АКБ разной емкости

Последовательно – нет. Дело в том, что от емкости зависит внутреннее сопротивление. Чем больше емкость, тем ниже сопротивление. В сборке образуется большая разница напряжения, и где-то оно может оказаться сильно выше предела, а где-то – намного ниже. При подключении зарядного устройства аккумулятор с меньшей емкостью зарядится быстрее и на нем будет избыток напряжения, что приведет к порче и потере емкости, в то время как аккумуляторы с большей емкостью так и не зарядятся до конца.

При подключении нагрузки произойдет обратная ситуация: маленький аккумулятор разрядится ниже допустимой границы (так называемый глубокий разряд), в результате потеряв часть своей емкости.

ВАЖНО! Нельзя соединять последовательно аккумуляторы разной емкости, разного типа, разной степени зарядки. Они должны быть максимально похожи, лучше – из одной партии.

На вопрос о том, можно ли параллельно соединять аккумуляторы разной емкости, ответ – да. Но осторожно. Убедитесь, что напряжение на их клеммах равно. Если оно будет сильно отличаться, это может вызвать короткое замыкание либо порчу меньшего аккумулятора. Еще стоит учитывать, что клеммы конкретного аккумулятора могут не выдержать слишком сильный ток в течение длительного времени. Смотрите технические характеристики перед сборкой.

Особенности последовательного соединения АКБ

Последовательное соединение АКБ – задача не такая уж сложная. К плюсу электрической схемы подсоединяем плюс первой батареи, к минусу первой батареи подключаем плюс второй, и так далее. Минус последней подключается к минусу электросхемы. Перед тем как последовательно соединить аккумуляторы, убедитесь в том, что они одинаковы по параметрам.

Формулы (U – напряжение, I – ток, C – емкость, E – электрическая энергия):

Uобщ = U1 + U2 + U3 + Ui

Iобщ = I1 = I2 = I3 = Ii

C = const

Eобщ = ∑ Ei

Схема

Схема последовательного соединения аккумуляторов

 

Емкость системы

Емкость АКБ при последовательном соединении будет равна емкости одного элемента, а напряжение элементов будет суммироваться. Например, на схеме показано, как подключить аккумуляторы последовательно. В таком случае напряжение батареи вырастет в 4 раза (12*4 = 48 В), а емкость останется равной 200 Ач.

Для чего используется

Разные устройства имеют различные диапазоны напряжений. В то же время, рабочее напряжение электроаккумуляторов варьируется от 0,5 до 48 В. Если нужен автономный источник энергии для приборов, электроприводной техники, стартеров автомобилей, для него создается повышенное рабочее напряжение. Делается это как раз с помощью последовательного соединения аккумуляторных батарей.

Самый простой пример такого соединения – карманный фанарик. Чем ниже напряжение в фонарике, тем более тускло горит лампочка. А наиболее часто такая система используется в автомобильных свинцово-кислотных АКБ. Отдельные элементы в них называются банками и объединены в общем корпусе свинцовыми шинами. В беспроводных инструментах и электровелосипедах используются литий-ионные аккумуляторы.

Особенности параллельного соединения АКБ

Как соединить два аккумулятора параллельно: плюс каждого элемента подсоединяют к плюсу последующего, а минус – к минусу.

Формулы (U – напряжение, I – ток, C – емкость, E – электрическая энергия):

Uобщ = U1 = U2 = U3 = Ui

Iобщ = I1 + I2 + I3 + Ii

C = const

Eобщ = ∑ Ei

Схема

Схема параллельного соединения аккумуляторов

 

Емкость системы

Параллельное подключение аккумуляторов позволяет увеличить емкость системы, не увеличивая напряжение. Например, при параллельном соединении трех идентичных аккумуляторов со схемы выше, напряжение батареи будет равно 12 В, а емкость увеличится до 600 Ач (200 Ач * 3).

Для чего используется

Чаще всего параллельное подключение АКБ используется в источниках аварийного или бесперебойного питания. Параллельное соединение аккумуляторов позволяет увеличить мощность, поэтому применяется также в тяжелой спецтехнике и в двигателях большегрузных автомобилей. Такой тип соединения распространен и на флоте: он обеспечивает работу аварийных систем связи и жизнеобеспечения, освещения и вспомогательных дизелей.

Особенности последовательно-параллельного соединения АКБ

При таком подходе последовательное подключение аккумуляторов проводят одновременно с параллельным. Существует два возможных варианта:

  1. Сперва подготавливается требуемое напряжение путем последовательного подключения АКБ. Затем из нескольких таких сборок составляется система с необходимой электрической емкостью.
  2. Сперва соединяют аккумуляторы параллельно для увеличения емкости, затем увеличивают напряжение, соединяя сборки последовательно.

Схема

Схема последовательного и паралельного соединения аккумуляторов

 

Емкость системы

В данном случае увеличивается и емкость, и напряжение. В примере на схеме подключили сперва по два аккумулятора последовательно, получив две сборки с емкостью 200 Ач и напряжением 24 В, а затем объединили готовые сборки параллельно. Таким образом, напряжение осталось 24 В, а емкость увеличилась до 400 Ач.

Для чего используется

Чаще всего используется для питания машин с электрическим приводом. Если говорить о литиевом аккумуляторе, то из них составляют акб для портативных компьютеров. 4 последовательных элемента по 3,6 В обеспечивают напряжение 14,4 В, а два параллельных – емкость 4800 мАч.

ВАЖНО! Правильно подбирайте провода для соединения аккумуляторов. Помните, что при увеличении емкости увеличивается и ток. Лучше использовать самозатухающие или негорючие провода.

Техника безопасности

  • используйте диэлектрические перчатки;
  • не прикасайтесь к клеммам голыми руками;
  • аккумуляторы должны быть отключены от нагрузок;
  • пользуйтесь инструментами с изолированными рукоятками;
  • проверьте клеммы и соединительные контакты перед подключением;
  • не используйте аккумуляторы с разными параметрами и степенью износа;
  • будьте внимательны с полярностью;
  • используйте подходящие провода для соединения;
  • изолируйте сборку от влаги

ВНИМАНИЕ! Главное – обезопасить себя от удара током.

Ошибки коммутации и их последствия

Ошибки коммутации можно разделить на ошибки самого соединения (перепутали плюс и минус) и на неправильный выбор аккумуляторов и соединяющих проводов.

Если вы перепутаете клеммы, возможно следующее:

  • замыкание;
  • воспламенение;
  • оплавка проводов;
  • порча АКБ (падение мощности).

Помните, что при увеличении мощности потребуются соединяющие провода с подходящим сечением. Перед коммутацией понадобится тщательный расчет всех параметров. Про аккумуляторы мы уже писали выше; если вы соедините неподходящие акб, вы их испортите.

Проверка работоспособности системы

В первую очередь убедитесь, что аккумуляторы целые, без трещин, без ржавчины и следов окислов. Провода на клеммах должны быть хорошо закреплены. Если внешне все в порядке, можно проверить напряжение и силу тока.

  1. Проверка падения напряжения при подключении нагрузки.
    К системе подключается нагрузка определенной величины и измеряется падение напряжения мультиметром или вольтметром. Можно провести проверку несколько раз, делая паузы между измерениями, чтобы дать заряду восстановиться. Полученные данные нужно сравнить с параметрами используемого типа батареи с учетом величины нагрузки.
  2. Измерение напряжения без нагрузки.
    У разных типов акб свои значения напряжения разомкнутой цепи. Например у свинцово-кислотного это 12,6 В.
  3. Использование нагрузочной вилки.
    Если в течение 5-10 секунд напряжение незначительно возрастает или стабильно, то система исправна.
  4. Проверка с помощью специальных анализаторов и тестеров.
    Можно быстро замерять напряжение и определять емкость с помощью приборов-тестеров, например, Кулон, PITE, Fluke, Vencon.
  5. Полная разрядка / зарядка.
    Это, пожалуй, самый достоверный способ. С помощью специальных устройств (УКРЗ) выполняется глубокая разрядка, а затем полная зарядка с непрерывным контролем емкости. Однако этот метод очень долгий, он может занимать от 15 часов до суток и более.

СПРАВКА. Если вы работаете со свинцово-кислотными аккумуляторами, обращайте внимание на электролит: его уровень должен быть выше свинцовых пластин на несколько мм, а плотность – находиться в пределах 1,23 – 1,31 г/см3 (ее можно измерить ареометром). Изменение оттенка на бурый может происходить из-за порчи пластин.

 

Напоследок несколько советов о том, как соединить аккумуляторы 18650:

  • лучше брать батареи фирм Panasonic, LG, Samsung или Sanyo;
  • никелевые полосы лучше, чем никелированные металлические;
  • аккумуляторы ни в коем случае нельзя перегревать, поэтому используйте точечную сварку, либо быструю пайку;
  • перед единением выравняйте напряжение на батареях с помощью зарядного устройства;
  • поставьте на сборку плату BMS.

Надеемся, мы помогли вам немного разобраться в теме, и вы сможете без проблем собрать свою систему акб, если потребуется.

Особенности соединения и зарядки литиевых аккумуляторов

Есть два варианта соединения аккумуляторов, последовательное и параллельное. При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется бмс, бэттери мониторинг систем, она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда я напомню литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод. Но ещё существует такая штука, как балансировка ячеек. Специальный зарядный контроллер грубо говоря имеет доступ к каждой ячейке и персонально заряжает ее на 100% независимо от остальных. В интернете есть куча схем на стабилитронах и прочей рассыпухе, но мы здесь с вами не для этого, мы паять не любим. Для двух и трех аккумуляторов есть модуль защиты зарядки и балансировки, но я опять же собрал вас здесь сегодня не для этого.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково. Иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно, но не очень желательно использовать аккумуляторы с разной емкостью. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели. То есть балансировка не нужна, сборка будет сама себя балансировать. Делать так опять же не очень желательно, но можно.

Перейдем к делу. Допустим мы хотим использовать аккумуляторы последовательно, для увеличения напряжения. По хорошему, чтобы правильно использовать такую сборку, аккумуляторы должны быть одной емкости, желательно из одной партии на производстве, а также перед соединением они должны быть заряжены до одного напряжения. Такую идеальную сборку можно заряжать напряжением, равным сумме максимальных напряжений для лития, то бишь 4.2В. для этого подойдут готовые блоки питания, вставил в розетку и заряжаешь. Либо понижающий модуль, настроенный на нужное напряжение? Или например лабораторный блок пиатния. Но в мире нет ничего идеального, поэтому более правильно будет заряжать через бмс, которая отключит батарею если один из аккумуляторов зарядится на 100%. А еще более правильно будет использовать зарядник с балансировкой ячеек, который тоже стоит денег.

5 / 5 ( 6 голосов )

ПОХОЖИЕ ЗАПИСИ

Схемы соединения аккумуляторных батарей.. Статьи компании «ООО «Энерджи ГМБХ»

Схемы соединения аккумуляторных батарей АКБ.

Принятые обозначения:

·         V – напряжение, В

·         C – ёмкость, А/ч

Ёмкость аккумулятора — это тот промежуток времени аккумулятор АКБ сможет обеспечивать питание подключенной к нему нагрузки. Ёмкость аккумулятора измеряют в ампер-часах, а для небольших аккумуляторов – в миллиампер-часах.

1.     Последовательное соединение АКБ.

Для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого  аккумулятора АКБ, используя перемычку. К его отрицательной клемме подключают положительную клемму второго аккумулятора АКБ и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы (см. рис. 1).

Рис. 1 Электрическая схема последовательного соединения аккумуляторов.

Рис. 2 Последовательно соединенные аккумуляторы.

                                                          

Рис. 3 Последовательно соединенные аккумуляторы двойной перемычкой.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее (см. рис. 4).

Эквивалентное внутреннее сопротивление последовательно соединенных аккумуляторов равно сумме их внутренних сопротивлений.

Рис. 4 Последовательное соединение 4-х аккумуляторных батарей.

В рассматриваемом примере (рис. 4) четыре аккумуляторных батареи V=12 В, С=100 А/ч при последовательном соединении дают:

·         общее напряжение VΣ = 48 В

·         общая ёмкость CΣ = 100 А/ч.

2.     Параллельное соединение АКБ.

При параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″) (см. рис. 5).

Рис. 5 Электрическая схема параллельного соединения аккумуляторов

Рис. 6 Параллельно соединенные аккумуляторы.

Получившаяся при параллельном соединении аккумуляторная батарея АКБ имеет то же напряжение, что и у одиночного аккумулятора, а ёмкость такой аккумуляторной батареи равна сумме ёмкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые ёмкости, то емкость аккумуляторной батареи равна ёмкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

В примере (рис. 6) две аккумуляторных батареи V=12 В, С=100 А/ч при параллельном соединении дают:

•             общее напряжение VΣ = 12 В

•             общая ёмкость CΣ = 200 А/ч.

3.     Последовательно-параллельное соединение АКБ.

Очень часто возникают ситуации, когда необходимо увеличивать и ёмкость и напряжение. В таком случае используют последовательно-параллельные соединения АКБ.

Рис. 7 Пример последовательно-параллельного соединения АКБ

В рассматриваемом примере (рис. 7) восемь аккумуляторных батарей V=12 В, С=100 А/ч по четыре АКБ соединены последовательно в Цепь А и Цепь В, а Цепь А и Цепь В соединены параллельно, соответственно при такой схеме:

·         общее напряжение VΣ = 48 В

·         общая ёмкость CΣ = 200 А/ч.

 

Наши специалисты изготавливают перемычки, соединительные провода для аккумуляторов АКБ.

 

Последовательное соединение — аккумулятор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Последовательное соединение — аккумулятор

Cтраница 1

Последовательное соединение аккумуляторов в батарее применяется для повышения напряжения, необходимого для питания потребителей.  [1]

Для последовательного соединения аккумуляторов в батареи используют межэлементные перемычки, которые припаивают к борнам бареток полублоков в таком порядке, чтобы соединить полублок отрицательных электродов одного аккумулятора с полублоком положительных электродов рядом расположенного аккумулятора. При соединении борна с межэлементной перемычкой одновременно приваривают верхнюю часть свинцовой втулки, запрессованной в крышке, чем обеспечивается надежное уплотнение отверстий в местах выхода борнов.  [3]

При последовательном соединении аккумуляторов в батарею емкость батареи остается равной емкости одного аккумулятора. При необходимости получения большей емкости на практике применяют параллельное соединение двух батарей. При этом напряжение остается равным напряжению одной батареи, а общая емкость увеличивается и становится равной сумме емкостей обеих батарей.  [4]

Штыри полублоков разной полярности, расположенные в соседних банках моноблока, соединяют между собой перемычками 7, чем достигается последовательное соединение аккумуляторов. Один из штырей у каждого из крайних аккумуляторов снабжают полюсным наконечником 9, к которому болтами или зажимами присоединяют кабели внешней сети. Блоки пластин опираются на выступы 1, сделанные на дне банок, чтобы активная масса, выпадающая из пластин в процессе работы, не соединяла между собой пластины, имеющие разную полярность. Отверстие 18 в крышке, служащее для заливки электролита, закрыто резьбовой пробкой 6 с уплотнительной прокладкой. Для сообщения аккумулятора с атмосферой имеется отверстие в пробке или в специальном выступе на крышке рядом с заливным отверстием.  [6]

При параллельном соединении нескольких аккумуляторов в батарею их емкости складываются, а напряжение остается равным напряжению одного аккумулятора. Последовательное соединение аккумуляторов в батарею суммирует напряжение отдельных аккумуляторов, однако емкость аккумуляторной батареи при этом остается такой же, как и емкость отдельного аккумулятора.  [7]

Регулирование числа оборотов вала электродвигателя осуществлено не контроллером, а угольно-масляным реостатом оригинальной конструкции, обеспечивающим плавное, бесступенчатое изменение скоростей движения автопогрузчика. Применение угольно-масляного реостата позволило значительно упростить и получить экономичную электрическую схему машины, отказаться от использования пускового сопротивления; принять схему последовательного соединения аккумуляторов батареи при неизменном положении обмоток возбуждения двигателя.  [8]

Батарея из п одинаковых аккумуляторов замкнута на внешнее сопротивление R. Каково внутреннее сопротивление г одного аккумулятора, если сила тока, идущего по сопротивлению R, одинакова и при параллельном и при последовательном соединении аккумуляторов в батарею.  [9]

Емкостью аккумулятора называют количество электричества в ампер-часах, которое отдает полностью заряженный аккумулятор при непрерырном разряде до допустимого предела. По ГОСТ 959 — 51 номинальная емкость стартерных батарей отечественного производства гарантируется при непрерывном десятичасовом разряде батареи до напряжения 1 7 в на отстающем аккумуляторе и средней температуре электролита 30 2 С. При последовательном соединении аккумуляторов емкость батареи равна емкости одного из аккумуляторов.  [10]

Гидравлический насос привода грузоподъемника прикреплен своим фланцем к электрическому двигателю и соединен с его валом упругой муфтой. Рабочая жидкость направляется в цилиндры подъема и наклона грузоподъемника распределителем золотникового типа, установленным на одной стенке с контроллером. Выключатели электродвигателя насоса сблокированы с рычагами перемещения золотников распределителя. Электрическая схема привода движения машины выполнена с последовательным соединением аккумуляторов и переключением соединения обмоток возбуждения двигателя.  [11]

Сборка пластин в комплекты производится приваркой длинных ребер пластин к мостику баретки. Мостик имеет выводной штырь, заканчивающийся резьбой для навертывания гаек. Исключение составляют аккумуляторы типа 2 — ФКН-8 и АКН-225. В аккумуляторах АКН-225 обе положительные пластины привариваются своими длинными ребрами при помощи точечной электросварки к стенкам сосудов. Поэтому в комплектах положительных пластин этих аккумуляторов отсутствуют баретки с выводными штырями. Положительным полюсом служит сам сосуд, к стенке которого приваривают никелированную пластинку для последовательного соединения аккумуляторов в батарею. Комплект отрицательных пластин имеет мост и выводной штырь, который проходит через крышку сосуда.  [13]

Страницы:      1

Последовательное подключение аккумуляторов — База знаний BatteryGuy.com

Есть два способа подключения батарей: параллельно и серии . На рисунках ниже показано, как эти вариации схемы подключения могут обеспечивать различное выходное напряжение и ампер-час.

На рисунках мы использовали герметичные свинцово-кислотные батареи, но концепция подключения блоков верна для всех типов батарей.

Различные конфигурации проводки дают нам разные напряжения или емкости в ампер-часах.

В этой статье рассматриваются вопросы, связанные с последовательным подключением (т. Е. Повышением напряжения). Дополнительные сведения о параллельном подключении см. В разделе «Параллельное подключение батарей» или в нашей статье о сборке батарейных блоков.

Последовательное подключение увеличивает только напряжение

Основная концепция при последовательном соединении заключается в том, что вы складываете напряжения батарей вместе, но емкость в ампер-часах остается неизменной. Как показано на диаграмме выше, две 6-вольтовые батареи по 4,5 Ач, соединенные последовательно, способны обеспечить напряжение 12 и 4 вольт (6 вольт + 6 вольт).5 ампер-часов .

На этом большинство руководств заканчивается, но что произойдет, если соединить вместе батареи с разным напряжением и емкостью в ампер-часах? Большинство людей просто отвечают, говоря: «Не делай этого!» … но почему нет?

Подключение аккумуляторов разного напряжения последовательно

Теоретически, батарея на 6 В 5 Ач и батарея на 12 В 5 Ач, соединенные последовательно, обеспечат питание 18 В (6 В + 12 В) и 5 ​​Ач . Батарея на 6 вольт часто состоит из трех элементов по 2 вольта, а батарея на 12 вольт обычно состоит из шести элементов по 2 вольта.Поэтому все, что вы сделали, — это соединили вместе девять 2-вольтовых ячеек, чтобы получить 18 вольт… так в чем проблема?

Реальность такова, что никакая батарея на 6 вольт не будет ровно 6 вольт, а никакая батарея на 12 вольт не будет ровно 12 вольт. Напряжения отдельных элементов различаются даже для батарей одного производителя и производителя. Аккумулятор на 6 В может иметь напряжение элемента 2,2 В, а аккумулятор на 12 В может иметь напряжение элемента 2,1 В. Однако это может быть довольно легко прочитать с помощью вольтметра, если нужно проверить.

Сопоставить номинальные значения ампер-часов намного сложнее. Батарея на 6 В на самом деле может быть 5,2 Ач, а батарея на 12 В — 5,5 Ач. Значения ампер-часов также намного сложнее проверить без точной разрядки обоих устройств с одинаковой скоростью в одинаковых условиях и точного измерения результатов.

Вам также необходимо уточнить у производителя, как они достигли своего номинального значения в ампер-часах, потому что разные производители используют разные методы — не все батареи на 5 Ач имеют 5 Ач, как вы думаете.Некоторые производители заявляют, что их аккумулятор составляет 5 Ач, используя «20-часовой рейтинг», в то время как другие говорят, что их аккумулятор составляет 5 Ач, используя «100-часовой рейтинг». Для получения дополнительной информации по этому вопросу см. Какой аккумулятор с глубоким циклом разряда.

Кроме того, эти характеристики и поведение могут отличаться в зависимости от конструкции батареи. Залитая свинцово-кислотная батарея может иметь другие схемы разряда и перезарядки по сравнению с герметичной свинцово-кислотной батареей.

Что означают эти проблемы на практике?

Первый практический результат состоит в том, что емкость в ампер-часах будет наименьшей из подключенных вместе батарей.В приведенном выше примере это будет аккумулятор 5,2 Ач. Не беда, если вы ожидали только 5 Ач, по крайней мере, не проблема сразу. Если бы вы подключили устройство к батарейному блоку, оно способно питаться (скажем, лампочка на 0,5 А), тогда оно бы сработало.

Настоящие проблемы возникают во время циклов разрядки и зарядки (если батареи перезаряжаемые).

Выгрузка

Во время разрядки сначала разряжается более слабая батарея. По мере разряда аккумуляторов их напряжение падает.Когда это напряжение падает в устройстве ниже определенной точки, может сработать автоматическое отключение, отключив элемент или заставив его отказаться от работы. Это одна из причин, по которой в автомобиле могут загореться огни зажигания, но стартер не хочет иметь с вами ничего общего.

Эти встроенные точки отсечки существуют, потому что батареи имеют меньший срок службы, если они каждый раз работают полностью разряженным. На самом деле, если вы внимательно посмотрите на некоторых производителей, которые заявляют, что их батареи прослужат тысячи циклов, они четко заявляют что-то вроде «при разряде до 80% состояния заряда».

В нашем примере мы запитываем устройство на 18 вольт, которое может иметь отключение при 16 вольт. Наша меньшая 6-вольтовая батарея при разряде может упасть до 5 вольт, но 12-вольтовая батарея (которая в данном примере на самом деле составляет 12,6 вольт) все еще имеет достаточный заряд. Это означает, что общее подаваемое напряжение составляет 17,6 вольт (5 вольт + 12,6 вольт).

Батарея на 6 В к настоящему моменту должна быть отключена, но цепь поддерживается более крупным блоком на 12 В, поскольку меньшая батарея продолжает разряжаться, выходя далеко за пределы своих проектных возможностей.

Это не катастрофа для одноразовых батарей, но для аккумуляторных батарей вы резко сократите срок службы батареи, а также ее способность перезаряжаться.

Проблемы с одноразовыми батареями

Когда более слабая батарея почти полностью разряжена, более сильная батарея будет пытаться перезарядить ее, чтобы поддерживать цепь в рабочем состоянии.

Попытка перезарядить одноразовые батареи может привести к накоплению горячих газов внутри, что может привести к растрескиванию корпуса и утечке.В крайнем случае он может загореться или взорваться.

Обратная полярность

Когда некоторые типы аккумуляторов (акцент на некоторых) полностью разряжены, химическая разница между отрицательными и положительными пластинами отсутствует. В нашем примере батарея на 6 вольт сначала попадет в эту точку, но батарея на 12 вольт поддерживает цепь и начнет попытки перезарядить меньшую батарею.

Пропуская ток через разряженную батарею таким образом, можно поменять местами клеммы более слабой батареи — положительный становится отрицательным, а отрицательный становится положительным.Теперь, по сути, у нас есть положительная клемма аккумулятора на 6 В, подключенная к положительной клемме аккумулятора на 12 В. Нехорошо.

В большинстве случаев к этому моменту обе батареи будут почти полностью разряжены. Их способность к драматическому взрыву будет низкой, но вы можете увидеть утечки, вызванные выходящими горячими газами, когда этот человек обнаружен внутри детской игрушки или что засвидетельствовано батареями, подключенными последовательно в этих часах.

Однако чем больше разница между двумя батареями, тем больше вероятность драматического события!

Зарядка

Предположим, что ничего не взорвалось, но на 12-вольтовой батарее в конечном итоге упало напряжение до такой степени, что устройство отключило питание, у вас останется довольно разряженная 12-вольтовая батарея и очень разряженная 6-вольтовая батарея.Время подзарядиться.

По мере зарядки аккумуляторов их напряжение снова повышается, и на этот раз меньшая батарея заряжается быстрее. Большинство зарядных устройств, как и различное оборудование, имеют точку отключения. В нашем примере, если бы обе батареи были полностью заряжены, они фактически выдавали бы 19,2 В (12,6 В + 6,6 В), но наше зарядное устройство хочет отключиться при 18 В (или чуть больше).

Батарея меньшего размера разряжается до 6,6 В быстрее, но, поскольку общая цепь не достигает 18 В, батарея на 6 В начнет перезаряжаться и, возможно, приведет к внутреннему повреждению.Чтобы добраться до точки отключения зарядного устройства, более крупному аккумулятору необходимо всего лишь 11,4 вольт.

В результате получается перезаряженная батарея на 6 вольт и недозаряженная батарея на 12 вольт. Регулярная недозарядка также вызывает внутренние проблемы, такие как сульфатирование.

Сводка

Короче говоря, последовательное соединение батарей с разным напряжением будет работать, но обе батареи будут повреждены во время циклов разрядки и перезарядки. Чем больше поврежден один, тем больше будет поврежден другой, и оба потребуют замены задолго до того, как это потребуется.

Чем больше разница в возможностях аккумуляторов, тем быстрее произойдет повреждение.

Даже если бы вы могли получить и 6-вольтовую, и 12-вольтовую батарею с точно таким же напряжением элементов, возникла бы проблема из-за небольшой разницы в емкости в ампер-часах, которую очень трудно измерить. Это сократит срок службы батареи меньшего размера из-за чрезмерной разрядки и избыточной зарядки, описанных выше, и сократит срок службы батареи большего размера из-за недостаточной зарядки.

Подключение аккумуляторов разной емкости в ампер-часах серии

Теоретически батарея на 6 В 3 Ач и батарея на 6 В 5 Ач, соединенные последовательно, дадут питание 12 В 3 Ач (емкость более слабой батареи всегда ограничивает цепь), и если вы это сделаете, она будет работать и ничего бы не взорвалось (для начала).

Но, как указано выше, батареи на 6 вольт 3 Ач не являются точно 6 вольт и батареи на 6 вольт 5 Ач не являются точно 6 вольт.Использование разных батарей увеличивает вероятность этого несоответствия напряжения. Результат точно такой же, как и , при подключении аккумуляторов разного напряжения последовательно (см. Выше). Однако, если бы можно было найти две батареи или элементы с одинаковым напряжением, что бы тогда произошло?

Выгрузка

Напряжение батарей падает по мере их разряда. Большинство устройств с батарейным питанием распознают это падение напряжения и прекращают работу.Так, устройство на 6 вольт может перестать работать, когда напряжение батареи упадет до 5 вольт. Этот предохранитель предназначен для предотвращения чрезмерной разрядки батареи, которая может сократить срок ее службы.

В нашем примере батарея меньшего размера на 3 Ач разряжается быстрее (это просто батарея меньшего размера), и ее напряжение затем упадет. Однако более крупная батарея на 5 Ач по-прежнему будет поддерживать свое напряжение, позволяя общему напряжению цепи быть достаточным для того, чтобы устройство продолжало потреблять ток.

В результате батарея емкостью 3 Ач разряжается намного ниже расчетной точки.Если он работает полностью ровно, возможна обратная полярность (см. Выше).

Зарядка

Меньшая батарея 3 Ач заряжается быстрее и восстанавливает свои 6 вольт. Однако к этому моменту аккумулятор на 5 Ач не будет полностью заряжен, и зарядное устройство, увидев, что напряжение 12 В еще не достигнуто, продолжит заряжать цепь. В результате перезарядка блока на 3 Ач вызывает его дальнейшее повреждение.

Подключение аккумуляторов разного напряжения и ампер-часов серии

Как описано в разделе Подключение батарей с различным напряжением в серии выше, чем больше разница в номинальном напряжении или ампер-часах, тем больше несбалансированность разрядки и перезарядки и тем больший ущерб вы наносите батареям из-за чрезмерной разрядки. и чрезмерная зарядка более слабых и недостаточная зарядка более сильных.

Небольшие различия могут привести к обратной полярности, что приведет к утечкам или вздутию. Очень большие различия могут привести к взрывам. Вот почему краткий ответ на вопрос о последовательном подключении аккумуляторов разного номинала — «Не делайте этого».

Возрастной фактор аккумуляторов

При последовательном подключении аккумуляторов рекомендуется использовать аккумуляторы одного номинала, производителя и модели, чтобы минимизировать разницу в точном напряжении и силе тока. Обратите внимание, мы говорим «свести к минимуму», потому что даже батареи, выпущенные на одной производственной линии, могут незначительно отличаться в этих измерениях.

Еще один фактор — возраст батареи.

У более старых батарей, как с точки зрения времени, прошедшего с момента их изготовления, так и количества разрядов и зарядок, это влияет на их реальное напряжение и емкость в ампер-часах. Это означает, что если у вас есть две последовательно соединенные батареи с одинаковым напряжением и емкостью в ампер-часах, которые вы использовали какое-то время, но заменили одну на новую, то в действительности у вас будет одна батарея с более высоким напряжением и силой тока ( новый аккумулятор), чем другой старый аккумулятор.

В результате старое устройство получит больший урон из-за чрезмерной разрядки и чрезмерной зарядки, а новое будет повреждено из-за недостаточной зарядки.

В случае одноразовых батарей старая батарея может расколоться и протечь, когда она полностью разряжена, а новая батарея пытается ее перезарядить.

Наилучшая практика при последовательном подключении аккумуляторов

Как обсуждалось в этой статье, чем ближе совпадают напряжения и емкости различных батарей, соединенных вместе, тем меньше ущерба они причинят друг другу.Возраст также играет роль в этих рейтингах, поэтому обычно рекомендуется:

  • Используйте только батареи с таким же напряжением и емкостью в ампер-часах от того же производителя и марки
  • Замените все батареи одновременно
  • Замените все батареи на «новые» (тот же номер партии или срок годности)

Несоблюдение этих правил не означает, что ваши батареи не будут работать параллельно, просто это будет стоить дороже в долгосрочной перспективе, так как батареи нужно будет заменять чаще.Также существует внешний риск взрыва, если у вас есть много батарей с разным напряжением и током или с большой разницей от одной батареи к другой.

Когда можно комбинировать батареи разного номинала в серии

Хотя обычно ответ на вопрос о подключении аккумуляторов с разными номиналами — «Нельзя», на самом деле должен быть ответ «Нельзя без схемы балансировки». Схема балансировки контролирует отдельные батареи или элементы, чтобы гарантировать, что вся цепь отключится, когда напряжение самого слабого элемента или батареи упадет до определенной точки.Схема балансировки также гарантирует, что каждая батарея или элемент полностью заряжены.

Что такое аккумулятор? — learn.sparkfun.com

Добавлено в избранное Любимый 22

Использование

Однокамерный

Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.

Этот экран для фотонной батареи питается от одного элемента LiPo

Если напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.

серии

Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.

Последовательно соединяя батареи, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.

В этом примере четыре ячейки 1,5 В соединены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.

В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.

ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо обязательно использовать специальную схему, известную как «балансир», чтобы обеспечить равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.

Параллельный

Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).

Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.

В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.

Серия

и параллельный

Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.

В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.

В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация для схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.


← Предыдущая страница
Терминология

аккумуляторов — добавление мАч при последовательном подключении аккумуляторных элементов?

Сводка

  • мАч остаются неизменными при последовательном подключении ячеек — при условии, что все элементы имеют одинаковую емкость мАч.

  • Особый и необычный случай Если две ячейки соединены последовательно и имеют разную емкость мАч, эффективная емкость соответствует емкости ячеек с меньшей емкостью мАч. Обычно это не делается, но иногда это имеет смысл.

  • мАч добавляются при параллельном подключении ячеек (но есть технические проблемы, которые означают, что сделать это может быть непросто).


Ответ можно получить, если учесть, что емкость мАч означает :

мАч = произведение мА × часов, которое обеспечит аккумулятор.

Хотя есть (как всегда) сложности, это означает, что, например, элемент емкостью 1500 мАч будет обеспечивать 1500 мА в течение одного часа или 500 мА в течение 3 часов или 850 мА в течение 2 часов или даже 193,9 мкА в течение одного года (193,9 мкА x 8765 часов = 1500 мА · часов).

На практике емкость ячейки зависит от нагрузки. Элемент обычно достигает своей номинальной мощности при нагрузке со скоростью C1 = 1 час. например, 1500 мАч = 1500 мА в течение одного часа. НО аккумулятор емкостью 1500 мАч, нагруженный, скажем, 5 В (5 x 1500 = 7500 мА = 7.5А) НЕ будет делать этого в течение 1/5 часа = 12 минут — и может вообще не выдавать 7,5 А даже при коротком замыкании. Нагрузка, скажем, C / 10 = 150 мА или C / 100 = 15 мА, может производить более 1500 мАч в целом, НО нагрузка, скажем, 150 мкА = 10000 x так долго = 10000 часов = около 14 месяцев может производить менее 1500 мАч, если батарея со временем быстро разряжается.

А

Если элемент будет вырабатывать, скажем, 2000 мА в течение 1 часа при напряжении 3,7 В (типичное значение для литий-ионных элементов 18650), то два идентичных элемента будут делать то же самое при независимом тестировании.Если вместо использования двух нагрузок вы соедините ячейки последовательно и потребляете тот же ток, что и раньше, идентичный ток течет через обе ячейки. Вы все еще можете потреблять только 2000 мА в течение одного часа, НО доступное напряжение увеличилось вдвое.


Если вы используете 2 ячейки по 3,7 В, 2000 мАч параллельно для управления номинальной нагрузкой 3,7 В, одна ячейка может обеспечивать 2000 мА в течение одного часа или 200 мА в течение 10 часов и т. Д. И другая ячейка может делать то же самое. Так что рейтинги мАч прибавляются.

Если одна ячейка имеет больше мАч, чем другая, мАч ТЕНД необходимо добавлять при параллельном подключении.Скажем, у вас есть элементы емкостью 1000 мАч и 2000 мАч, подключенные параллельно, каждая из которых рассчитана на номинальное напряжение 3,7 В, поскольку меньшая батарея теряет емкость, ее напряжение будет снижаться быстрее, поэтому большая батарея будет обеспечивать больший ток, поэтому они будут ТЕНДЕНЦИИ для баланса. YMMV, и это обычно не очень хорошая практика без конкретного дизайна того, что происходит.


В специальном случае , о котором я упоминал выше, у вас может быть герметичная свинцово-кислотная аккумуляторная батарея на 12 Ач, 7 Ач, любимая в индустрии сигнализации. Возможно, вы захотите использовать переключатель верхнего уровня N-канала, которому требуется напряжение затвора, скажем, на 4 В выше шины +12.Если вы используете «транзисторную радиобатарею» PP3 на 9 В и подключаете ее отрицательную клемму к +12 В, тогда положительная клемма PP3 изначально будет на 12 + 9 = 21 В. N-канальному MOSFET требуется 12 + 4 = 16 В, поэтому объединенный PP3 + SLA, за которым следует регулятор, будет управлять им до тех пор, пока объединенное напряжение не упадет ниже 16 В. Этого никогда не должно происходить, так как «мертвое напряжение» PP3 = 6 В, а Sla не должно быть ниже, скажем, 11 В, поэтому минимальное доступное напряжение = 11 + 6 = 17 В.

Если вы используете его время от времени и отсоединяете аккумулятор, когда не используете, PP3 прослужит долго.Если PP3 рассчитан, скажем, на 150 мАч, и если cct на верхней стороне полевого транзистора потребляет стабильные 10 мА, когда oj, то PP3 прослужит ~~ = 150/10 = 15 часов. Это может быть приемлемо или нет в зависимости от приложения.

НО SLA имеет емкость 7 Ач = 7000 мАч, НО комбинация может обеспечить только 150 мАч при> = 17 Вольт. Таким образом, по сути, мАч принадлежит гораздо меньшему по размеру PP3. Это для задачи, которая требует комбинированного напряжения — выход 12 В по-прежнему имеет полную емкость 7 Ач.

Аккумуляторы

— последовательный и параллельный вопрос Lipo (емкость 20000 мАч)

Какие аккумуляторы на самом деле хранятся

Батареи не накапливают заряд, они накапливают энергию.Эту энергию можно использовать для перемещения заряда. Когда батарея разряжается, она получает столько же электрического заряда на одном выводе, сколько излучает на другом выводе. Нет чистой потери или увеличения электрического заряда.

Запасенная энергия равна V * I * t (хотя вам действительно нужно интегрировать, поскольку напряжение будет функцией времени по мере разряда батареи)

Цифры в вашем вопросе эквивалентны:

  • 3,7 * 20 000 = 74 000 единиц энергии †
  • 14.8 * 5000 = 74000 единиц энергии

Емкость аккумулятора

Емкость аккумулятора — это количество электрического заряда, которое он может доставить при номинальном напряжении .

Заряд, как мы знаем, измеряется в кулонах, ампер — это кулон в секунду, поэтому вы также можете выразить заряд в ампер-секундах (или ампер-часах, или миллиампер-часах и т. Д.).

Если вы переконфигурируете элементы батареи так, чтобы у батареи было более высокое номинальное напряжение, емкость (согласно этому определению) соответственно уменьшается (поскольку общая доступная энергия должна быть такой же, как до реконфигурации).

Энергия равна V * I * t, поэтому, если вы увеличиваете V, вы должны уменьшать I * t

(так производители аккумуляторов называют емкость — измеряется в ампер-секундах, хотя обычно они применяют константу, чтобы для удобства потребителей выразить ее в ампер-часах или миллиампер-часах)


Рассматриваемая претензия

Давайте посмотрим на иск, который вы, кажется, оспариваете

«мощность такая же» . Как это может быть?

Это просто корявый язык.Они пытаются сказать, что 20000 мАч * 3,7 В обеспечивают такую ​​же энергию, как 5000 мАч * 14,8 В — и это правильно.

Конечно, вы можете увеличить мощность, увеличивая V или I, но тем самым вы уменьшаете t обратно пропорционально.


Сноски

Единицы энергии

1 ватт = 1 джоуль в секунду
1 ватт x 1 секунда = 1 джоуль
В * I = ватт
1 вольт * 1 ампер * 1 секунда = 1 джоуль

Единицы измерения в моем ответе — не джоули (поскольку время — часы, а не секунды, а токи — миллиамперы, а не амперы), но это всего лишь коэффициент масштабирования, который одинаков для обоих чисел.

Серии

и параллельные конфигурации батарей

Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.

Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения.Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно для увеличения емкости с 2400 мАч до 4800 мАч. Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

Большинство типов батарей подходят для последовательного и параллельного подключения. Важно использовать батареи одного и того же типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров.Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи. Аналогия — цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

Рисунок 1: Сравнение батареи с цепью.
Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

Слабая ячейка может не выйти из строя сразу, но при нагрузке она истощится быстрее, чем сильные. При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья. Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).

Приложения с одной ячейкой

Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой.Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

В литий-марганцевых и других системах на основе лития часто используются ячейки с напряжением 3.7V и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой. Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303 «Путаница с напряжениями»)

Последовательное соединение

В переносном оборудовании, требующем более высокого напряжения, используются аккумуляторные батареи с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумулятор с четырьмя 3.Последовательные литий-ионные элементы 6 В, также известные как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка из шести элементов с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

Рисунок 2: S eries подключение четырех ячеек (4s).
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Предоставлено Cadex

Если вам нужно нечетное напряжение, скажем, 9.50 вольт, соедините пять свинцово-кислотных, восемь никель-металлгидридных или никель-кадмиевых или три литий-ионных последовательно. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

Высоковольтные батареи сохраняют небольшой размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В.Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

Некоторые легкие гибридные автомобили работают на литий-ионном аккумуляторе 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В.Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепочке.

Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем блоке.Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяют как единое целое.

Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль. Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками.(См. BU-910: Как отремонтировать аккумулятор.)

На рисунке 3 показан аккумуляторный блок, в котором «элемент 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».

Рисунок 3: S eries соединение с неисправной ячейкой.
Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
Предоставлено Cadex

Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора батарей.

Нажатие на последовательную строку

Существует обычная практика подключения к последовательной цепочке свинцово-кислотного массива для получения более низкого напряжения.Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.

Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона батарейного блока загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи. Вот почему:

При зарядке несбалансированного блока свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства недозаряженная часть имеет тенденцию к сульфатированию, поскольку элементы никогда не получают полного заряда.Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.

Постукивание также характерно для литий-ионных и никелевых аккумуляторов, и результаты аналогичны свинцово-кислотным: сокращение срока службы. (См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения.В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.

Параллельное соединение

Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами. На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается равным 3.60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

Рисунок 4: Параллельное соединение четырех ячеек (4p).
При использовании параллельных ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

Предоставлено Cadex

Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но выходящая из строя ячейка снизит общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

Рисунок 5: Параллельное соединение / соединение с одной неисправной ячейкой.
Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. В более крупных батареях предохранитель предотвращает высокий ток, изолируя элемент.

Предоставлено Cadex

Последовательное / параллельное соединение

Последовательная / параллельная конфигурация, показанная на рисунке 6, обеспечивает гибкость конструкции и позволяет достичь желаемых значений напряжения и тока при стандартном размере ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано на рисунке, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху) Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
Эта конфигурация обеспечивает максимальную гибкость проектирования. Распараллеливание ячеек помогает в управлении напряжением.

Предоставлено Cadex

Литий-ионный аккумулятор хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока. Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек.Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить батарею мощностью 90 кВт · ч.

Терминология для описания последовательного и параллельного соединения

В производстве аккумуляторов сначала указывается количество ячеек, соединенных последовательно, а затем ячеек, размещаемых параллельно. Пример — 2с2п. При использовании литий-ионных аккумуляторов в первую очередь всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования.Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить механизму химического челнока, который уравновешивает заряд в верхней части заряда. «2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.

Устройства безопасности при последовательном и параллельном подключении

Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления.Хотя эти защитные устройства рекомендуются для безопасности в меньших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов. PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя. Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)

Простые инструкции по использованию первичных бытовых батарей

  • Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
  • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
  • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
  • Выньте батареи из оборудования, когда оно больше не используется, для предотвращения утечки и коррозии. Это особенно важно для первичных цинк-углеродных элементов.
  • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание.Не носите в карманах незакрепленные ячейки.
  • Храните батарейки в недоступном для маленьких детей месте. Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем, связанные с батареями.)
  • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.

Простые инструкции по использованию вторичных батарей

  • При зарядке вторичного элемента соблюдайте полярность.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
  • Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный непрерывный заряд при полной зарядке, что может привести к перегреву элемента.
  • Заряжайте только при комнатной температуре.
Серия

, параллельное и последовательно-параллельное соединение батарей

Серия

, параллельная и последовательно-параллельная конфигурация батарей

Введение в соединения батарей

Можно подумать, какова цель последовательного, параллельного или последовательного- параллельное соединение аккумуляторов или правильная конфигурация для зарядки аккумуляторов, системы аккумуляторных батарей, автономной системы или установки солнечных батарей.Ну, это зависит от требований системы, то есть увеличения напряжения путем последовательного соединения батарей, ампер-часов батареи (поскольку батареи рассчитаны в Ач, а не в амперах) или просто тока или мощности батарей путем подключения батарей параллельно или последовательно. параллельно поддерживать систему в соответствии с вашими потребностями. Если вам нужно знать, как это сделать, прочитайте следующее пошаговое руководство о конфигурации первичных (неперезаряжаемых, например, элементы AAA) и вторичных (перезаряжаемых, например, свинцово-кислотных, никель-кадмиевых, никель-металлогидридных, литий-ионных и т. Д.) Батарей.

Мы получили несколько сбивающих с толку схем по этой теме, и они спрашивают, подключены ли батареи последовательно, параллельно или последовательно-параллельным и к какому из них они подходят ?. Итак, мы подробно обсудим последовательное, параллельное и последовательное параллельное соединение батарей со схемами и приложениями.

А теперь приступим…

Типы подключения батарей

Существует три основных типа подключения батарей.

  1. Последовательное соединение
  2. Параллельное соединение
  3. Последовательное параллельное соединение

Щелкните изображение, чтобы увеличить Серия

, параллельное и последовательное параллельное соединение аккумуляторов

Ниже приводится подробная информация о каждом соединении.

Серия

Подключение аккумуляторов

Если мы подключим положительный (+) полюс батареи к отрицательному (-), а отрицательный — к положительному полюсу, как показано на рисунке ниже, то конфигурация батарей будет последовательной.

Полезно знать:

При последовательном соединении батарей ток одинаков в каждом проводе или секции, а напряжение разное, т.е. напряжения складываются, например

V 1 + V 2 + V 3 ….Vn

На рисунке ниже две батареи по 12 В, 200 Ач соединены последовательно. Таким образом, общий эффективный ампер-час (Ач) будет таким же, пока напряжение является аддитивным.

т.е.

= 12В + 12В = 24В, 200Ач

Щелкните изображение, чтобы увеличить

Series Подключение аккумуляторов
Когда нам нужно и как подключить аккумуляторы последовательно?

Когда вам необходимо удвоить уровень напряжения в соответствии с потребностями вашей системы, сохраняя при этом ту же емкость или номинальную емкость в ампер-часах (Ач) батарей.

Например, если у вас есть две батареи на 12 В, 200 Ач час и вам нужна система на 24 В. для установки. Просто подключите обе батареи последовательно, чтобы получить 24 В и одинаковый номинал в ампер-часах, то есть 200 Ач.

Имейте в виду, что при последовательном подключении аккумуляторная батарея разряжается медленнее, чем при параллельном подключении аккумуляторов.

Вы можете сделать это с любым количеством батарей, т.е. получить 36 В, 48 В, 72 В постоянного тока и так далее, подключив батареи последовательно.

Эта система используется в различных установках солнечных панелей и других приложениях.

Параллельное соединение аккумуляторов

Если мы подключим положительную клемму (+) батареи к положительной, а отрицательную (-) к отрицательной клемме. Тогда конфигурация батарей будет параллельной.

Полезно знать:

При параллельном подключении напряжение будет одинаковым на каждом проводе или участке, а ток будет другим, т.е. ток будет аддитивным.

например

I 1 + I 2 + I 3 … + In

На рисунке ниже две батареи на 12 В, 200 Ач подключены параллельно.Таким образом, полное эффективное напряжение будет таким же, пока ампер-час складывается.

т.е.

= 200 Ач + 200 Ач = 400 Ач, 12 В.

Щелкните для увеличения изображения

Параллельное соединение батарей
Когда нам нужно и как подключить батареи параллельно?

Когда вам нужно удвоить емкость аккумулятора или номинальные ампер-часы (Ач) в соответствии с потребностями вашей системы, сохраняя при этом тот же уровень напряжения.

Например, если у вас есть две батареи на 12 В по 200 Ач и вам нужна система 12 В. для установки.Просто подключите обе батареи параллельно, так что общая емкость батареи будет 400 Ач и будет одинаковым уровнем напряжения, то есть 12 В.

Имейте в виду, что параллельная разрядка аккумуляторов происходит быстрее, чем при последовательном подключении аккумуляторов.

Это можно сделать с любым количеством аккумуляторов, т.е. получить тот же уровень напряжения, увеличивая при этом емкость аккумулятора в ампер-часах при параллельном подключении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Последовательно-параллельное соединение батарей

Если мы соединим две пары из двух батарей последовательно, а затем соединим эти последовательно соединенные батареи параллельно, то такая конфигурация батарей будет называться последовательно-параллельным соединением батарей.

Другими словами, это последовательная или параллельная цепь, но известная как последовательно-параллельная цепь. Некоторые из компонентов включены последовательно, а другие — в параллельной или сложной схеме из последовательно и параллельно соединенных устройств и батарей.

Связанное сообщение:

На рисунке ниже.

Шесть (6) аккумуляторов на 12 В, 200 Ач каждая подключены в последовательно-параллельной конфигурации.

ie

  • B 1 и B 2 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 3 и B 4 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 5 и B 6 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение

И затем пара этих батарей соединяется параллельно i.е. два параллельных комплекта из трех батарей соединены последовательно.

т.е.

Установить 1 = B 1 , B 3 , B 5 = Серия

Установить 2 = B 2 , B 4 , B 6 = Серия

И затем ,

Set 1 & Set 2 = In Parallel.

Таким образом, эффективное напряжение и ампер-час будут равны

Ампер-час (Ач) = 200 Ач + 200 Ач + 200 Ач = 600 Ач

Напряжения = 12 В + 12 В = 24 В. (Параллельное соединение)

Щелкните изображение, чтобы увеличить

Последовательное параллельное соединение батарей

Калькуляторы, связанные с батареями:

Когда нам нужно и как соединить батареи последовательно-параллельно?

Когда вам нужно удвоить емкость батареи или номинальные ампер-часы (Ач), а также напряжение батарей в соответствии с потребностями вашей системы.

Например, если у вас шесть аккумуляторов на 12 В, 200 Ач в час, и для установки вам нужна емкость 600 Ач и система на 24 В. Теперь у вас есть два набора из трех батарей, просто подключите два набора из трех аккумуляторов последовательно, а затем подключите два набора параллельно (как показано на рисунке выше), при этом общая емкость аккумулятора будет 600 Ач, а уровень напряжения — 24 В.

Это можно сделать с любым количеством аккумуляторов, т.е. получить разный уровень напряжения, а также увеличить емкость аккумулятора в ампер-часах при последовательно-параллельном соединении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Сравнение последовательного, параллельного и последовательно-параллельного подключения

В приведенной ниже таблице показаны основные различия между последовательным и параллельным подключением.

Щелкните изображение, чтобы увеличить

Сравнение последовательного, параллельного и последовательно-параллельного подключения

Общие меры предосторожности и инструкции по подключению и установке батарей

Предупреждение и инструкции:

  • Никогда не замыкайте и не касайтесь положительного (+ ) клемма батареи с отрицательной (-) клеммой батареи, чтобы избежать короткого замыкания, повреждения, травмы, взрыва или пожара.
  • Всегда подключайте аккумулятор того же уровня напряжения и емкости, чтобы избежать проблем с зарядкой и сокращения срока службы аккумулятора.
  • Не путайте (это может быть опасно) со сложной разводкой и подключением аккумуляторов последовательно-параллельно. Всегда делайте правильные расчеты и делайте схемы и схемы соединений батарейных блоков, прежде чем применять их на практике, чтобы быть в безопасности.
  • Особое внимание следует уделять полярности при зарядке аккумуляторных батарей, чтобы избежать короткого замыкания и возникновения опасных ситуаций.
  • Когда аккумулятор полностью зарядится, снимите зарядное устройство, чтобы избежать перегрева (в случае неавтоматического зарядного устройства или контроллера заряда).
  • Всегда заряжайте аккумулятор при комнатной температуре.
  • Не пытайтесь заряжать основные элементы. т.е. не заряжайте неперезаряжаемые батареи.
  • Отсоедините аккумулятор от подключенной нагрузки, если он больше не используется, чтобы избежать коррозии и утечки.
  • Отключите источник зарядки аккумулятора и нагрузку перед подключением или отключением клемм.

Учебные пособия по подключению и подключению соответствующих аккумуляторов:

Серия

и параллельное соединение герметичных свинцово-кислотных аккумуляторов — BatteryClerk.com

Иногда при включении устройства вам просто нужно больше напряжения или больше емкости, или и то, и другое. В других случаях батарея большего размера просто не поместится в отведенном для нее отсеке. Вам не всегда нужно покупать гигантскую батарею, вы можете подключить две или более батарей, чтобы получить необходимую мощность. Подключение аккумуляторов может позволить вам работать в ограниченном пространстве и при этом получать необходимый заряд аккумулятора.

Давайте начнем с нескольких определений батарей, поэтому мы говорим на одном языке.

  • Ампер-час — это единица измерения электрической емкости аккумулятора. Стандартный номинал усилителя рассчитан на 20 часов, но некоторые производители используют другие стандарты.
  • Напряжение представляет собой напряжение электричества. Некоторые приложения требуют большего «давления», что означает более высокое напряжение.
  • Battery Bank — это система, созданная путем соединения двух или более батарей, независимо от метода.

Есть два способа подключения нескольких батарей: последовательное соединение или параллельное соединение. Большинство химикатов аккумуляторов работают с любым типом подключения, но герметичные свинцово-кислотные аккумуляторы уже много лет являются предпочтительным выбором для создания высоковольтных или емкостных аккумуляторных батарей.

Соединения серии

Две или более батареи, соединенные последовательно, увеличивают напряжение системы батарей, но сила тока или емкость остаются прежними.Две батареи на 6 В с номиналом 10 ампер-часов, соединенные последовательно, будут производить 12 вольт, но все же только 10 ампер-часов.

Чтобы соединить батареи последовательно, вы подключаете положительную клемму одной батареи к отрицательной клемме другой, пока не будет достигнуто желаемое напряжение. Не перекрещивайте оставшийся открытый позитив и открытый негатив друг с другом. Это приведет к короткому замыканию батарей и может вызвать повреждение или травму. Используйте другой набор кабелей, чтобы подключить открытые положительные и открытые отрицательные клеммы к устройству, которое вы запитываете.

Параллельные соединения

Батареи, соединенные параллельно, увеличивают емкость в ампер-часах, но напряжение остается прежним. Параллельное подключение батарей увеличит время, в течение которого вы сможете запитать свое оборудование, но не позволит вам запитать что-либо с выходным напряжением выше стандартного.

Для параллельного подключения батарей положительные клеммы соединяются вместе с помощью кабеля, а отрицательные клеммы соединяются вместе другим кабелем, пока не будет достигнута желаемая емкость .

Последовательные и параллельные соединения

Вы также можете увеличить как напряжение, так и емкость, подключив как минимум четыре батареи как последовательно, так и параллельно. Это дает вам аккумуляторную батарею с более высоким напряжением, которая также имеет более длительное время работы для вашего приложения. Это обычная практика для таких приложений, как электромобили и большие системы ИБП. Есть разные способы подключения батарей для увеличения напряжения и емкости.

С четырьмя батареями вы можете создать две серии, соединенные через параллельное соединение, или две параллельные группы, соединенные одним последовательным соединением.В любом случае прирост напряжения и емкости одинаков.

Зарядные батареи

Батареи, соединенные последовательно, не влияют на емкость батарейного блока в ампер-часах, поэтому при зарядке сосредоточьтесь на напряжении. Зарядное устройство должно удовлетворять требованиям зарядки аккумуляторов данной серии. Например, две батареи на шесть вольт, последовательно соединенные для создания батареи на 12 вольт, необходимо заряжать с помощью зарядного устройства на 12 вольт, чтобы удовлетворить потребности обеих батарей на 6 вольт.

После того, как вы определили правильное зарядное устройство, подключите положительный выход зарядного устройства к положительной клемме первого аккумулятора. Затем подключите отрицательный вывод зарядного устройства к отрицательной клемме последнего аккумулятора в серии. Для зарядки серии потребуется столько же времени, сколько и для зарядки одной батареи.

При зарядке аккумуляторов, которые настроены в параллельной комбинации, необходимо учитывать увеличение емкости в ампер-часах в результате новой конфигурации.Это связано с тем, что при параллельной зарядке вы перезаряжаете не напряжение системы, а, скорее, емкость в ампер-часах. Умножьте время, необходимое для зарядки одного аккумулятора, на количество аккумуляторов, чтобы получить время, необходимое для зарядки банка аккумуляторов.

Один из методов зарядки параллельно подключенных аккумуляторов заключается в подключении положительного вывода зарядного устройства к положительному выводу первого аккумулятора. Подключите эту положительную клемму к положительной клемме второй батареи.Продолжайте, пока не подключите все батареи. Теперь проделайте то же самое с отрицательным выходом зарядного устройства и отрицательными клеммами аккумуляторов.

Если у вас есть батарейный блок, который подключен как последовательно, так и параллельно, все становится немного сложнее. Подключите положительный вывод зарядного устройства к положительной клемме первой батареи, а тот соединяется с положительной клеммой второй батареи. Подключите отрицательный вывод зарядного устройства к отрицательной клемме третьей батареи, затем подключите эту отрицательную клемму к отрицательной клемме четвертой батареи.Наконец, подключите отрицательные клеммы первой и второй батарей к положительным клеммам третьей и четвертой батарей соответственно.

Некоторые передовые методы работы с аккумуляторными батареями

Чтобы получить наиболее надежную энергию от батареи, всегда используйте батареи одного типа, в идеале от одного производителя (мы рекомендуем батареи AJC). Используйте батареи одинакового напряжения и емкости, а при необходимости заменяйте все батареи в банке одновременно.Слабая батарея разряжается первой, уменьшая время между зарядками, а слабая батарея первой завершает заряд, что означает, что она будет более склонна к перезарядке, пока заряжаются другие батареи. Емкость блока батарей определяется мощностью самой слабой батареи, которую вы используете в приложении, а слабые батареи сокращают срок службы всех остальных батарей в блоке.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *