Страница не найдена — ЛампаГид
Квартира и офис
Для украшения интерьера, применяя современные материалы и нехитрые технологии, можно своими руками быстро сделать
Квартира и офис
Основное количество времени, свободного от работы, хозяйка проводит в заботах и хлопотах на кухне.
Лампы накаливания
Искусственный свет сопровождает людей уже многие тысячи лет.
Квартира и офис
Детская является предметом заботы родителей, так как от того, в какой атмосфере растет малыш,
Дом и участок
Лампочки – расходные материалы, которые в зависимости от качества производства и условий эксплуатации имеют
Светодиоды
Если вы решили приобрести фонарик, то вначале определите его назначение. Вряд ли можно найти
Электронный балласт — схема и принцип работы
Автор Aluarius На чтение 4 мин. Просмотров 1.8k. Опубликовано
Если кто-то не знает, как работают люминесцентные лампы, то важным моментом здесь является электрический ток, но не в плане питания, а в плане его вида. Люминесцентные лампы работают от постоянного тока, поэтому в электрическую схему светильника устанавливается так называемый регулируемый высокочастотный инвертор или по-другому электронный балласт. По сути, это обычный выпрямитель, только от стандартного прибора его отличает небольшие размеры, а соответственно и небольшой вес. Как приятное добавление инвертор не издает шума при работе. Давайте рассмотрим в этой статье, что собой представляет электронный балласт – схема его внутренней начинки.
В первую очередь необходимо отметить тот факт, что прибор отвечает не только за выпрямление переменного тока, но и за пуск самой лампы. То есть, его можно сравнить с обычным (стандартным) дроссельным контактом. Правда, надо быть до конца откровенным и сказать, что электронный балласт для люминесцентных ламп является прибором капризным, поэтому его срок годности оставляет желать лучшего.
Разновидности и назначение
В настоящее время производители предлагают два основных типа:
- Одиночные.
- Парные.
Здесь все понятно. Одиночные предназначаются для включения одной лампы, парные для нескольких, соединенных в единую сеть. Самое важно, выбирая инвертор, необходимо учитывать общую яркость светильника в целом, потому что именно по этому показателю и подбирается балласт для люминесцентных ламп.
Итак, кроме вышеописанных функций, для чего еще необходим электронный балласт.
- Установленный в схему инвертор должен обеспечить подачу постоянного тока, тем самым обеспечить источник света равномерным излучением без мерцания.
- При помощи него производится быстрое включение лампы. Без него она загорится тоже, но только через несколько секунд и при работе будет обязательно гудеть.
- Скачки напряжения – враг номер один для системы освещения. Так вот балласт сглаживает данные скачки за счет выпрямления тока в независимости от его амплитуды.
- В схеме электронного балласта есть специальный регулятор. Он фиксирует неисправности внутри самого светильника. Если поломка обнаружена, регулятор тут же отключает источник света от подачи электрического тока.
Внимание! Многие производители в схемах используют различные детали и элементы, с помощью которых можно экономить потребляемую электроэнергию. Во многих моделях данный показатель составляет 20%. Неплохой результат.
Как работает балласт
Как уже было сказано выше, балласт для люминесцентных ламп – это практически дроссель. Поэтому данный прибор и выпрямляет электрический ток, и тут же нагревает катоды люминесцентных ламп. После чего на них поступает то количество напряжения, которое быстро включает осветительный прибор. Напряжение выставляется специальным регулятором, который установлен в схеме инвертора, именно им устанавливается диапазон напряжений. Вот почему мерцание источника света отсутствует.
В схеме также присутствует свой собственный стартер. Он отвечает за передачу напряжения и за зажигание. Когда включается лампа, на микросхеме балласта напряжение падает, соответственно снижается и сила тока. Это дает возможность найти оптимальный режим работы светильника.
В настоящее время люминесцентные светильники комплектуются двумя видами балластов:
- С плавным запуском – это так называемый холодный вариант.
- Быстрый запуск – горячий. Сюда в основном относятся дроссели ПРА.
Сегодня все больше производителей стараются найти золотую середину, так называемые комбинированные схемы (универсальные). К примеру, вот модель такого электронного балласта «ЭПРА SEA T8-18». И еще один момент, который касается доработки схемы. Считается, что нормальная яркость светового потока, который обеспечивает люминесцентная лампа, обеспечивается мощностью 200 Вт. Если мощность падает до 110 Вт, то яркость люминесцентного светильника серьезно снижается.
что это такое и схемы подключения
На чтение 6 мин Просмотров 167 Опубликовано Обновлено
Электронный балласт выступает своеобразным пусковым механизмом, обеспечивающим стабильную работу люминесцентной лампы. Применение данного устройства актуально при недостаточной электрической нагрузке или при отсутствии ограничения в потреблении тока.
Условия для подключения, запуска и горения люминесцентной лампы
Парный электронный балласт люминесцентных лампЛюминесцентная лампочка представляет собой стеклянную колбу, заполненную инертным газом с добавлением незначительного количества ртути. На трубке присутствуют электроды, подающие напряжение определенной величины. Формируемое электрическое поле провоцирует появление разряда и, как следствие, тока.
Продуцируемое голубоватое свечение практически неощутимо для человека, поскольку относится к невидимому цветовому диапазону. Издаваемое ультрафиолетовое излучение попадает на покрытие лампы, содержащее соединения фосфора. В результате формируются лучи, находящиеся в видимой части спектра.
При включении люминесцентной лампы наблюдается лавинообразное увеличение тока, что провоцирует снижение сопротивления. Поэтому присоединить такого потребителя напрямую к сети невозможно. Для эффективной и длительной работы лампочки необходимо предупредить перегрев электродов. Для этого используется балластник или дроссель. Он продуцирует дополнительную нагрузку, когда ее не хватает в сети, что ограничивает величину тока.
Основные характеристики балластов
Принцип работы люминесцентной лампыПРА – пускорегулирующие аппараты – бывают двух типов: электронные и электромагнитные.
Электромагнитные устройства
Агрегат работает благодаря индуктивному сопротивлению дросселя. Его встраивают в схему последовательно лампе.
Для включения осветительного прибора также необходим стартер. Это небольшое устройство, напоминающее лампу, из категории газоразрядных. Внутри него находятся электроды из биметалла.
Стартер подключают к прибору параллельным способом.
При наличии электромагнитного балласта люминесцентная лампа работает по следующей схеме:
- При поступлении напряжения в стартере появляется разряд. В результате происходит разогрев электродов, вследствие чего они замыкаются.
- Рабочий ток увеличивается в несколько раз. Этот процесс ограничивает только внутреннее сопротивление дросселя.
- На фоне роста показателей тока разогреваются электроды лампы.
- При остывании стартера происходит размыкание цепи.
- Происходящие процессы приводят к появлению относительно высокого напряжения. В результате происходит «зажигание» источника внутри колбы.
Когда осветительный прибор перейдет в обычный режим работы, его напряжение будет существенно ниже сетевого, чего недостаточно для активации стартера. Поэтому он находится в разомкнутом виде и не влияет на функционирование лампы.
При наличии электромагнитных модулей на включение осветительных приборов уходит относительно много времени. В процессе эксплуатации это время постоянно увеличивается, что является существенным недостатком изделий. Такие источники света мигают в процессе работы, поэтому их не рекомендуется использовать в жилых помещениях. Также они довольно шумны и потребляют много электроэнергии.
Электронные агрегаты
Электронные пускорегулирующие аппараты (ЭПРА) являются своеобразными преобразователями напряжения. В схеме устройств отсутствует стартер. Чтобы понять, что такое ЭПРА для светодиодного или люминесцентного светильника, необходимо разобрать принцип его работы.
Магнитный балласт для компактных ламп (ПРА)Перед подачей на катоды лампы зажигающего потенциала они подвергаются нагреву. При этом высокая частота напряжения, которое поступает к устройству, увеличивает его КПД и предупреждает мерцание. Также в процесс зажигания может быть задействован колебательная цепь. Она входит в резонанс до того момента, пока в колбе лампы отсутствует разряд. Это приводит к увеличению напряжения и к росту тока, что провоцирует разогрев катодов.
Балласты для компактных ламп
Сравнительно недавно на рынке появились люминесцентные лампы, адаптированные под стандартные плафоны. Это позволяет использовать их в качестве осветительных приборов в помещениях любого назначения без замены светильников.
Балласт компактных ламп размещается внутри патрона. Поэтому их ремонт теоретически возможен, но на практике не осуществляется.
Преимущества и недостатки электронного балласта
Электронный пускорегулирующий аппарат (ЭПРА)Электронный пускорегулирующий аппарат имеет ряд неоспоримых преимуществ:
- Запуск лампы с электрическим балластом происходит очень быстро – на протяжении 1 секунды после включения.
- ЭПРА генерирует частоту 38-50 кГц. Поэтому лампы с электронным балластом лишены таких негативных моментов, как мерцание и искажение изображения.
- Срок службы приборов с электронным ПРА увеличивается в два раза.
- При выходе из строя люминесцентное устройство с ЭПРА сразу перестает генерировать переменное напряжение. Это существенно увеличивает безопасность изделия.
- Применение ЭПРА для светодиодных светильников делает невозможным их холодный запуск, что предотвращает эрозию катодов.
- Подобные устройства работают бесшумно. Поэтому их разрешается использовать в помещениях, где люди находятся длительное время.
Преимуществом электронного балласта для люминесцентных ламп называют простую схему его подключения. Также подобное устройство относится к категории энергоэффективных. При этом его КПД составляет 95%, что является довольно хорошим показателем.
Электронные балласты для ламп дневного света стоят дороже своих электромагнитных аналогов. Также их недостатком называют большую вероятность выхода из строя при скачках напряжения.
Рекомендации специалистов по выбору
При приобретении балластника обращают внимание на мощность модуля. Она должна соответствовать аналогичному показателю осветительного устройства. В противном случае прибор не сможет нормально функционировать.
При покупке балласта нельзя ориентироваться только на его стоимость. Электромагнитные приборы стоят дешевле, но они менее эффективны. Высокая стоимость электронных устройств нивелируется их отличными характеристиками.
Подбор балласта по производителю
ЭПРА с пластиковым корпусомПри покупке дросселя следует ориентироваться на репутацию фирмы, которая его выпускает. Изделие китайского производства не всегда сможет оправдать ожидания пользователей. Специалисты рекомендуют покупать приборы от брендов, продукция которых проверена временем и подтверждена положительными отзывами клиентов.
Качественные балласты имеют крепкий корпус, изготовленный из пластика, устойчивого к деформациям и действию критических температур. Им присвоена степень защиты IP2. Это означает, что в прибор не могут проникнуть посторонние предметы, размер которых больше 12,5 мм.
Признаком хорошего балласта в лампе называют ее плавный запуск. Между включением прибора и появлением освещения всегда присутствует небольшая пауза. При ее отсутствии схема дросселя упрощена, что снижает срок эксплуатации лампы.
Популярные электромагнитные балласты
У пользователей большой популярностью пользуются электромагнитные дроссели, изготовленные фирмой E.Next. Производитель поставляет высококачественную продукцию, которая соответствует международным стандартам. На свои изделия компания предоставляет гарантию и обеспечивает сервисную поддержку.
Не меньшим спросом пользуется продукция известного европейского производителя электрооборудования Philips. Такие изделия позиционируются как энергоэффективные и надежные. При их использовании удается правильно регулировать нагрузку, что положительно сказывается на работе ламп.
Лучшие устройства электронного типа
Дроссель фирмы OsramДроссели электронного типа относятся к современным изделиям с оптимальными функциями. Подобную продукцию выпускает немецкая компания Osram. Стоимость балластов от данной фирмы выше китайских аналогов, но ниже в сравнении с изделиями Philips и Vossloh-Schwabe.
Модули Horos относятся к категории бюджетных. Несмотря на невысокую стоимость, они имеют оптимальное КПД, характеризуются низким энергопотреблением. При этом балласты этой фирмы повышают качество работы осветительных устройств и устраняют задержку при включении. При их использовании можно полностью забыть о мерцании осветительных приборов.
Популярность на рынке имеет продукция молодой, но перспективной компании Feron. Она предоставляет покупателям изделия европейского качества по доступным ценам. Балласты Feron предохраняют лампы от перепадов напряжения, устраняют мерцание и экономят электроэнергию. Производимое приборами освещение мягкое и равномерное.
схема, как подключить, ремонт, принцип работы, электронный и индуктивный
Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы продолжают широко использоваться. В этой статье мы выясним, что такое балласт для ламп. Узнаем, почему это обязательная деталь любого люминесцентного светильника. В дополнение разберемся в несложном ремонте этого пускорегулирующего узла.
Что такое балласт и для чего он нужен
Чтобы разобраться, для чего нужен балласт, необходимо понимать принцип работы люминесцентной лампы (ЛЛ). Рассмотрим ее устройство. Конструктивно любая люминесцентная лампа – стеклянная колба в виде трубки, в концы которой запаяны тугоплавкие спирали накаливания, являющиеся электродами. Колба заполнена инертным газом с небольшим добавлением металлической ртути. Изнутри она покрыта люминофором – веществом, способном излучать видимый свет при облучении его ультрафиолетом.
Конструкция и принцип работы ЛЛПри подаче напряжения на электроды в колбе возникает тлеющий разряд. Поток электронов активирует атомы ртути, и те начинают излучать в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофор, заставляя его ярко светиться в видимом спектре.
Сам ультрафиолет поглощается люминофором и стеклом колбы. Он не покидает пределов лампы. Это исключает вредное воздействие ультрафиолетового излучения на человека.
Теоретически все просто. На самом деле в холодной выключенной лампе при подаче рабочего напряжения на электроды разряда не произойдет, поскольку ртуть находится в конденсированном состоянии, а сопротивление инертного газа между электродами слишком велико. При запуске ртуть начинает испаряться, сопротивление газового промежутка между электродами резко падает, и тлеющий разряд в колбе переходит в неуправляемый дуговой. Для нормальной работы лампы необходимо выполнение двух условий:
- Запуск.
- Поддержание рабочего тока через колбу.
Этим и занимаются балласты, или пускорегулирующие аппараты (ПРА). Без них ни одна люминесцентная лампа работать не может.
к содержанию ↑Разновидности
Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.
Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.
Электромагнитный
ЭмПРА – это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).
Дроссель + стартер = ЭмПРАРассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.
Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.
Типовая схема люминесцентного светильника с ЭмПРАНа схеме буквами обозначены:
- А – люминесцентная лампа.
- В – сеть переменного тока.
- С – стартер.
- D – биметаллические электроды.
- Е – искрогасящий конденсатор.
- F – нити накала катодов.
- G – электромагнитный дроссель (балласт).
Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.
Поскольку рабочее напряжение на электродах работающей лампы ниже напряжения зажигания стартера, в последующем функционировании светильника он не участвует.
Электронный
Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.
ЭПРА в сборе (вверху) и его «начинка»Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.
Типовая структурная схема ЭПРАПеременное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.
Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.
Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).
В этой схеме пуск лампы производится на холодных спиралях конденсатором, образующим резонансный контурХолодный пуск сокращает срок службы ЛЛ, поскольку в таком режиме при образовании разряда из холодных катодов вырываются куски активной массы, разрушая покрытие, обеспечивающее стабильный разряд. В результате увеличивается рабочее напряжение ЛЛ и напряжение запуска. Они не в состоянии обеспечить ЭПРА.
Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.
Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.
Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.
Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.
к содержанию ↑Варианты схем подключения
Схему подключения люминесцентной лампы через электромагнитное пускорегулирующее устройство мы рассмотрели. Она стандартная и без вариаций. Обычно дополняется конденсатором, подключаемым параллельно светильнику. Он служит для снижения реактивной мощности, которую потребляет любая реактивная нагрузка, в том числе дроссель.
Схема люминесцентного светильника с ЭмПРА и компенсационным конденсаторомК одному дросселю можно подключить две люминесцентные лампы. При этом необходимо выполнить следующие условия:
- ЛЛ имеют одинаковую мощность.
- Мощность балласта равна сумме мощностей ЛЛ.
- ЛЛ рассчитаны на рабочее напряжение 110 В (при питании от сети 220 В).
- Стартеры рассчитаны на рабочее напряжение 110 В.
Схема подключения двух ламп к одному дросселю выглядит так (мощности дросселя 36 W и ламп 2х18 W условные):
Схема светильника с двумя люминесцентными лампами на одном ЭмПРАВажно! Для эффективной компенсации реактивной мощности необходимо подобрать конденсатор соответствующей емкости. Она зависит от мощности светильника. К примеру, для лампы 18 Вт необходим конденсатор емкостью 4.5 мкФ. В светильник с лампой 60 Вт устанавливается емкость 7 мкФ. Конденсаторы должны быть неполярными и рассчитаны на рабочее напряжение не ниже 400 В. Обычно используют бумажные конденсаторы МБГО и МГП.
Поскольку электронный балласт, как правило, имеет в составе пусковое устройство, подключить к нему ЛЛ проще. Для сборки светильника понадобятся лишь провода. Самый простой пример – одна лампа, один ЭПРА.
Стандартная схема подключения ЛЛ через электронный балластСуществуют балласты, работающие с несколькими лампами. Для примера ниже приведены схемы подключения ЭПРА на 2 ЛЛ.
Варианты подключения ЭПРА для двух лампСхема подключения балласта, рассчитанного на работу с четырьмя ЛЛ, выглядит так:
Схема подключения балласта на 4 люминесцентные лампочкиУниверсальные приборы в зависимости от схемы включения могут работать с произвольным количеством ЛЛ разной мощности.
Универсальный балласт и схемы его включенияВсе приведенные схемы являются общими. Каждый ЭПРА может включаться особым образом. Поэтому прежде чем взяться за монтаж, необходимо выяснить схему включения. Она есть в сопроводительной документации и, как правило, наносится на корпус прибора. Там же указана мощность ламп и диапазон питающих напряжений.
Схема подключения ЭПРА находится на его корпусек содержанию ↑Ремонт электронного балласта для люминесцентных ламп
Прежде чем ремонтировать балласт, убедитесь, что проблема не в самой лампе. Проверить исправность ЛЛ несложно. Для этого вынимаем ее из светильника и прозваниваем спирали катодов любым тестером в режиме измерения малых сопротивлений. Если у нас в руках так называемая КЛЛ, то для прозвонки спиралей ее придется разобрать. При проверке обеих спиралей прибор должен показать сопротивление от нескольких единиц до нескольких десятков Ом (зависит от мощности лампы).
Проверка целостности спиралей катодов ЛЛ мультиметромЕсли хотя бы одна из спиралей не «звонится», лампа неисправна. На фото выше слева спираль исправна, справа – в обрыве. ЛЛ не работает и отремонтировать её невозможно.
Неисправность ЛЛ может заключаться в осыпании активного слоя, нанесенного на спирали, хотя они и будут звониться. При этом резко повышается напряжение пуска лампы и рабочее. Их ЭПРА обеспечить не может. Но такая неисправность не появляется мгновенно. Светильник начинает тяжело включаться, самопроизвольно перезапускаться и в результате тухнет вовсе.
Распространённые принципиальные схемы
Прежде чем перейти к ремонту, рассмотрим несколько распространённых схем электронных балластов для люминесцентных ламп. Начнём с самой простой. Она используется в светильниках небольшой мощности, включая компактные люминесцентные лампы (КЛЛ).
Схема простого балласта люминесцентной лампы
Сетевое напряжение выпрямляется диодным мостом D3-D6 и сглаживается высоковольтным конденсатором С4. Пройдя через фильтр L2, С7, питает блокинг-генератор, собранный на транзисторах Q1, Q2 и трансформаторе Т1. Рабочая частота генератора обычно составляет 10-20 кГц. Импульсное напряжение, снятое с обмотки Т1, через дроссель L1 поступает на выводы катодов люминесцентной трубки LMP1. Вторые выводы катодов соединены через конденсатор С5.
После подачи на схему питания генератор запускается. Напряжение с частотой преобразования подается на катоды лампы. Пока разряда в колбе нет, напряжение проходит через спирали и С5. Емкость С5 подобрана такой, что она вместе со спиралями LMP1, дросселем L1 и обмоткой Т1 образует колебательный контур, настроенный на частоту работы генератора. В результате резонанса напряжение на катодах возрастает до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.
За счёт низкого сопротивления разряда в колбе конденсатор C5 шунтируется, резонанс срывается, и на электроды поступает рабочее напряжение, необходимое для ЛЛ. Ток через колбу LMP1 ограничивается дросселем L1.
Поскольку рабочая частота дросселя высока, он имеет скромные размеры по сравнению с электромагнитным балластом, функционирующим на частоте 50 Гц.
Эта схема обеспечивает холодный пуск лампы. То есть она зажигается без предварительного подогрева катодов и практически мгновенно. Это не оптимальный режим, поскольку резко сокращает срок службы ЛЛ. А теперь посмотрим на следующую схему.
Схема простого балласта с подогревом спиралейВ целом схема та же с аналогичным принципом работы. Сетевое напряжение выпрямляется, сглаживается и питает генератор, питающий, в свою очередь, ЛЛ. Но обратите внимание на терморезистор, подключённый параллельно пусковому конденсатору С3. Терморезистор имеет положительный ТКС (такой прибор еще называют позистором). Пока холодный, он обладает низким сопротивлением. При подаче питания на светильник позистор шунтирует С3 и резонанса не происходит – нити накала подогреваются рабочим напряжением, недостаточным для образования разряда в колбе LMP1.
Через некоторое время позистор разогревается протекающим через него током. Его сопротивление возрастает. Конденсатор С3 перестает шунтироваться, возникает резонанс. Напряжение на электродах увеличивается до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.
В дальнейшем при работе лампы часть тока протекает и через позистор, поддерживая его в разогретом состоянии, чтобы он не мешал работе ЛЛ. Это снижает КПД конструкции (на разогрев позистора тратится энергия), но расходы эти незначительны – сопротивление нагретого терморезистора велико, а ток через него мал. Кроме того, они оправданы многократно увеличенным сроком службы люминесцентной лампы за счёт ее «правильного» запуска.
В завершение рассмотрим более сложную и «умную» схему ЭПРА, собранную на специализированной микросхеме. Примерно о таком балласте шла речь в разделе «Варианты схем подключения». Там он позиционировался как универсальный и мог работать с произвольным количеством ЛЛ разной мощности (от 1 до 4).
Схема универсального ЭПРАДля понимания принципа его работы нам понадобятся схемы вариантов подключения ламп к этому балласту.
Варианты схем подключения универсального ЭПРАРабота такого балласта с ЛЛ делится на три этапа:
- Предварительный разогрев катодов.
- Пуск.
- Рабочий режим.
После включения питания генератор, собранный на микросхеме D1, запускается на частоте около 65 кГц. Сигнал генератора через силовой ключ, собранный по полумостовой схеме на транзисторах VT2, VT3, подаётся на трансформатор Т2 и далее на спирали катодов ЛЛ, предварительно их разогревая.
Через опредёленное время (регулируется резистором R13) частота генератора начинает понижаться. Как только она снизится до резонансной частоты, на которую настроен контур L2С16, напряжение на катодах лампы возрастёт до 800 В. В колбе произойдёт разряд – ЛЛ запустилась. При этом на выводе 13 D1 появится напряжение, запускающее третий этап – рабочий.
Если напряжение на выводе 13 микросхемы не появилось, а на выводе 1 упало ниже 0.8 В, процесс розжига повторяется. При нескольких неудачных попытках розжига ЭПРА прекращает свою работу и отключает неисправную лампу. То же самое произойдёт при попытке запустить ЭПРА без лампы.
При удачном пуске частота генератора понижается до рабочей (устанавливается резистором R12). Ток через лампу стабилизируется и поддерживается на заданном уровне даже при значительных колебаниях величины питающего напряжения (для этой схемы – от 110 до 250 В). На элементах T1 и VT1 собран корректор активной мощности, снижающий реактивную составляющую.
Типовые неисправности и их устранение
Теперь проведём ремонт балласта люминесцентной лампы своими руками. Сложную неисправность мы не устраним – для этого потребуются определённые знания и приборы, но с проблемами попроще справимся. Посмотрим, что чаще всего ломается из того, что мы можем найти и исправить:
- некачественный монтаж;
- предохранитель;
- высоковольтный конденсатор;
- выпрямительный мост;
- силовой транзистор;
- дроссель/трансформатор.
Итак, разбираем пускорегулирующее устройство и делаем визуальный осмотр. Все элементы, дорожки и пайки должны быть в хорошем состоянии – без следов деформации, потемнения, разрушения и обугливания. На фото ниже отлично видны (слева направо и сверху вниз):
Неисправности балласта, определяющиеся визуальным осмотром- некачественная пайка;
- вздутие сглаживающего конденсатора;
- сгоревший дроссель;
- пробитый транзистор (часть корпуса вырвана).
Если находим такие элементы, меняем их. Обнаруживаем непропай – лудим и пропаиваем.
После замены не включаем балласт, а проверяем остальные элементы по методике, описанной ниже, поскольку выход из строя одного элемента может быть как причиной, так и следствием неисправности других. К примеру, вздутие конденсатора вызывается пробоем выпрямительного диода. Предохранитель может сгореть из-за вышедшего из строя силового транзистора или конденсатора.
Теперь посмотрим, как выглядят вышеперечисленные элементы на плате драйвера. В зависимости от модели прибора они могут располагаться в другом месте, но различия обычно незначительны. Найти нужный элемент нетрудно.
Примерное расположение основных элементов на плате ЭПРАНа фото цифрами обозначены:
- 1 – предохранитель;
- 2 – диодный мост;
- 3 – сглаживающий конденсатор;
- 4 – силовые транзисторы;
- 5 – импульсный трансформатор;
- 6 – дроссель.
Теперь берем в руки тестер и проверяем предохранитель (если он есть), не выпаивая его из схемы. Прибор в режиме измерения низкого сопротивления или проверки диодов должен показать ноль. В противном случае предохранитель неисправен.
Выпрямительный мост. Он может быть собран как на отдельных диодах, так и представлять собой сборку из четырех диодов в одном корпусе. На фото ниже такая сборка отмечена стрелкой.
В этот ЭПРА установлена выпрямительная диодная сборкаВ любом случае прозваниваем каждый диод в обоих направлениях тестером, включённым в режим проверки полупроводников. В одном направлении прибор должен показать падение напряжения порядка нескольких сот милливольт, в другом – бесконечность. Диоды перед проверкой выпаивать не нужно.
Конденсатор. Этот элемент выглядит как небольшой бочонок рядом с выпрямительным мостом. Даже если с виду он исправен (не вздулся и не взорвался), стоит его проверить. Для этого выпаиваем конденсатор из схемы и прозваниваем в режиме проверки диодов, предварительно кратковременно замкнув его выводы, чтобы разрядить.
В первый момент прибор покажет малые значения падения напряжения. По мере зарядки конденсатора они будут увеличиваться. Если показания прибора низкие и не изменяются, конденсатор пробит. Если мультиметр показывает бесконечность, то конденсатор в обрыве. В обоих случаях элемент меняем.
Транзисторы. Их для проверки тоже придется выпаять. Переводим мультиметр в режим проверки диодов и прозванивам транзистор между выводами база-коллектор и база-эмиттер в обоих направлениях. В одну сторону прибор покажет падение напряжения порядка нескольких сотен милливольт, в другую – бесконечность. Выводы коллектор-эмиттер на должны звониться вообще – в обе стороны бесконечность.
Это все, чем мы можем помочь электронному балласту. Для выявления и устранения более сложных неисправностей потребуется помощь специалиста.
Мы выяснили, для чего нужен балласт люминесцентной лампе. Узнали, какими эти балласты бывают, как работают, научились устранять распространенные неисправности этого электронного узла.
ПредыдущаяЛюминесцентныеПравила хранения люминесцентных ламп на предприятиях
СледующаяЛюминесцентныеДля чего нужен стартер в люминесцентных лампах
Спасибо, помогло!1Не помоглоЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС
Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт.Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.
Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:
С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.
Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.
Форум по электронным преобразователямФорум по обсуждению материала ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС
для люминесцентных ламп, схема, описание работы и ремонта
Электронный балласт (ЭБ) — это устройство, которое ограничивает ток через электрическую нагрузку осветительного прибора. Он чаще всего используется, когда нагрузка, например, дуговой разряд, испытывает падение напряжения на клеммах при увеличении тока. Если этому процессу не препятствовать, он будет протекать, пока источник тока или сам прибор не будет выведен из строя. Чтобы этого не произошло, в схему включают балласт, обеспечивающий положительное или реактивное сопротивление, ограничивающее ток.
Пускорегулирующее устройство для люминесцентных ламп можно использовать для ограничения тока в обычной цепи с положительным сопротивлением. До появления твердотельного зажигания автомобильные системы зажигания обычно включали балластный резистор для регулирования напряжения, подаваемого на систему зажигания. Сегодня в современных устройствах освещения последовательные резисторы используются в качестве ЭБ для управления током через светодиоды.
Что такое
Электронный балласт использует твердотельные электронные схемы, чтобы обеспечить надлежащие пусковые и рабочие электрические условия для питания газоразрядных лампочек. Они часто основаны на топологии SMPS, сначала выпрямляя входную мощность, а затем прерывая ее с высокой частотой. Усовершенствованные ЭБ могут позволить регулировать яркость с помощью широтно-импульсной модуляции или путем изменения частоты на более высокое значение. Балласты, включающие микроконтроллер или цифровые схемы могут предлагать дистанционное управление и мониторинг через сети или простое аналоговое управление с использованием сигнала управления яркостью 0-10 В постоянного тока.
Применение электронных балластов для HID освещения становится все более популярным. Большинство ЭБ нового поколения могут работать как с натриевыми (HPS) лампами высокого давления, так и с металлогалогенными устройствами, что снижает затраты систем освещения, которые используют оба типа ламп. Первоначально балласт работает как пускатель для дуги, подавая импульс высокого напряжения, а затем он функционирует как ограничитель/регулятор электрического потока внутри цепи. ЭБ работают намного холоднее и легче, чем их магнитные аналоги.
Принцип действия
Электронный балласт для люминесцентных ламп схема 36w получает питание при 50 — 60 Гц. Сначала он преобразует напряжение переменного тока в постоянный. После этого фильтрация этого постоянного напряжения осуществляется с помощью конфигурации конденсатора. Теперь отфильтрованное напряжение подается на каскад высокочастотных колебаний, они обычно представляют собой прямоугольные волны, а диапазон частот составляет от 20 кГц до 80 кГц.
Следовательно, выходной ток имеет очень высокую частоту. Небольшая индуктивность обеспечена, чтобы быть связанной с высокой скоростью изменения тока на большой частоте. Как правило, более 400 В требуется для запуска процесса газового разряда в свете люминесцентных светильников. Когда переключатель включен, начальное напряжение на лампе становится равным 1000 В из-за высокого значения, следовательно, разряд газа происходит мгновенно.
Как только процесс разрядки начат, напряжение на светильнике падает с 230 В до 125 В, балласт для ламп позволяет ограниченному току течь через нее. Это управление напряжением и током осуществляется блоком управления ЭБ. В рабочем состоянии люминесцентного светильника ЭБ действует, как диммер для ограничения тока и напряжения.
Простейший ЭБ использует общий принцип выпрямления входной мощности и сглаживания формы волны, пропуская его через простой фильтр, такой как электролитический конденсатор. Схемы электронных балластов для люминесцентных ламп демонстрируют принцип их работы.
Схема построения электронного балластаВыпрямитель преобразует переменный ток в постоянный сигнал. Первым шагом является выпрямление входной мощности, а затем сигнал прерывается для увеличения частоты. Этот тип балластов работает от 20 до 60 кГц. Другие типы, такие как магнитные балласты, обычно работают на частоте линии, которая составляет около 50-60 Гц. Они страдают от таких проблем, как мерцание и жужжащий звук, который иногда создает неудобства для окружающих.
Обоснование увеличения частоты в ЭБ заключается в том, что эффективность лампы быстро возрастает при изменении частоты от 1 кГц до 20 кГц, а затем постепенно повышается до 60 кГц. По мере того как рабочая частота устройства увеличивается, величина тока, необходимого для создания такого же количества света, уменьшается по сравнению с линейной частотой. Таким образом, повышая эффективность лампы.
График эффективности лампыВажно! Повышенная производительность на более высоких частотах заключается в том, что период времени цикла переменного тока становится короче, чем время релаксации между последовательной ионизацией и деионизацией газа переменным током. Таким образом, плотность ионизации в лампе поддерживается практически постоянной вблизи оптимальных условий работы в течение всего периода переменного тока. Следовательно, он действует как омический резистор, который увеличивает коэффициент мощности. В то время как на низких частотах плотность ионизации колеблется больше относительно оптимального уровня, вызывая плохие средние условия разряда.
Разновидности балласта
Различные типы балластов группируются по типам реализации: электронная и электромагнитная реализация. Кроме того модели классифицируются по области применения для устройств освещения, среди которых выделяют:
- Высокочастотный электронный балласт для люминесцентных светильников, с предварительным и без предварительного нагрева. Первая модель повышает производительность и срок службы устройства, а также снижает шумовой эффект. Балласт без предварительного нагрева потребляет меньше энергии.
Высокочастотный балласт для натриевых ламп. Это менее громоздкий балласт, чем обычные модели, установленные на светильниках низкого давления, простой в установке, с небольшим расходом энергии на собственные нужды. - Электронный балласт для газоразрядных устройств. Эта модель обычно предназначена для натриевых и металлических ламп высокого давления, что увеличивает их срок службы до 20% по сравнению со стандартом. Время запуска уменьшается, как и мигающие эффекты. Следует отметить, что эти балласты подходят не для всех светильников.
- Многоламповый балласт. Он обладает тем преимуществом, что его можно использовать с несколькими типами люминесцентных устройств, в том числе в аквариумном освещении, создавая оптимальный праймер. Он имеет функцию записи всех параметров освещения в своей памяти.
- Балласт с цифровым управлением. Это модель последнего поколения, предлагающая множество возможностей гибкости и модульности при установке светильников. Это улучшает экономический аспект светодиодной лампы и комфорт яркости. При этом, он является самой дорогой моделью.
Электромагнитная реализация
Магнитные балласты (МБ) — это устройства со старой технологией. Они используются для семейства флуоресцентных ламп и некоторых металлогалогенных устройств.
Они, как правило, являются причиной гудения и мерцания, потому что регулируют ток постепенно. МБ используют трансформаторы для преобразования и контроля электроэнергии. Когда ток образует дугу через светильник, он ионизирует больший процент молекул газа. Чем больше их ионизировано, тем ниже сопротивление газа. Таким образом, без МБ ток будет подниматься так высоко, что лампа будет нагреваться и разрушаться.
Трансформатор, который в МБ называют «дросселем», представляет собой проволочную катушку — индуктор, создающий магнитное поле. Чем больше протекает ток, тем больше магнитное поле, тем больше замедляет рост тока. Поскольку процесс протекает в среде переменного тока, ток течет в одном направлении только в течение 1/60 или 1/50 секунды, а затем падает до нуля, прежде чем будет протекать в противоположном направлении. Следовательно, трансформатор должен только замедлять течение тока на мгновение.
Электронная реализация
Производительность электронных балластов измеряется по разным параметрам. Наиболее важным является балластный фактор. Это отношение светоотдачи светильника, управляемой рассматриваемым ЭБ, к светоотдаче того же устройства, управляемой эталонным балластом. Это значение находится в диапазоне от 0,73 до 1,50 для ЭБ. Значимость такого широкого диапазона заключается в уровнях светоотдачи, которые могут быть получены с использованием одного ЭБ. Это находит большое применение в схемах диммирования. Однако установлено, что слишком высокий и слишком низкий балластные факторы ухудшают срок службы светильника из-за износа люмена в результате высокого и низкого тока соответственно.
Электронная реализацияКогда ЭБ должны сравниваться внутри одной и той же модели и производителя, часто используется коэффициент эффективности балласта, который представляет собой отношение коэффициента балласта выраженного в процентах к мощности и дает относительное измерение эффективности системы всей комбинации. Мера эффективности работы балласта с параметром коэффициент мощности (PF) — это мера эффективности, с которой ЭБ преобразует напряжение питания и ток в полезную мощность, подаваемую на лампу с идеальным значением 1.
Достоинства и недостатки
Благодаря прогрессу в технологических особенностях электронных балластов, эти аксессуары стали широко использоваться в люминесцентных лампах (ЛЛ).
Блок подключения ЭБВажные преимущества:
- Гибкость конструкции и отличные характеристики управления. Существуют различные типы балластов с регулируемыми функциями, которые могут работать с ЛЛ на разных выходных уровнях. Есть балласты для слабой освещенности и снижения энергопотребления. Для более высокой освещенности имеются балласты с высокой светоотдачей, которые можно использовать с меньшим количеством ламп и более высоким коэффициентом мощности.
- Большая эффективность. Электронные дроссели редко выделяют много внутреннего тепла, и поэтому они считаются более продуктивными. Эти ЭБ обеспечивают флуоресцентные лампы без мерцания и постоянной мощности, что является одним из наиболее заметных преимуществ.
- Меньшая охлаждающая нагрузка. Поскольку ЭБ не включают в себя катушку и сердечник, выделяемое тепло сводится к минимуму и, следовательно, охлаждающая нагрузка уменьшается.
- Способность одновременно эксплуатировать больше устройств. Один ЭБ может использоваться для управления 4 светильниками.
- Легче по весу. Благодаря использованию электронных балластов светильники имеют меньший вес. Поскольку он не включает в себя сердечник и катушку, он сравнительно легкий по весу.
- Меньшее мерцание лампочки. Одним из величайших преимуществ использования этих компонентов является уменьшение этого фактора.
- Тихая работа. Еще одна полезная особенность — ЭБ работают тихо, в отличие от магнитных балластов.
- Превосходные сенсорные возможности — ЭБ обладают сенсорными возможностями, так как они обнаруживают окончание срока службы лампы и выключают ее до того, как она перегреется и выйдет из строя.
- Электронные дроссели доступны в огромном ассортименте во многих онлайн магазинах электроники по доступным ценам.
К недостаткам можно отнести тот факт, что у электронных балластов переменные токи могут генерировать пики тока вблизи максимумов напряжения, создавая высокий гармонический ток. Это проблема не только для системы освещения, но также может вызвать дополнительные проблемы, такие как паразитные магнитные поля, коррозия труб, помехи от радио и телевизионного оборудования и даже неисправность ИТ-оборудования.
Высокое содержание гармоник также вызывает перегрузку трансформаторов и нейтральных проводов в трехфазных системах. Более высокая частота мерцания может оставаться незамеченной человеческим глазом, тем не менее, она вызывает проблемы с инфракрасными пультами дистанционного управления, используемыми в домашних мультимедийных устройствах, например, таких как телевизоры.
Дополнительная информация! Электронные балласты не имеют схемы, чтобы выдержать скачки напряжения и перегрузки.
Как правильно выбрать
Перед тем как выбрать устройство для ламп освещения обращают внимание на такие характеристики:
- Тип, мощность и количество ламп в схеме освещения. В листе спецификаций для электронного флуоресцентного балласта будет указано, какие типы и конфигурации светильников предназначены для работы балласта.
- Тип запуска — мгновенный или запрограммированный. Если система освещения характеризуется частым переключением из-за датчиков присутствия или других факторов, выбирают «запрограммированный запуск». В противном случае — «мгновенный», который является лучшим выбором.
- Балластный фактор. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства общего освещения. Низкий балластный коэффициент (<0,77) может быть наиболее подходящим балластным фактором для применений, где полная световая мощность светильников не требуется, тогда он уместен как способ экономии энергии.
- Высокий балластный коэффициент (> 1.1) полезен, когда целью является увеличение световой мощности для таких помещений, как склады или крупные розничные магазины. В этом случае пользователь получит примерно 10% увеличение светового потока по сравнению с номинальной освещенностью прибора.
- Входное напряжение. Некоторые ЭБ обеспечивают универсальное напряжение, другие удельное. В любом случае, проверяют требования к входному напряжению — 120/277/347 В.
- Минимальная начальная температура. Листы спецификации балласта включают температуры, которые будут варьироваться в зависимости от типа светильника, управляемой балластом. Например, ЭБ может показывать минимальную начальную температуру с −17 С до +30 С. Очевидно, что вариации довольно значительные. Поэтому при выборе ЭБ исходят из минимальной и максимальной температуры воздуха в помещении.
- Нормальная схема подключение — параллель. Это позволяет другим светильникам оставаться зажженными, даже если одна лампа в приборе гаснет.
- Контроль анти-стратификации: страты — это нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине светильника. Полоски более вероятны, когда лампа работает при низких температурах. Производители разработали способы минимизации этих зон и часто ссылаются на функцию защиты от зачистки в спецификации на ЭБ.
- Оценка звука. ЭБ с рейтингом «А» будет тихо гудеть, с рейтингом «D» вызовет ярко выраженный шум. Важность оценки звука зависит от назначения помещений.
- В библиотеках устанавливают ЛЛ с максимально тихим балластом, в то время как этот параметр, не так важен для складов.
- Светодиодный переход: у некоторых производителей ЭБ есть списки мгновенных и запрограммированных стартовых балластов, которые они называют «LED Ready».
- Гарантия производителя.
Как подключить электронный балласт своими руками к люминесцентной лампе
Замена люминесцентного балласта не слишком сложна, но, поскольку связана с электрическим напряжением, лучше доверить эту работу квалифицированному специалисту, если пользователь не имеет простейших навыков безопасной работы с электрооборудованием. Процедура замены балласта осветительного прибора зависит от типа установленной лампы.
Подключение ЭБАлгоритм замены ЭБ своими руками:
- При установке проводки или замене балласта люминесцентного света сначала отключают электрическое питание на светильник и отсоединяют его от сети.
- Снимают пластину рассеивателя, закрывающую лампу.
- Снимают сам светильник.
- После того, как появится доступ к балласту, снимают его крышку, которая может отличаться по конструкции и способу крепления.
- Отсоединяют все провода, ведущие в балласт. Перед этим лучше сфотографировать подключение, чтобы не перепутать провода при обратной сборке устройства.
- Перед началом работ с ЭБ. Еще раз проверяют тестером отсутствие напряжения на нем.
- Снимают ЭБ, ослабив и удалив гайки, удерживающие его на месте, одновременно поддерживая его свободной рукой, чтобы предотвратить падение.
Обратите внимание! Замену производят на совместимую марку и модель балласта, собирая схему в обратном направлении. После тщательной проверки правильности подключения подают напряжение на светильник.
Правильно установленные и функционирующие электрические осветительные балласты должны хорошо работать и обеспечивать безопасный, регулируемый ток для светильников без раздражающего мерцания и гудения, такого как в старых, магнитных или неисправных балластах.
электронный балласт — это… Что такое электронный балласт?
- электронный балласт
электронный балласт
—
[Интент]Тематики
- лампы, светильники, приборы и комплексы световые
Справочник технического переводчика. – Интент. 2009-2013.
- электронный атлас
- электронный бизнес
Электронный пускорегулирующий аппарат — (ЭПРА) … Википедия
Дневной свет — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия
Лампа дневного света — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия
Лампы дневного света — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия
Люминесцентные лампы — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия
Люминесцентная лампа — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник … Википедия
Индукционная лампа — Индукционная лампа электрический источник света, принцип работы которого основан на электромагнитной индукции и газовом разряде для генерации видимого света. Фактически представляет собой усовершенствованную модификацию люминесцентной лампы … Википедия
КЛЛ — Энергосберегающая лампочка Компактная люминесцентная лампа люминесцентная лампа, имеющая меньшие размеры по сравнению с колбчатой лампой и меньшую чувствительность к механическим повреждениям. Зачастую встречаются предназначенными для установки… … Википедия
непродуктивная мощность — Напрасно расходуемая (без выполнения полезной работы) электрическая мощность. [Интент] Параллельные тексты EN RU The fluorescent luminaire and electronic ballast in the example consumes unproductive power in the form of harmonic currents.… … Справочник технического переводчика
ЛОН — Лампа накаливания. 230 В, 60 Вт, 720 лм, цоколь E27, Высота примерно 110 мм Лампа накаливания осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического тока.… … Википедия
Полезное
Смотреть что такое «электронный балласт» в других словарях:
Что такое электронный балласт? — Utmel
Электронный балласт — это своего рода балласт, в котором используется электронная технология для управления источником электрического света для обеспечения необходимого освещения. Ему соответствует индуктивный балласт. Все больше и больше современных люминесцентных ламп используют электронные балласты, которые легки и компактны, и люди могут даже интегрировать электронные балласты с лампами.
Каталог
I Что такое электронный балласт?Электронный балласт — это своего рода балласт, в котором используется электронная технология для управления источником электрического света для обеспечения необходимого освещения.Ему соответствует индуктивный балласт. Все больше и больше современных люминесцентных ламп используют электронные балласты, которые легки и компактны, и люди могут даже интегрировать электронные балласты с лампами. В то же время электронные балласты обычно выполняют функцию стартера, поэтому на них можно сэкономить на отдельном стартере. Электронные балласты также могут иметь больше функций, таких как улучшение или устранение явления мерцания люминесцентных ламп за счет увеличения частоты тока или формы волны тока (например, прямоугольной волны).Он также может заставить люминесцентные лампы использовать мощность постоянного тока посредством процесса инверсии мощности.
II Принцип работы электронного балластаЭлектронный балласт — это преобразователь, который преобразует мощность переменного тока промышленной частоты в мощность переменного тока высокой частоты. Его основной принцип работы:
После того, как источник питания промышленной частоты проходит через фильтр радиопомех (RFI) , двухполупериодное выпрямление и пассивный (или активный) корректор коэффициента мощности (PPFC или APFC), он становится источник питания постоянного тока.Через преобразователь постоянного / переменного тока выход высокочастотной мощности переменного тока 20-100 кГц добавляется к резонансному контуру серии LC, подключенному к лампе, для нагрева нити накала, и в то же время на нити накала генерируется резонансное высокое напряжение. конденсатор, который приложен к обоим концам трубки лампы, переводя трубку лампы из состояния разряда во включенное состояние, а затем переходит в состояние излучения света.
В это время высокочастотная индуктивность играет роль в ограничении увеличения тока, гарантируя, что трубка лампы получит напряжение и ток, необходимые для нормальной работы.Часто добавляются различные схемы защиты, такие как защита от аномалий, перенапряжения и тока, защита от температуры и так далее.
III Технические условия 1. Коэффициент мощности (PF)Он отражает, как комбинация балласта и лампы эффективно использует входную мощность источника питания, которая выражается в ваттах / ВА или COS & Phi ; в некоторых местах. Вообще говоря, коэффициент мощности балласта индуктивности составляет 0,5 и может достигать только около 0.8 после коррекции емкости. Электронные балласты обычно могут достигать 0,95–0,99. Вы можете использовать каждый ватт энергии, поставляемой электростанцией, и это экологически безвредно.
2. Общие гармонические искажения (THD)Это относится к сумме нечетных гармонических составляющих во входном токе источника питания после того, как лампа достигнет стабильного рабочего состояния, когда балласт и лэмпворк ниже номинальной мощности. напряжение питания.
Согласно определению Фурье, прямоугольная волна состоит из серии синусоидальных волн с общим периодом, но разными частотами.Чем выше содержание гармоник, тем больше повреждение входной синусоидальной волны.
В случаях, когда имеется больше электронных балластов, если значение THD велико, это повлияет на ток нейтрали трехфазного входа переменного тока, и ток нейтрали будет слишком большим. Поэтому мы обычно выбираем THD с соотношением цены и качества между 15% -25% при использовании электронных балластов в больших масштабах.
3. Пик-фактор (CF)При номинальном напряжении источника питания, когда балласт работает с лампой, после того, как лампа достигает стабильного рабочего состояния, отношение пикового значения выходного тока через лампы к среднеквадратическому значению CF = PK / rms.Вообще говоря, чем меньше значение CF, тем стабильнее ток, протекающий через ламповую трубку, и тем дольше срок службы лампы. Стандарт IEC / GB — CF≤1,7 .
4. Электромагнитная совместимость (ЭМС)Это способность оборудования или системы нормально работать в электромагнитной среде и не создавать невыносимых электромагнитных помех для чего-либо в окружающей среде.
В Европе и Америке существуют разные стандарты реализации.
● lFCC (стандарт США, класс A; класс B)
● lCISPR (Международная электротехническая комиссия CISPR15)
● lEN55015 (европейский стандарт).
Когда пользователь использует стандартный балласт, его периферийное электронное оборудование не будет подвергаться помехам, например, электронные компьютеры, беспроводные телефоны и некоторое профессиональное электронное оборудование.
IV Преимущества электронного балласта1. Энергосбережение . Люминесцентный балласт имеет частоту 20-60 кГц для питания ламповой трубки, так что световая отдача ламповой трубки примерно на 10% выше, чем у промышленной частоты (предположим, что длина трубки составляет 4 фута).Собственное энергопотребление низкое, поэтому общая потребляемая мощность лампы снижается примерно на 20%, что дает лучший эффект энергосбережения.
2. Устранение стробоскопической вспышки и повышение стабильности светового излучения. Электронный балласт может улучшить визуальное разрешение и эффективность. Это также может снизить зрительную усталость после продолжительной работы, что может защитить наше зрение.
3. Отправная точка более надежна. После того, как стартер успешно запустился после однократного предварительного нагрева, избегая повторного запуска.
4. Высокий коэффициент мощности . Люминесцентные лампы мощностью более 25 Вт, соответствующие национальным стандартам, имеют коэффициент мощности более 0,95. Однако следует отметить, что национальные стандарты устанавливают верхний предел гармоник для ламп мощностью менее 25 Вт, так что их коэффициент мощности снижается до 0,7-0,8.
5. Стабильная входная мощность и выходной световой поток . Качественные электронные балласты обладают хорошими характеристиками стабилизации напряжения. Когда отклонения мощности и напряжения велики, источник света может поддерживать постоянную мощность и стабилизировать освещенность, что способствует экономии энергии.
6. Увеличьте срок службы лампы. Постоянная мощность высококачественных продуктов, снижение тока лампы и надежная отправная точка могут продлить срок службы лампы.
7. Низкий уровень шума . Шум качественного электронного балласта может достигать уровня ниже 35 дБ, что люди совершенно не чувствуют.
8. Регулируемая . В местах, где требуется диммирование, например в тех, где изначально использовались лампы накаливания или вольфрамовые галогенные лампы для диммирования, замените их высокоэффективными люминесцентными лампами с регулируемыми электронными балластами, которые могут обеспечить диммирование в широком диапазоне от 2% до 100%.
Рис. 1. Диммируемый электронный балласт
Следует отметить, что только правильно спроектированные электронные балласты могут использовать указанные выше преимущества. Хотя все они являются электронными балластами, электронные балласты, используемые для металлогалогенных ламп, намного сложнее, чем те, которые используются для люминесцентных ламп, или почти полностью отличаются. Если дизайн или производственный процесс не подходят, очень небольшое упущение приведет к отказу.
Приложение электронного балласта
В1. Special буксирует один и буксирует два электронных балласта для лайтбоксов, специально разработанных для уличных лайтбоксов и рекламных щитов. Их преимущества заключаются в следующем:
1) Безопасный рабочий процесс, высокие изоляционные характеристики, а также хорошие водонепроницаемые и влагонепроницаемые характеристики. Повышение низкой температуры балласта не повлияет на то, что ткань лайтбокса или лист лайтбокса пожелтеют из-за тепла.
2) Удобство:
● Его можно напрямую подключить к голому контакту без подключения и установки терминала;
● К нижней части балласта прикреплена губчатая наклейка, с помощью которой можно закрепить балласт;
● Имеет металлическую пряжку, фиксируется без патрона;
● Это поможет избежать частой замены стартера.
рисунок 2. Лайтбоксы Электронный балласт
2. Буксировки один и два обычных электронных балласта подходят для установки и замены ламп в различных случаях общего освещения;
3. Электронный балласт для кольцевых фонарей специально разработан для кольцевых фонарей. Он подходит для установки в потолочные светильники, такие как освещение домашнего балкона, освещение дорожек, освещение лестничного канала и другое освещение общественных мест.
4. ПРА для кварцевых бактерицидных ламп специально разработан для кварцевых бактерицидных ламп низкого давления мощностью 35-60 Вт. Даунлайты с ним имеют долгий срок службы (в 4 раза больше, чем у ламп накаливания), высокую яркость, постоянную цветовую температуру и небольшие размеры. Его можно использовать для общего освещения магазинов, витрин, выставочных залов, ювелирных магазинов, баров, музеев, специализированных магазинов и т. Д. Или для акцентного освещения в специальных зонах.
VI Меры предосторожностиЭлектронные балласты имеют очевидные преимущества в повышении энергоэффективности и качества систем освещения, которые являются тенденцией будущего развития.Так как же нам это правильно использовать? Вот некоторые моменты, на которые следует обратить внимание во время операции.
1. На рабочих местах с постоянным и интенсивным зрением и в местах с высокими требованиями к визуальным условиям (например, дизайн, рисование, набор текста и т. Д.), А также в местах, требующих особой тишины (палаты пациентов, кабинеты для консультаций и т. Д.) и в местах, где часто останавливается молодежь (классы, читальные залы и т. д.), в первую очередь следует использовать электронные балласты.
2. В местах, где требуется регулирование яркости, трехцветные люминесцентные лампы могут быть оснащены регулируемыми цифровыми балластами для замены ламп накаливания или галогенных ламп, что может значительно повысить энергоэффективность.
Рисунок 3. Цифровой балласт с регулируемой яркостью
3. Следует выбирать высококачественные продукты с низким уровнем гармоник. Мы не должны слишком зацикливаться на ценах, должны соблюдаться технические требования к использованию, а также мы должны учитывать эффекты эксплуатации и обслуживания и проводить всестороннее сравнение.
4. При использовании люминесцентных ламп мощностью менее 25 Вт, как упоминалось выше, предел гармоник определяется стандартом GB19625.Стандарт 1-2003 очень широк. Если в здании используется большое количество приложений, это вызовет множество нежелательных последствий. Следует принять эффективные меры для ограничения конструкции.
5. Выбранный продукт должен не только проверять его общую входную мощность, но и понимать его выходной световой поток. Согласно нормативам, коэффициент просвета (& mu;) балласта не должен быть ниже 0,95. Европейский Союз устанавливает класс энергоэффективности балласта и, соответственно, устанавливает коэффициент просвета μ≥0.96.
Вопросы, требующие внимания при выборе
(1) Обратите внимание на содержание гармоники . Пользователям следует обратить внимание на то, что пределы гармоник для ламп мощностью ниже 25 Вт очень слабы. Если в здании используется большое количество таких маломощных люминесцентных ламп (включая лампы T8, T5 и компактные люминесцентные лампы длиной 2 фута), возникнут нежелательные последствия, такие как серьезное искажение формы волны, чрезмерный ток нейтрального провода. , и пониженный коэффициент мощности.
(2) Обратите внимание на качество продукции и уровень . На рынке представлено много электронных балластов, и качество и уровень очень разные. Некоторые из них имеют большое содержание гармоник, низкий коэффициент светового потока, низкую надежность и малый срок службы. Несмотря на то, что эти продукты невысоки в цене, при использовании они могут вызвать нежелательные последствия, которые не рекомендуются.
VII Метод диммирования 1. Метод диммирования рабочего циклаЭтот метод управления диммированием использует импульсный рабочий цикл переключателя мощности в высокочастотном инверторе для регулировки выходной мощности.Максимальный рабочий цикл полумостового инвертора составляет 0,5, чтобы гарантировать, что две переключающие трубки имеют мертвое время, чтобы избежать одновременного проведения двух переключающих трубок и их повреждения.
Проблемы метода диммирования рабочего цикла
Если ток индуктора является непрерывным и отстает от напряжения полумоста Uxy, переключатель может работать в состоянии нулевого напряжения, когда он включен. Следовательно, необходимо использовать абсорбционный конденсатор для достижения рабочего состояния переключения при нулевом токе (ZCS) в момент выключения, чтобы он мог войти в рабочий режим переключения при нулевом напряжении (ZVS), а электромагнитные помехи и напряжение трубки переключения могут быть значительно уменьшено.
Однако, если рабочий цикл слишком мал, а ток в катушке индуктивности прерывистый, рабочие характеристики ZVS будут потеряны, и нагрузка на трубку переключателя увеличится из-за высокого напряжения постоянного тока источника питания. Это состояние прерывистой проводимости снижает надежность и увеличивает электромагнитное излучение.
Кроме того, когда лампа выходит из строя, также будет рабочее состояние с прерывистым током. Когда в лампе есть разрыв цепи, индуктивный ток будет течь через резонансный конденсатор.Поскольку емкость этого конденсатора мала, сопротивление относительно велико. Если две переключающие лампы не защищены цепью поглощения, они будут выдерживать большое напряжение.
2. Метод диммирования с частотной модуляциейДиммирование с частотной модуляцией также является широко используемым методом диммирования. Если частота переключения высокочастотного электронного балласта переменного тока увеличивается, сопротивление индуктора увеличивается, так что ток индуктора будет уменьшаться.
Ограничения метода диммирования FM
(1) Диапазон диммирования определяется диапазоном частотной модуляции. Если диапазон частотной модуляции невелик, диапазон регулировки мощности невелик.
(2) Чтобы реализовать диммирование в условиях работы с низким энергопотреблением, диапазон частотной модуляции должен быть очень широким (то есть от 25 кГц до 50 кГц). Частотный диапазон магнитопровода, схемы возбуждения и схемы управления может ограничивать диапазон регулирования яркости.
(3) Непросто добиться плавного переключения во всем диапазоне частотной модуляции. Когда нагрузка мала, мягкое переключение не может быть реализовано, и напряжение на трубке переключателя увеличивается. Переходный переход жесткого переключения является основным источником электромагнитного излучения.
Рисунок 4. Мягкое переключение
(4) Если полумостовой инвертор не работает в состоянии плавного переключения, потери инвертора увеличатся, а эффективность снизится.
(5) Когда частота переключения находится в пределах диапазона частот инфракрасного пульта дистанционного управления, люминесцентная лампа излучает низкоуровневое инфракрасное излучение. Если диапазон частотной модуляции большой, это повлияет на работу других инфракрасных устройств дистанционного управления, например телевизоров.
(6) Ток лампы приблизительно обратно пропорционален частоте переключения инвертора, а соотношение между диммированием и частотой переключения не является линейным.
(7) Когда лампа имеет обрыв цепи, появляется рабочее состояние с прерывистым режимом проводимости (DCM), особенно при очень низкой частоте переключения.
3. Регулировка напряжения M ethodЭтот метод имеет следующие преимущества:
(1) Отрегулируйте напряжение источника питания полумостового инвертора для достижения регулировки яркости.
(2) Используйте метод фиксированного рабочего цикла (около 0,5), чтобы полумостовой инвертор работал в широком диапазоне диммирования с непрерывным плавным переключением тока индуктивности (это также может упростить схему управления переключением).
(3) Поскольку частота коммутации фиксирована, конструкция схемы управления может быть упрощена для данной модели лампы.
(4) Поскольку частота переключения чуть больше резонансной частоты, можно снизить реактивную мощность и повысить эффективность работы.
(5) Поскольку частота коммутации фиксирована, параметры пассивных компонентов могут быть определены более удобно.
(6) Может поддерживать рабочих условий ZVS в широком диапазоне мощности лампы (5% -100%).
(7) При очень низком напряжении питания полумостового инвертора характеристики плавного переключения будут потеряны, и возникнет прерывистое рабочее состояние тока индуктора.Однако, когда напряжение источника питания постоянного тока очень низкое, это рабочее состояние больше не является проблемой. В это время напряжение и потери трубки переключателя будут очень небольшими, даже если жесткое переключение происходит при низком напряжении источника питания постоянного тока (например, 20 В), не будет слишком большого излучения EMI.
(8) Обеспечивает плавное и почти линейное регулирование мощности лампы.
(9) Может быть получено решение с низким энергопотреблением. Напряжение источника питания полумостового инвертора может быть очень низким (например, диапазон регулирования яркости 5–100%, соответствующий 30–120 В), поэтому можно использовать низковольтные конденсаторы и полевые МОП-транзисторы.
(10) Регулировка яркости осуществляется только путем управления выходным напряжением преобразователя SEPIC. Поскольку полумостовой инвертор работает в режиме постоянной частоты, для регулировки яркости можно использовать простое управление переменным / постоянным током.
(11) Ток лампы примерно пропорционален напряжению преобразователя постоянного тока, а диммирование почти пропорционально выходному напряжению постоянного тока преобразователя SEPICDC.
4. Метод импульсно-фазового затемненияВыходная мощность регулируется путем регулировки фазы проводимости двух переключающих трубок в полумостовом инверторе, чтобы достичь цели затемнения на выходе.
Метод регулировки яркости с фазовым управлением в основном имеет следующие характеристики:
(1) Регулируемая яркость до 1% от оригинала;
(2) Его можно запустить при любой настройке затемнения;
(3) Может использоваться в системах с несколькими лампами;
(4) Лампа диммирования фазы имеет хорошее соотношение мощности.
Все, что вам нужно знать о балластах — блог 1000Bulbs.com
Если в вашем офисе, складском помещении или здании используются люминесцентные лампы или светодиодные ламповые лампы plug-and-play, для бесперебойной работы вам необходим балласт.Вы знаете, что балласт — важная часть приспособления, но знаете, почему и как он работает?
Что такое балласт?
Проще говоря, балласт — это сердце люминесцентной лампы, которая передает энергию (перекачивает кровь) через лампу. Балласт обеспечивает правильное количество напряжения для запуска ламп и регулирует величину тока, протекающего к ним при включении. Чтобы запустить люминесцентную лампу, необходимо создать дугу между двумя электродами в лампе.Эта дуга возникает, когда балласт быстро подает правильное количество напряжения и электрического тока для зажигания дуги. Затем он сразу же ограничивает потребляемое напряжение и ток до уровня, достаточного для получения стабильного светового потока. Без этого регулирования люминесцентная лампа, получающая энергию непосредственно от источника питания высокого напряжения, неконтролируемо увеличивала бы потребление тока. Это приведет к перегреву лампы и ее возгоранию в течение нескольких секунд. ПРА предназначены для работы с определенным количеством ламп определенного типа при определенном напряжении.Это означает, что не все балласты совместимы со всеми люминесцентными лампами.
Какие типы балластов?
Люминесцентные балласты двух типов: магнитные и электронные. Магнитные балласты — это более старая технология, которая обычно используется либо в методах предварительного нагрева, либо в методах быстрого запуска. Эти балласты, как правило, дешевле, чем другие, но имеют тенденцию гудеть и мерцать примерно 120 раз в секунду. Методы предварительного нагрева и быстрого запуска нагревают катоды лампы до того, как балласт подает напряжение для запуска лампы.Электронные балласты работают относительно тихо, устраняя мерцание, характерное для магнитных балластов, и более энергоэффективны. Этот тип балласта может быть быстрым, мгновенным или запрограммированным.
Балласты мгновенного пуска зажигают свет быстрее всего. Однако они разработаны, чтобы оставаться включенными или выключенными в течение более длительных циклов. Частое включение и выключение может сократить срок службы лампы в долгосрочной перспективе. Их называют мгновенным запуском, потому что они запускают лампу мгновенно, пропуская через лампу около 600 Вольт, чтобы запустить катоды.Запрограммированный запуск, также известный как запрограммированный быстрый запуск, пускорегулирующие устройства запускаются медленнее, но не имеют разрушительного воздействия мгновенного пускового балласта при использовании с более частыми циклами включения-выключения. Этот тип балласта представляет собой интеллектуальный балласт для быстрого пуска. Этот тип балласта определяет температуру катодов лампы и использует достаточно энергии, необходимой для их зажигания. Поскольку холодные катоды требуют больше энергии для зажигания, эти балласты более энергоэффективны, чем другие балласты. Они разработаны для помещений с частыми циклами включения / выключения, таких как лестничные клетки, коридоры или ванные комнаты, оборудованные датчиками присутствия / отсутствия людей.
Когда мне следует заменять балласт?
Хотя замена не является обычной необходимостью, примерно через три года можно увидеть некоторое ухудшение характеристик балласта приспособления. Они имеют тенденцию выходить из строя постепенно, поэтому лампы переходят от незначительных проблем с поддержанием полной светоотдачи до полного отказа от освещения. Все балласты выходят из строя в какой-то момент, поэтому важно знать признаки отказа. Если ваш свет кажется тусклым, гудящим, быстро мерцающим или меняющим цвет, возможно, пришло время отремонтировать ваш прибор.
Мы что-нибудь пропустили? Оставьте любые другие вопросы о балластах в разделе комментариев ниже или свяжитесь с одним из наших экспертов по освещению по телефону 1-800-624-4488, с понедельника по пятницу, с 7:00 до 19:00 по центральному поясному времени.
Как проверить, вышел ли из строя балласт люминесцентного света
Люминесцентные лампы впервые начали коммерчески развиваться в 1930-х годах, хотя идеи о том, как их разрабатывать, возникли еще в 1880-х годах. Этот тип освещения может быть идеальным, поскольку излучаемый свет является энергоэффективным и хорошо рассеивается.Кроме того, компоненты, из которых состоят люминесцентные лампы, имеют долгий срок службы.
Но может быть неприятно, когда один из этих компонентов выходит из строя, вызывая непрерывное жужжание или мерцание света. Если вы недавно заменили люминесцентную лампу, но проблема не исчезла, возможно, проблема связана с балластом.
Что такое люминесцентный балласт?
Люминесцентные лампы состоят из нескольких компонентов. Свет образуется внутри стеклянной трубки за счет ионизации паров ртути, что заставляет электроны в газе испускать фотоны УФ-частот.
Эти частоты преобразуются в стандартный видимый свет с помощью люминофорного покрытия внутри трубки.
Высокое напряжение используется для того, чтобы электроны переходили от одного электрода к другому, образуя дугу. Для более холодных ламп требуется более высокое напряжение, поэтому некоторые люминесцентные лампы включаются медленно, прежде чем достигают полной яркости — лампа нагревает газ.
Балласт используется для регулирования тока, создаваемого этим процессом. Без этого ток быстро увеличился бы и вызвал перегрев лампы.Балласт обеспечивает быструю подачу высокого напряжения, создает дугу, снижает напряжение, а затем регулирует текущий ток для создания стабильного светового потока.
Признаки неисправного балласта
Низкая мощность
Если свет остается тусклым в течение нескольких минут после включения, у вас могут быть проблемы с балластом, особенно если вы только что заменили лампочку.
Мерцание
Периодическое мерцание или стробирование может быть особенно неприятным.Это также может быть признаком того, что ваш балласт не работает должным образом.
Жужжание
Умирающий балласт часто начинает гудеть или гудеть на выходе.
Несогласованные уровни освещения
Тусклый свет и изменение цвета обычны для люминесцентных ламп. Однако темные углы или непоследовательный свет в пространстве могут быть признаком того, что ваш балласт не работает должным образом.
Отложенный старт
Помните, что балласт обеспечивает напряжение для включения внутренней работы вашей лампы.Хотя можно ожидать начала потепления, увеличенная задержка является признаком плохого балласта.
Проверка балласта на неисправность
Если вы не можете найти явных признаков плохого балласта и уже пытались заменить лампочку, вы можете предпринять шаги, чтобы проверить, действительно ли проблема в балласте.
Шаг 1. Выключите прибор
Подойдите к панели автоматического выключателя и отключите питание той области, где находится лампа, которую вы хотите проверить.
Шаг 2.Вынуть люминесцентные лампы из светильника
Светильники изготавливаются иначе. Возможно, вам придется развернуть крышку объектива, открутить ее или просто сдвинуть.
Шаг 3. Отсоедините балласт
В круглых люминесцентных лампах отключите балласт от лампы. Для ламп U-образной формы вытащите лампу из пружин, а затем выньте ее из патрона. Для прямых ламп поверните лампу, чтобы высвободить ее из патрона.
Шаг 4. Снимаем балласт
Если балласт еще не открыт, снимите его крышку.На этом этапе признаки горения, вздутия или утечки являются убедительным признаком того, что вам необходимо заменить балласт. Если этих признаков нет, переходите к следующему шагу.
Шаг 5. Используйте мультиметр
Установите мультиметр на Ом или «Xl1», если на нем несколько Ом, вставьте один из щупов в соединитель проводов, содержащий белые провода. Другой конец прикоснитесь к оставшимся синим, красным и / или желтым проводам, прикрепленным к балласту. Ваш мультиметр не двинется с места, если ваш балласт вышел из строя.
Поиск подходящего балласта
Чтобы приобрести балласт, совместимый с вашим существующим осветительным прибором, вам потребуется тип лампы, количество ламп и напряжение в сети. Обычно вы можете найти эту информацию на этикетке, прикрепленной к балласту. Стоит отметить, что люминесцентные лампы T12 были сняты с производства из-за низкой энергоэффективности, поэтому поиск замены балласта для них может оказаться проблемой.
Самыми распространенными типами ламп и пускорегулирующих аппаратов являются Т12, Т8 и Т5, где Т означает трубчатый, а число указывает диаметр в 1/8 дюйма.Ваш светильник и балласт должны совпадать; например, балласт T8 должен использовать лампу T8.
Флуоресцентный свет может быть идеальным решением, особенно для больших площадей и коммерческих помещений. Однако мерцающий свет, жужжание и обесцвечивание могут ухудшить рабочие настройки. Проверка работоспособности вашего балласта и хранение свежих луковиц на складе — хороший способ поддерживать высокий уровень производительности без излишнего напряжения.
3 признака, что пришло время для замены электрического балласта
Ваши люминесцентные лампы не работают? Если вы недавно слышали странный, громкий жужжащий звук каждый раз, когда включаете свет, или у вас непостоянный уровень освещения, скорее всего, сами лампочки не виноваты.
Многие большие корпоративные осветительные панели или офисные лампы работают с небольшой помощью электрического балласта. Это устройство регулирует распределение энергии по осветительному прибору, работая с нагрузкой, чтобы ограничить количество тока в электрической цепи.
Это означает, что когда ваш балласт начинает выходить из строя, вашим фарам нечем регулировать ток, который проходит через трубку вашей лампочки. В конце концов, когда вы включите свет, ваши лампочки перегружаются и поджариваются!
Но если вы обнаружите неисправный балласт, пока не стало слишком поздно, вы можете избавить себя от хлопот по покупке всех новых ламп.Вот несколько признаков того, что ваш балласт может нуждаться в замене:
1. Знайте, нужен ли вашему фонарю пускорегулирующий аппарат.
Это отличное место для начала поиска и устранения неисправностей. Не всем фарам для работы требуется балласт, поэтому убедитесь, что это ваша проблема.
Например,лампы накаливания и галогенные лампы не зависят от балласта — и для светодиодных ламп он тоже не нужен.
Также есть лампочки с интегрированным балластом, который нельзя заменить отдельно.
Например, многие люминесцентные лампы имеют внутренний балласт. Компактные люминесцентные лампы (КЛЛ) также часто имеют одну встроенную — как это часто бывает в некоторых СПРЯТАННЫХ лампах — но не всегда.
Одиночные лампы со встроенным балластом необходимо заменять так же, как и любую другую лампу, когда они умирают или работают неисправно (вы не собираетесь разрывать саму лампу для замены внутреннего механизма). Однако более светильников могут работать с внешним балластом.
Обычно длинные полосы люминесцентных ламп T12 или T8 на потолке вашего предприятия имеют один общий электронный балласт, который можно заменить без необходимости замены световых полос (если вы обнаружите проблему до того, как балласт погаснет и сгорят лампы. , конечно).
Некоторые старые стоянки с высокоинтенсивным разрядом (HID) также используют балласт, хотя во многих современных светильниках вместо них теперь используются высокоэффективные светодиоды.
2. Ищите предупреждающие знаки о неисправности балласта.
После того, как вы уверены, что у вас есть балласт, самое время заняться расследованиями.
Обычно, если перегорела только одна лампа КЛЛ, попробуйте заменить лампу. Если вы заметили, что какой-либо из этих знаков влияет на всю секцию освещения, возможно, пришло время проверить свой балласт:
гудит
Если вы слышите странный звук, исходящий от ваших лампочек или осветительной арматуры, например жужжание или гудение, это часто является признаком того, что ваш балласт выходит из строя.Он изо всех сил пытается поддерживать ток и вызывает проблемы со звуковой стабилизацией напряжения.
Затемнение или мерцание
Если ваши лампы очень медленно достигают полной яркости или периодически стробируют, возможно, проблема связана не только с лампой. Поврежденные водой или неисправные балласты часто не могут регулировать ток.
Нет света вообще
Если ваши лампочки не включаются, велика вероятность, что все они погасли одновременно по естественным причинам. Ваш неисправный балласт мог их всех сжечь!
Изменение цвета
Ваши огни должны постоянно светиться с одинаковой яркостью и оттенком.Если вы заметили расхождение в цвете, возможно, ваш балласт перегорел и спорадический скачок напряжения в ваших лампочках.
3. Проверить сам балласт.
Часто, если ваш балласт медленно гудит или полностью стреляет, это будет очень очевидно. Не забудьте выключить автоматический выключатель на вашей электрической панели, прежде чем возиться. Снимите крышку с фары и самих ламп перед проверкой балласта на предмет:
Вздутая оболочка
Это то, что вы увидите еще до того, как снимете крышку корпуса.Если пластик вздувается, балласт кончен. Скорее всего, энергия перегрузила его и повредила коробку.
Ожоги.
Иногда нужно взломать балласт, чтобы увидеть внутренние повреждения. Если вы видите ожоги внутри устройства или на проводах, замените его. Он не справился с током и перегружен. В этом случае вам может потребоваться замена лампочек.
Ущерб от воды
Есть ли влага внутри вашей панели или балласта? Это наверное то, что зажарило аппарат.
Утечка масла
Если у вас старый балласт магнитной катушки, это может означать утечку масла и неисправность. Перед заменой тщательно очистите область.
Испытания и замена профессионального балласта
Все еще в тупике?
Вместо того, чтобы стоять на лестнице и копаться в проводах под напряжением, позвоните в команду SWFL Electric. Мы будем рады проверить ваш балласт и в кратчайшие сроки предоставить вам замену.
Напишите или позвоните нам по телефону (239) 935-5892.
Электронный балласт
Люди выросли с видом и звуками люминесцентных ламп, оживающих после нескольких попыток.По мере того, как новая волна энергосберегающих приборов охватила мир, технологии заставили люминесцентные лампы уменьшиться по толщине, а также уменьшили количество попыток, предпринимаемых лампами, чтобы светить максимально ярко. Сегодня во многих домах используются лампы Energy Saver CFL и люминесцентные лампы, которые начинают светить в момент включения.
Рис. 1: Примерное изображение лампы с электронным балластом
]]>Это мгновенное производство света достигается за счет использования электронных балластов .
Электронный балласт — это устройство, контролирующее пусковое напряжение и рабочие токи осветительных устройств, построенных по принципу электрического газового разряда. Он относится к той части схемы, которая ограничивает прохождение тока через осветительное устройство, и может варьироваться от одиночного резистора до более крупного и сложного устройства. В некоторых системах люминесцентного освещения, таких как диммеры, он также отвечает за контролируемый поток электрической энергии для нагрева электродов лампы.
Основы балласта:
Для работы осветительного устройства на основе электрического газового разряда необходима ионизация газа в трубке. Это явление происходит при относительно высокой разности потенциалов и / или температуре, чем при нормальных условиях эксплуатации лампы. После того, как дуга будет настроена, условия можно будет вернуть к нормальным. Для этого обычно используются три типа методов: предварительный нагрев , мгновенный запуск и быстрый запуск .При предварительном нагреве электроды лампы нагреваются до высокой температуры, прежде чем на них будет подано напряжение через стартер. ПРА с мгновенным запуском были разработаны для запуска ламп без задержки или мигания и использования начального высокого напряжения вместо повышенных температур. Балласты с быстрым запуском делают компромисс между предварительным нагревом и мгновенным запуском и используют отдельный набор обмоток для первоначального нагрева электродов в течение меньшей продолжительности, а затем с использованием относительно более низкого напряжения для запуска лампы.Другой тип балластов с программируемым пуском — это вариант быстрого пуска. В балластах можно использовать любой из этих принципов запуска. Первоначально, когда газ неионизирован, он предлагает путь с высоким сопротивлением для тока. Но после того, как происходит ионизация и возникает дуга, сопротивление падает до очень низкого значения, почти действуя как короткое замыкание. Если позволить всему этому току пройти через лампу, она либо перегорит, либо вызовет отказ источника питания. Таким образом, балласт должен выполнять ограничение тока.
Типы балласта:
Существует три основных типа балластов : магнитный, электронный и гибридный. В магнитных и гибридных балластах в качестве основных компонентов используется медная катушка, намотанная на магнитный сердечник, а в электронных балластах используются твердотельные электронные схемы для обеспечения надлежащих рабочих электрических условий для подключенных ламп. Краткое сравнение представлено в таблице ниже:
Фиг.2: Таблица, представляющая различные типы электронных балластов
История
История электронных балластов:
Хотя концепция электронных балластов возникла в 1950-х годах в General Electric, именно Сэм Берман и Руди Вердербер из Berkeley Labs проложили путь к созданию первых коммерчески жизнеспособных электронных балластов. Программа электронных балластов, финансируемая Министерством энергетики США, началась в лаборатории Беркли в 1977 году, где двум небольшим фирмам Iota Engineering и Luminoptics (ныне Lumenergi) была предоставлена технологическая поддержка для разработки первых электронных балластов.Вскоре к нам присоединились и другие компании, и сегодня насчитывается более 300 компаний, таких как Philips, производящих и продающих электронные балласты. Программы и стандарты скидок способствовали росту количества электронных балластов. Некоторые из них — это программа ENERGY STAR ® , добровольный строительный кодекс IES 90.1-1999 Американского общества инженеров по отоплению, холодильной технике и кондиционированию воздуха и т. Д.
Рис. 3: Изображение, представляющее архитектуру и последовательность операций контроллера балласта
Рабочий
Работа электронных балластов:
В примитивном электронном балласте использовался общий принцип выпрямления входной мощности и сглаживания формы волны путем пропускания ее через простой фильтр, такой как электролитический конденсатор.Выпрямитель преобразует переменный ток в сигнал постоянного тока. Улучшенные электронные балласты теперь обычно основаны на топологии SMPS, как показано на рисунке выше. Первый шаг — выпрямить входную мощность, а затем сигнал прерывается для увеличения частоты. Этот тип балластов работает в диапазоне от 20 до 60 кГц. Другие балласты, такие как магнитные балласты, обычно работают на частоте сети около 50-60 Гц. Они страдают от таких проблем, как мерцание и жужжание, которые иногда мешают окружению. Пример схемотехники электронного балласта для демонстрационной платы CFL показан ниже:
Фиг.4: Рисунок, демонстрирующий конструкцию схемы электронного балласта
]]>Подобные идеи схемотехники могут быть реализованы с использованием указаний по применению, предоставленных производителями микросхем в таблицах данных. Обоснование увеличения частоты в электронных балластах заключается в том, что эффективность лампы быстро увеличивается при изменении частоты от 1 кГц до 20 кГц, а затем постепенно увеличивается до 60 кГц. Когда рабочая частота лампы увеличивается, величина тока, необходимого для получения того же количества света, уменьшается по сравнению с частотой сети, что увеличивает эффективность лампы.Увеличение эффективности с увеличением частоты можно представить как:
.Рис. 5: График повышения эффективности работы лампы
]]>Повышенная производительность на более высоких частотах заключается в том, что на более высоких частотах период времени цикла переменного тока короче, чем время релаксации между последовательной ионизацией и деионизацией газа переменным током. Таким образом, плотность ионизации в лампе поддерживается почти постоянной, близкой к оптимальным условиям эксплуатации, в течение всего периода переменного тока.Следовательно, он действует как омический резистор, увеличивая коэффициент мощности. В то время как на низких частотах плотность ионизации колеблется больше около оптимального уровня, вызывая плохие средние условия разряда.
Широтно-импульсная модуляция или любой другой метод прерывания используется для наложения входящего переменного напряжения на выпрямленный и отфильтрованный выходной сигнал. Это делает взаимосвязь пиков тока приблизительно синусоидальной. Прерывание и / или широтно-импульсная модуляция также может использоваться для уменьшения яркости ламп через такие сети, как DALI, DSI или даже простой сигнал управления яркостью 0-10 В постоянного тока.
Параметры производительности
Параметры производительности:
Эффективность электронных балластов измеряется по различным параметрам. Самым важным является балластный фактор. Это отношение светоотдачи лампы, работающей с рассматриваемым ПРА, к светоотдаче той же лампы, работающей с эталонным ПРА. Это значение находится между 0,73 и 1,50 для электронных балластов. Значение такого широкого диапазона — это широкий диапазон уровней светоотдачи, которые могут быть получены с использованием одного балласта.Это находит отличное применение в схемах диммирования. Однако было обнаружено, что как слишком высокий, так и слишком низкий балластный коэффициент ухудшают срок службы лампы из-за уменьшения светового потока в результате высокого и низкого тока лампы соответственно. Когда электронные балласты должны сравниваться в пределах одной модели и одного производителя, часто используется коэффициент балластной эффективности, который представляет собой отношение балластного коэффициента (выраженного в процентах) к мощности и дает относительное измерение эффективности системы всей лампы. балластная комбинация.Показателем эффективности работы балласта является параметр Power Factor (PF). Коэффициент мощности — это мера эффективности, с которой электронный балласт преобразует напряжение питания и ток в полезную мощность, которая подается на лампу с идеальным значением, равным 1. Это, однако, не свидетельствует о способности балласта обеспечивать свет, низкий коэффициент мощности. балласты потребуют примерно вдвое больше тока, чем балласты с более высоким коэффициентом мощности, и, следовательно, поддерживают меньшее количество ламп в цепи.
Любое электронное устройство имеет предел своей линейности, и когда входной сигнал выходит за пределы диапазона, происходит искажение сигнала, приводящее к нелинейным и гармоническим искажениям. Когда форма сигнала сигнала отличается от нормальной синусоидальной, считается, что произошло гармоническое искажение, и оно измеряется как полное гармоническое искажение. THD для электронных балластов — это процент гармонического тока, добавляемого балластом к току системы распределения энергии.Большинство производителей стараются поддерживать THD ниже 20%, хотя стандарты ANSI допускают максимальное искажение до 32%. Электронные балласты позволяют легче поддерживать такие уровни искажений, что не так просто в случае магнитных или гибридных балластов.
Проблемы с электронными балластами
Проблемы с электронными балластами:
Переменные токи могут вызывать всплески тока вблизи максимумов напряжения, создавая высокий гармонический ток в случае электронных балластов.Это проблема не только для системы освещения, но также может вызвать дополнительные проблемы, такие как паразитные магнитные поля, коррозия труб, помехи для радио и телевизионного оборудования и даже неисправность ИТ-оборудования. Высокое содержание гармоник может также вызвать перегрузку трансформаторов и нейтральных проводов в трехфазных системах. Более высокая частота мерцания может остаться незамеченной человеческим глазом, но может вызвать проблемы с инфракрасными пультами дистанционного управления, используемыми в домашних мультимедийных устройствах, таких как телевизоры. Интеллектуальная документация и конструкция балластов позволяют уменьшить помехи и минимизировать их в полосах частот, которые используются в приложениях.Однако в частотном спектре есть некоторые неизведанные уголки, которые не используются ни в каком приложении, и большинство помех от балластов в этой области обычно не документируются и не учитываются, что дает более четкую картину на бумаге, чем есть на самом деле. Электронные балласты не имеют схемы, выдерживающей скачки напряжения и перегрузки. Мало того, у электронных балластов изначально высокая стоимость, которая может быть занозой в глазах импульсивных клиентов, хотя в долгосрочной перспективе они более чем компенсируют эту высокую стоимость.
Преимущества
Преимущества:
Но некоторые хорошо разрекламированные отказы ранних балластов и недостатки не должны омрачить мнение покупателей. Технология прошла долгий путь от 20-30% отказов несколько лет назад до менее 1% сейчас. Надежность балласта стареет, как вино, чем больше времени он проводит в эксплуатации, тем меньше у него шансов выйти из строя. Первые шесть месяцев подобны инкубационному периоду для электронного балласта, если он их переживет, продолжительность жизни увеличивается до 10 или 12 лет.Мощность ламп ухудшается медленнее при использовании с электронными балластами по сравнению с магнитными балластами. График сравнения характеристик электронного и магнитного балласта показан ниже:
Рис. 6: График сравнения рабочих характеристик электронного и магнитного балласта
]]>Чтобы укрепить веру клиентов в электронные балласты, были введены стандарты обеспечения качества для электронных балластов.Сертифицированные производители балластов (CBM) тестируют электронные балласты для различных ламп, таких как T8, T12 / ES, T12 Slimline, КЛЛ и т. Д. Эти устройства не только более эффективны, но и намного тише и легче. Электронные балласты имеют почти половину потерь мощности по сравнению с магнитными или гибридными балластами. Кроме того, они могут легко работать с лампами, которые не могут работать напрямую через дроссель на линии из-за требований к большому напряжению лампы. Существует три основных способа повышения энергоэффективности в системах с балластом ламп: уменьшение потерь балласта, работа на более высоких частотах и уменьшение потерь на электродах лампы.Все эти три элемента одновременно встроены в электронные балласты, что делает их более энергоэффективными.
Рис. 7: Сатистическое представление увеличения продаж электронных балластов и сокращения продаж магнитных балластов
]]>Успех был настолько огромен, что энергетические агентства США даже потребовали заменить магнитные балласты на электронные к 2010 году и в конечном итоге отказаться от использования магнитных балластов. Рынок буквально взорвался, продажи многократно увеличились за десятилетия.Там, где это было практически неизвестно в середине 70-х годов, электронные балласты заняли значительную долю рынка в различных странах — от более 80% в США до 30% в Европейском Союзе. Миллионы тратятся на НИОКР, и ожидается, что к 2015 году средняя доля рынка вырастет до 77%. Использование таких устройств влечет за собой не только рентабельность в долгосрочной перспективе с оценкой пожизненной экономии для технологий, составляющей 18 400 миллионов долларов, но и экологию. преимущества снижения выбросов диоксида углерода, диоксида серы и диоксида азота.Это означает не только лучшее настоящее, но и приятное будущее.
]]>]]>]]> ]]>В рубрике: Последние статьи
С тегами: балласт, электронный балласт, выпрямитель
Разница между электронным балластом и индуктивным балластом
Балласт (балласт резистора) — это устройство для ограничения потока солнечного света и создания мгновенного высокого давления. Ниже приводится некоторая разница между электронным балластом и балластом индуктивности.
- Inductance Ballast — это катушка индуктивности с железным сердечником, характеристика индуктивности — это когда ток в катушке изменяется, магнитный поток изменяется, в результате чего индукционный электродвижущий элемент, его направление и ток изменяются в противоположном направлении, тем самым препятствуя изменениям тока.И обычно используется в люминесцентных лампах.
- Электронный балласт, один из видов балласта, относится к использованию источника электрического света, управляемого электронной технологией, для производства необходимого электронного оборудования. Для сравнения, это индуктивный балласт (или балласт). Сегодня люминесцентные лампы все больше и больше конструируются с электронным балластом, легкими и компактными, и даже могут быть интегрированы с электронным балластом и лампой, в то же время электронный балласт может выполнять обе функции: Rev.Таким образом, отдельный Rev можно не указывать.
- Электронный балласт имеет гораздо больше функций, таких как улучшение частоты тока или формы волны тока (например, использование прямоугольной волны) для улучшения или устранения явления мерцания люминесцентной лампы. Некоторые недостатки традиционного индуктивного выпрямителя заменяются растущим электронным балластом.
Из сети:
- Балласт индуктивности с большой индуктивностью промышленной частоты и пускателем, индуктивностью в мощности вспышки с мощностью для создания высокого напряжения для освещения трубки, а затем начать работу устройства, чтобы перестать работать, индуктивность играет ограниченную роль.И теперь общее использование электронного балласта напрямую используется в принципе импульсного источника питания высоковольтной световой трубки, тогда есть ограничения индуктивности, но из-за высокой частоты индуктивность очень мала. Цепь балласта индуктивности
- проста, а электронная — сложнее.
Из эффекта:
- Электроника легко запускается и адаптируется к широкому диапазону напряжений. В то время как индуктивность сложно завести из-за низкого напряжения.
- Электронная частота высока, мигание лампы не ощущается, а индуктивность соответствует промышленной частоте, можно почувствовать мигание.
- в индуктивности листа кремнистой стали свободно будет иметь звук, и электронное время не имеет этой проблемы. Балласт индуктивности
- более прочен, его нелегко сломать, а некоторые электронные изделия, особенно низкого качества без гарантии, легко могут работать неправильно.
Электронный балласт имеет большое преимущество по сравнению с традиционным индуктивным балластом, постепенно заменяя традиционный рынок индукционного балластного освещения.Основные преимущества:
(1) Энергосбережение. Рабочая частота люминесцентной лампы составляет 50 Гц с использованием традиционного индуктивного балласта. А рабочая частота люминесцентных ламп составляет 30 ~ 50 Гц при помощи электронного балласта. Доказано, что на этой частоте работают люминесцентные лампы; яркость увеличилась на 14% при работе на частоте 50 Гц. То есть, когда люминесцентная лампа достигла того же светового потока, электронный балласт может передавать низкую выходную мощность люминесцентной лампе.
(2) Традиционный индуктивный балласт с потребляемой мощностью больше, чем электронный балласт.
(3) Электронный балласт может значительно снизить нагрузку на сеть и потерю мощности.
Требования к условиям запуска:
- Температура: запуск индуктивного балласта с низкой энергией возбуждения, поэтому обычно необходимо запускать при 10 ℃, в то время как электронный балласт может запускаться даже при -25 ℃.
- Напряжение балласта индуктивности не может запускаться, когда напряжение источника питания меньше 180 В, электронный балласт обычно может запускаться, когда напряжение сети составляет 100 В.
Влияние на срок службы трубки:
(1) Влияние процесса запуска на срок службы лампы: индукционный балласт необходимо запускать несколько раз, прежде чем можно будет зажечь люминесцентную лампу, и каждый раз будет сокращаться срок службы лампы на 2 часа. Электронный балласт, будь то в условиях низкой температуры или низкого напряжения, может включиться после предварительного нагрева нити накала.
(2) Влияние колебаний напряжения электросети на срок службы лампы: при работе лампы с люминесцентной лампой ток лампы изменяется в зависимости от напряжения в электрической сети.Когда напряжение в электросети низкое, ток лампы уменьшается. Снижение тока лампы приведет к недостаточному нагреву нити накала, разбрызгиванию электронного порошка нити накала, что приведет к потемнению обеих сторон лампы и сокращению срока службы лампы. При высоком напряжении источника питания ток лампы будет увеличиваться, что приведет к преждевременному выходу из строя нити накала и флуоресцентного порошка и сократит срок службы лампы. Электронный балласт может работать в диапазоне напряжения электросети 135 ~ 250 В при изменении тока лампы, так что люминесцентная лампа всегда работает в наилучшем состоянии, что значительно увеличивает срок службы лампы.
Lisun выпустила прибор для тестирования электронного балласта WT5000, который соответствует требованиям IEC60929, IEC60969, IEC61000-3-2, GB / T15144-2005, GB / T17263-1998 и т. Д., Последним международным и национальным стандартам и применяется при тестировании электронного балласта. Компания Lisun Electronics (Shanghai) Co., Ltd занимается разработкой оборудования для испытаний освещения, оборудованием для испытаний на воздействие окружающей среды, системами испытаний EMI / EMC и приборами для испытаний на безопасность при разработке внутреннего рынка и послепродажном обслуживании. Продукция Lisun полностью соответствует требованиям менеджмента качества и контроля ISO9001: 2008 для НИОКР и производства; Lisun также является членом глобальной ассоциации освещения CIE, вся продукция соответствует требованиям CIE; Кроме того, продукция Lisun сертифицирована CE и имеет квалификацию ЕС.
Флуоресцентные балласты от Fulham
Как вы можете видеть, исходя из обширного ассортимента выше, Fulham предлагает широкий спектр электронных люминесцентных балластов для множества как общего освещения, так и для специальных применений — в вариантах, разработанных для использования в США и Европе , Ближний Восток, Азия и другие страны.
Электронные балласты используются при работе люминесцентного освещения, например, для ограничения тока до оптимального и эффективного уровня в конкретном приложении; таким образом, существует множество разновидностей балластов, используемых в разных условиях или для разных целей с разными лампами, например.грамм. охлаждающие балласты, бактерицидные УФ балласты, балласты общего освещения, балласты, изготовленные специально для КЛЛ или других типов ламп и т. д. (ПРИМЕЧАНИЕ. Термин «балласт» обычно используется для обозначения источников питания, связанных с люминесцентными лампами или технологией УФ-ламп, в то время как «драйвер» используется со светодиодной технологией, «трансформатор» для технологий HID-ламп, таких как галогениды металлов или HPS, и «Генератор» для индукционных ламп.Эти источники питания НЕ взаимозаменяемы для разных типов технологий.Например, лампы HID не могут питаться с помощью светодиодных драйверов.Металлогалогенная лампа несовместима с люминесцентным балластом. Люминесцентные балласты предназначены для таких ламп, как люминесцентные лампы, компактные люминесцентные лампы / КЛЛ, люминесцентные лампы Circline и т. Д.)
Успех нашей программы люминесцентного балласта начался с теперь известной программы балласта WorkHorse, которая позволяет подрядчикам удобно носить с собой минимальное количество различных предметов / артикулов для решения множества проблем, с которыми они могут столкнуться в полевых условиях. Это связано с тем, что электронные балласты WorkHorse могут быть подключены разными способами как невероятно универсальные устройства.
Тем не менее, инженерное мастерство Фулхэма с балластами расширилось в несколько нишевых областей для OEM-производителей освещения в основных категориях бактерицидного ультрафиолетового освещения, аварийного освещения и холодоснабжения и освещения при низких температурах (в морозильных камерах и холодильниках, используемых для безопасного хранения как лекарств, так и еда).
Благодаря бактерицидному УФ-освещению наша марка SunHorse оптимизирует выходную мощность УФ-ламп для очистки воздуха, воды и поверхностей (включая светильники, предназначенные для защиты от COVID-19).
Следующее нововведение SunHorse, которое будет выпущено в ближайшее время в третьем квартале 2021 года, будет программируемым балластом SunHorse, обладающим такой же универсальностью и удобством, что и популярная серия продуктов WorkHorse. Он разработан для повышения энергоэффективности, оптимизации ламп и сокращения срока службы / технического обслуживания. Но это также позволяет OEM-производителю нести меньшее количество элементов (или заменять его на элементы, которые они не могут удобно приобрести во время нехватки компонентов). Программируемые модули также универсальны для замены в полевых условиях, что устраняет необходимость во множестве артикулов различных отдельных продуктов; Специалисты по техническому обслуживанию могут приобрести программируемый балласт, а затем настроить его по мере необходимости после оценки того, с чем они сталкиваются в полевых условиях.Это может сэкономить время на приобретение точных, специализированных предметов, а также сэкономить время в виде поездок за дополнительными запчастями.
Аварийные пускорегулирующие аппараты обеспечивают резервное питание от батарей для осветительных приборов во время перебоев в подаче электроэнергии. Когда возникает проблема с электричеством, люди должны добираться до безопасности в первую очередь, поэтому надежность электромагнитных устройств по своей сути имеет важное значение для здоровья человека. Компания Fulham значительно превзошла аварийные люминесцентные балласты FireHorse в категории аварийного освещения благодаря множеству светодиодных элементов, в том числе HotSpot 1, которые могут дополнять освещение люминесцентных светильников светодиодными аварийными светодиодами, но люминесцентные балласты FireHorse, представленные на этой странице, по-прежнему актуальны и сегодня. как всегда, для определенных типов приложений.
Наша марка люминесцентных балластов IceHorse полезна для холодильного освещения, такого как морозильные камеры / морозильные камеры, хранилища продуктов / холодильники, ящики для цветов, ящики для мяса / морепродуктов / деликатесов или медицинские (вакцины) хранилища. Они оснащены стандартными соединителями Molex®, которые позволяют быстро и легко установить их в новые приспособления или использовать во время замены балластов в полевых условиях. [Molex является зарегистрированным товарным знаком Molex, LLC]
Вообще говоря, наш широкий ассортимент люминесцентных электронных балластов оснащен функциями, которые приносят пользу OEM-производителям и конечным пользователям, будь то защита в конце срока службы, быстрый запуск, мгновенный запуск или запрограммированные атрибуты запуска, балластный коэффициент высокой мощности, низкий коэффициент нелинейных искажений , несколько диапазонов универсальных или специализированных входных напряжений, сертификаты для различных мировых рынков или широкий диапазон рабочих температур.Если вы не можете найти балласт, который вам нужен, «Фулхэм» также оборудован собственными инженерными решениями в рамках специализированной мастерской Фулхэма. Мы известны тем, что работаем с клиентами над разработкой новых элементов, которые они могут использовать в своих приложениях, будь то для общих или специальных целей.
Еще одним отличительным признаком электронных люминесцентных балластов является качество Fulham. Мы часто говорим, что «Качество — наш самый важный продукт». Надежность нашей продукции означает минимизацию дорогостоящих переделок, что особенно важно, когда светильники устанавливаются на высоких и труднодоступных местах.Как компания из США, вы также можете быть уверены, что мы соблюдаем наши гарантии, как и на протяжении всей нашей долгой истории компании.
Напротив, когда вы совершаете покупки исключительно по цене — без учета качества или точки происхождения в уравнении (при работе напрямую с безымянными экспортерами, которые продают напрямую), вы можете столкнуться с головными болями, сбоями, переустановками, ухудшение репутации вашего агента или конечного пользователя (и, как следствие, плохое освещение в социальных сетях), отсутствие ответственности завода, гарантия, которую может быть трудно обеспечить, или компания, с которой трудно связаться или прекратить деятельность — без каких-либо средств правовой защиты, если они перестанут отвечать .