Электромагнитного излучения – Электромагнитное излучение — это… Что такое Электромагнитное излучение?

Содержание

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — это… Что такое ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ?


ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ

электромагнитные волны, возбуждаемые различными излучающими объектами, — заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания. Может показаться удивительным, что внешне столь разные физические явления имеют общую основу. В самом деле, что общего между кусочком радиоактивного вещества, рентгеновской трубкой, ртутной газоразрядной лампой, лампочкой фонарика, теплой печкой, радиовещательной станцией и генератором переменного тока, подключенным к линии электропередачи? Как, впрочем, и между фотопленкой, глазом, термопарой, телевизионной антенной и радиоприемником. Тем не менее, первый список состоит из источников, а второй — из приемников электромагнитного излучения. Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений — в сущности разные стороны одного явления.
См. также
СВЕТ;
СПЕКТР;
РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ. Взаимодействие между источником и приемником формально состоит в том, что при всяком изменении в источнике, например при его включении, наблюдается некое изменение в приемнике. Это изменение происходит не сразу, а спустя некоторое время, и количественно согласуется с представлением о том, что нечто перемещается от источника к приемнику с очень большой скоростью. Сложная математическая теория и огромное число разнообразных экспериментальных данных показывают, что электромагнитное взаимодействие между источником и приемником, разделенными вакуумом или разреженным газом, может быть представлено в виде волн, распространяющихся от источника к приемнику со скоростью света с. Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени (т.е. частота f) меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 1020 колебаний в секунду в случае рентгеновского и гамма-излучений. Поскольку длина волны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением l = с/f, она тоже изменяется в широких пределах — от нескольких тысяч километров для низкочастотных колебаний до 10-14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра. И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство. Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна — радиосигналы удаленного на миллионы километров космического аппарата. Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется.
Рис. 1. РАСПРОСТРАНЯЮЩАЯСЯ ВОЛНА. Расстояние l между любыми двумя точками, колеблющимися в одной фазе, называется длиной волны. Эта величина связана со скоростью с электромагнитной волны и частотой колебаний f соотношением l = c/f.
Рис. 1. РАСПРОСТРАНЯЮЩАЯСЯ ВОЛНА. Расстояние l между любыми двумя точками, колеблющимися в одной фазе, называется длиной волны. Эта величина связана со скоростью с электромагнитной волны и частотой колебаний f соотношением l = c/f.
Источники электромагнитного излучения. Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи). Гамма-лучи испускаются самопроизвольно при распаде ядер атомов радиоактивных веществ, например радия. При этом происходят сложные процессы изменения структуры ядра, связанные с движением зарядов. Генерируемая частота f определяется разностью энергий E1 и E2 двух состояний ядра: f = (E1 — E2)/h, где h — постоянная Планка.
См. также ПЛАНКА ПОСТОЯННАЯ. Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода (антикатода) электронами, обладающими большими скоростями. Быстро замедляясь в материале анода, эти электроны испускают так называемое тормозное излучение, имеющее непрерывный спектр, а происходящая в результате электронной бомбардировки перестройка внутренней структуры атомов анода, в результате которой атомные электроны переходят в состояние с меньшей энергией, сопровождается испусканием так называемого характеристического излучения, частоты которого определяются материалом анода. Такие же электронные переходы в атоме дают ультрафиолетовое и видимое световое излучение. Что же касается инфракрасного излучения, то оно обычно является результатом изменений, мало затрагивающих электронную структуру и связанных преимущественно с изменениями амплитуды колебаний и вращательного момента импульса молекулы. В генераторах электрических колебаний имеется «колебательный контур» того или иного типа, в котором электроны совершают вынужденные колебания с частотой, зависящей от его конструкции и размеров. Наиболее высокие частоты, соответствующие миллиметровым и сантиметровым волнам, генерируются клистронами и магнетронами — электровакуумными приборами с металлическими объемными резонаторами, колебания в которых возбуждаются токами электронов. В генераторах более низких частот колебательный контур состоит из катушки индуктивности (индуктивность L) и конденсатора (емкость C) и возбуждается ламповой или транзисторной схемой. Собственная частота такого контура, которая при малом затухании близка к резонансной, дается выражением .

.
Переменные поля очень низких частот, используемые для передачи электрической энергии, создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.
Теория Максвелла, эфир и электромагнитное взаимодействие. Когда океанский лайнер в тихую погоду проходит на некотором расстоянии от рыбацкой лодки, то спустя какое-то время лодка начинает сильно раскачиваться на волнах. Причина этого всем понятна: от носа лайнера по поверхности воды бежит волна в виде последовательности горбов и впадин, которая и достигает рыбацкой лодки. Когда при помощи специального генератора в установленной на искусственном спутнике Земли и направленной на Землю антенне возбуждаются колебания электрического заряда, в приемной антенне на Земле (также через некоторое время) возбуждается электрический ток. Как же передается взаимодействие от источника к приемнику, если между ними отсутствует материальная среда? И если сигнал, поступающий на приемник, можно представить в виде некоторой падающей волны, то что это за волна, которая способна распространяться в вакууме, и как могут возникать горбы и впадины там, где ничего нет? Над этими вопросами в применении к видимому свету, распространяющемуся от Солнца к глазу наблюдателя, ученые задумывались уже давно. На протяжении большей части 19 в. такие физики, как О.Френель, И.Фраунгофер, Ф.Нейман, пытались найти ответ в том, что пространство на самом деле не пусто, а заполнено некой средой («светоносным эфиром»), наделенной свойствами упругого твердого тела. Хотя такая гипотеза и помогла объяснить некоторые явления в вакууме, она привела к непреодолимым трудностям в задаче о прохождении света через границу двух сред, например воздуха и стекла. Это побудило ирландского физика Дж.Мак-Куллага отбросить идею упругого эфира. В 1839 он предложил новую теорию, в которой постулировалось существование среды, по своим свойствам отличной от всех известных материалов. Такая среда не оказывает сопротивления сжатию и сдвигу, но сопротивляется вращению. Из-за этих странных свойств модель эфира Мак-Куллага вначале на вызвала особого интереса. Однако в 1847 Кельвин продемонстрировал наличие аналогии между электрическими явлениями и механической упругостью. Исходя из этого, а также из представлений М.Фарадея о силовых линиях электрического и магнитного полей, Дж.Максвелл предложил теорию электрических явлений, которая, по его словам, «отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям в некой всепроникающей среде, причем эти напряжения такие же, с какими имеют дело инженеры, а среда и есть именно та среда, в которой, как предполагают, распространяется свет». В 1864 Максвелл сформулировал систему уравнений, охватывающую все электромагнитные явления. Примечательно, что его теория во многом напоминала теорию, предложенную за четверть века до этого Мак-Куллагом. Уравнения Максвелла были столь всеохватывающими, что из них выводились законы Кулона, Ампера, электромагнитной индукции и следовал вывод о совпадении скорости распространения электромагнитных явлений со скоростью света. После того как уравнениям Максвелла была придана более простая форма (заслуга в основном О.Хевисайда и Г.Герца), полевые уравнения стали ядром электромагнитной теории. Хотя эти уравнения сами по себе и не требовали максвелловской интерпретации на основе представлений о напряжениях и давлениях в эфире, такая интерпретация повсеместно была принята. Несомненный успех уравнений в предсказании и объяснении различных электромагнитных явлений был воспринят как подтверждение справедливости не только уравнений, но и механистической модели, на основе которой они были выведены и истолкованы, хотя эта модель была совершенно не существенна для математической теории. Фарадеевские силовые линии поля и трубки тока наряду с деформациями и смещениями стали существенными атрибутами эфира. Энергия рассматривалась как запасенная в напряженной среде, а ее поток Г.Пойнтинг в 1884 представил вектором, носящим теперь его имя. В 1887 Герц экспериментально продемонстрировал существование электромагнитных волн. В серии блестящих экспериментов он измерил скорость их распространения, а также показал, что они могут отражаться, преломляться и поляризоваться. В 1896 Г. Маркони получил патент на радиосвязь. В континентальной Европе независимо от Максвелла развивалась теория дальнодействия — совершенно другой подход к проблеме электромагнитного взаимодействия. Максвелл писал по этому поводу: «Согласно теории электричества, которая делает большие успехи в Германии, две заряженные частицы непосредственно действуют друг на друга на расстоянии с силой, которая, по Веберу, зависит от их относительной скорости и действует, согласно теории, основанной на идеях Гаусса и развитой Риманом, Лоренцом и Нейманом, не мгновенно, а спустя некоторое время, зависящее от расстояния. По достоинству оценить мощь этой теории, которая столь выдающимся людям объясняет любой вид электрических явлений, можно, лишь изучив ее». Теорию, о которой говорил Максвелл, наиболее полно развил датский физик Л.Лоренц с помощью скалярного и векторного запаздывающих потенциалов, почти таких же, как и в современной теории. Максвелл отвергал идею запаздывающего действия на расстоянии, будь то потенциалы или силы. «Эти физические гипотезы совершенно чужды моим представлениям о природе вещей», — писал он. Тем не менее, теория Римана и Лоренца в математическом отношении была идентична его теории, и в конце концов он согласился, что в пользу теории дальнодействия свидетельствуют более убедительные доказательства. В своем Трактате об электричестве и магнетизме (Treatise on Electricity and Magnetism, 1873) он писал: «Не следует упускать из виду, что мы сделали всего лишь один шаг в теории действия среды. Мы высказали предположение, что она находится в состоянии напряжения, но совершенно не объяснили, что это за напряжение и как оно поддерживается». В 1895 голландский физик Х. Лоренц объединил ранние ограниченные теории взаимодействия между неподвижными зарядами и токами, которые предвосхищали теорию запаздывающих потенциалов Л.Лоренца и были созданы в основном Вебером, с общей теорией Максвелла. Х.Лоренц рассматривал материю как содержащую электрические заряды, которые, различными способами взаимодействуя между собой, производят все известные электромагнитные явления. Вместо того чтобы принять концепцию запаздывающего действия на расстоянии, описываемого запаздывающими потенциалами Римана и Л.Лоренца, он исходил из предположения, что движение зарядов создает электромагнитное поле, способное распространяться сквозь эфир и переносить импульс и энергию от одной системы зарядов к другой. Но необходимо ли для распространения электромагнитного поля в виде электромагнитной волны существование такой среды, как эфир? Многочисленные эксперименты, призванные подтвердить существование эфира, в том числе и эксперимент по «увлечению эфира», дали отрицательный результат. Более того, гипотеза о существовании эфира оказалась в противоречии с теорией относительности и с положением о постоянстве скорости света. Вывод можно проиллюстрировать словами А.Эйнштейна: «Если эфиру не свойственно никакое конкретное состояние движения, то вряд ли имеет смысл вводить его как некую сущность особого рода наряду с пространством».
Излучение и распространение электромагнитных волн. Движущиеся с ускорением электрические заряды и периодически изменяющиеся токи воздействуют друг на друга с некоторыми силами. Величина и направление этих сил зависят от таких факторов, как конфигурация и размеры области, содержащей заряды и токи, величина и относительное направление токов, электрические свойства данной среды и изменения в концентрации зарядов и распределении токов источника. Из-за сложности общей постановки задачи закон сил нельзя представить в виде одной формулы. Структура, именуемая электромагнитным полем, которую при желании можно рассматривать как чисто математический объект, определяется распределением токов и зарядов, создаваемым заданным источником с учетом граничных условий, определяемых формой области взаимодействия и свойствами материала. Когда речь идет о неограниченном пространстве, эти условия дополняются особым граничным условием — условием излучения. Последнее гарантирует «правильное» поведение поля на бесконечности. Электромагнитное поле характеризуется вектором напряженности электрического поля E и вектором магнитной индукции B, каждый из которых в любой точке пространства имеет определенную величину и направление. На рис. 2 схематически изображена электромагнитная волна с векторами E и B, распространяющаяся в положительном направлении оси х. Электрическое и магнитное поля тесно взаимосвязаны: они представляют собой компоненты единого электромагнитного поля, поскольку переходят друг в друга при преобразованиях Лоренца. Говорят, что векторное поле линейно (плоско) поляризовано, если направление вектора остается всюду фиксированным, а его длина периодически изменяется. Если вектор вращается, но длина его не меняется, то говорят, что поле имеет круговую поляризацию; если же длина вектора периодически изменяется, а сам он вращается, то поле называется эллиптически поляризованным.
Рис. 2. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЯ в момент t = 0 для случая плоской электромагнитной волны, распространяющейся в направлении x со скоростью c.
Рис. 2. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЯ в момент t = 0 для случая плоской электромагнитной волны, распространяющейся в направлении x со скоростью c.
Соотношение между электромагнитным полем и колеблющимися токами и зарядами, поддерживающими это поле, можно проиллюстрировать на относительно простом, но очень наглядном примере антенны типа полуволнового симметричного вибратора (рис. 3). Если тонкую проволоку, длина которой составляет половину длины волны излучения, разрезать посередине и к разрезу подключить высокочастотный генератор, то приложенное переменное напряжение будет поддерживать примерно синусоидальное распределение тока в вибраторе. В момент времени t = 0, когда амплитуда тока достигает максимального значения, а вектор скорости положительных зарядов направлен вверх (отрицательных — вниз), в любой точке антенны заряд, приходящийся на единицу ее длины, равен нулю. По прошествии первой четверти периода (t = T/4) положительные заряды будут сосредоточены на верхней половине антенны, а отрицательные — на нижней. При этом ток равен нулю (рис. 3,б). В момент t = T/2 заряд, приходящийся на единицу длины, равен нулю, а вектор скорости положительных зарядов направлен вниз (рис. 3,в). Затем к концу третьей четверти заряды перераспределяются (рис. 3,г), а по ее завершении заканчивается полный период колебаний (t = T) и все снова выглядит так, как на рис. 3,а.
Рис. 3. ТОКИ И ЗАРЯДЫ в антенне типа полуволнового симметричного вибратора в разные моменты периода.
Рис. 3. ТОКИ И ЗАРЯДЫ в антенне типа полуволнового симметричного вибратора в разные моменты периода.
Чтобы сигнал (например, меняющийся во времени ток, приводящий в действие громкоговоритель радиоприемника) можно было передать на расстояние, излучение передатчика нужно промодулировать путем, например, изменения амплитуды тока в передающей антенне в соответствии с сигналом, что повлечет за собой модуляцию амплитуды колебаний электромагнитного поля (рис. 4).
Рис. 4. МОДУЛИРОВАННАЯ ВОЛНА. а - немодулированная волна несущей частоты; б - модулированная волна.
Рис. 4. МОДУЛИРОВАННАЯ ВОЛНА. а — немодулированная волна несущей частоты; б — модулированная волна.
Передающая антенна является той частью передатчика, где электрические заряды и токи совершают колебания, излучая в окружающее пространство электромагнитное поле. Антенна может иметь самые разнообразные конфигурации, в зависимости от того, какую форму электромагнитного поля необходимо получить. Она может быть одиночным симметричным вибратором или же системой симметричных вибраторов, расположенных на определенном расстоянии друг от друга и обеспечивающих необходимое соотношение между амплитудами и фазами токов. Антенна может представлять собой симметричный вибратор, расположенный перед сравнительно большой плоской или изогнутой металлической поверхностью, играющей роль отражателя. В диапазоне сантиметровых и миллиметровых волн особенно эффективна антенна в форме рупора, соединенного с металлической трубой-волноводом, который играет роль линии передачи. Токи в короткой антенне на входе волновода индуцируют переменные токи на его внутренней поверхности. Эти токи и связанное с ними электромагнитное поле распространяются по волноводу к рупору.
См. также АНТЕННА. Меняя конструкцию антенны и ее геометрию, можно добиться такого соотношения амплитуд и фаз колебаний токов в различных ее частях, чтобы излучение усиливалось в одних направлениях и ослаблялось в других (антенны направленного действия). На больших расстояниях от антенны любого типа электромагнитное поле имеет довольно простой вид: в любой данной точке векторы напряженности электрического поля Е и индукции магнитного поля В колеблются в фазе во взаимно перпендикулярных плоскостях, убывая обратно пропорционально расстоянию от источника. При этом волновой фронт имеет форму увеличивающейся в размерах сферы, а вектор потока энергии (вектор Пойнтинга) направлен вовне по ее радиусам. Интеграл от вектора Пойнтинга по всей сфере дает полную, усредненную по времени, излучаемую энергию. При этом волны, распространяющиеся в радиальном направлении со скоростью света, переносят от источника не только колебания векторов E и B, но также импульс поля и его энергию. Прием электромагнитных волн и явление рассеяния. Если в зоне электромагнитного поля, распространяющегося от удаленного источника, поместить проводящий цилиндр, то индуцированные в нем токи будут пропорциональны напряженности электромагнитного поля и, кроме того, будут зависеть от ориентации цилиндра относительно фронта падающей волны и от направления вектора напряженности электрического поля. Если цилиндр имеет вид проволоки, диаметр которой мал по сравнению с длиной волны, то индуцированный ток будет максимальным, когда проволока параллельна вектору Е падающей волны. Если проволоку разрезать посередине и к образовавшимся выводам присоединить нагрузку, то к ней будет подводиться энергия, как это и имеет место в случае радиоприемника. Токи в этой проволоке ведут себя так же, как и переменные токи в передающей антенне, а потому она тоже излучает поле в окружающее пространство (т.е. происходит рассеяние падающей волны).
Отражение и преломление электромагнитных волн. Передающую антенну обычно устанавливают высоко над поверхностью земли. Если антенна находится в сухой песчаной или скалистой местности, то грунт ведет себя как изолятор (диэлектрик), и токи, индуцируемые в нем антенной, связаны с внутриатомными колебаниями, поскольку здесь нет свободных носителей заряда, как в проводниках и ионизованных газах. Эти микроскопические колебания создают над поверхностью земли поле отраженной от земной поверхности электромагнитной волны и, кроме того, изменяют направление распространения волны, входящей в грунт. Эта волна движется с меньшей скоростью и под меньшим углом к нормали, чем падающая. Такое явление называется преломлением. Если же волна падает на участок поверхности земли, имеющий, наряду с диэлектрическими, также и проводящие свойства, то общая картина для преломленной волны выглядит намного сложнее. Как и прежде, волна меняет направление движения у границы раздела, но теперь поле в грунте распространяется таким образом, что поверхности равных фаз уже не совпадают с поверхностями равных амплитуд, как это обычно имеет место в случае плоской волны. Кроме того, быстро затухает амплитуда волновых колебаний, поскольку электроны проводимости при столкновениях отдают свою энергию атомам. В результате энергия волновых колебаний переходит в энергию хаотического теплового движения и рассеивается. Поэтому там, где грунт проводит электричество, волны не могут проникнуть в него на большую глубину. То же самое относится и к морской воде, чем затрудняется радиосвязь с подводными лодками. В верхних слоях земной атмосферы располагается слой ионизованного газа, который называется ионосферой. Он состоит из свободных электронов и положительно заряженных ионов. Под действием посылаемых с земли электромагнитных волн заряженные частицы ионосферы начинают колебаться и излучать собственное электромагнитное поле. Заряженные ионосферные частицы взаимодействуют с посланной волной примерно так же, как и частицы диэлектрика в рассмотренном выше случае. Однако электроны ионосферы не связаны с атомами, как в диэлектрике. Они реагируют на электрическое поле посланной волны не мгновенно, а с некоторым сдвигом по фазе. В результате волна в ионосфере распространяется не под меньшим, как в диэлектрике, а под большим углом к нормали, чем посланная с земли падающая волна, причем фазовая скорость волны в ионосфере оказывается больше скорости света c. Когда волна падает под некоторым критическим углом, угол между преломленным лучом и нормалью становится близок к прямому, а при дальнейшем увеличении угла падения излучение отражается в сторону Земли. Очевидно, что в этом случае электроны ионосферы создают поле, которым компенсируется поле преломленной волны в вертикальном направлении, а ионосфера действует как зеркало.
Энергия и импульс излучения. В современной физике выбор между теорией электромагнитного поля Максвелла и теорией запаздывающего дальнодействия делается в пользу теории Максвелла. До тех пор, пока нас интересует только взаимодействие источника и приемника, обе теории одинаково хороши. Однако теория дальнодействия не дает никакого ответа на вопрос, где находится энергия, которую уже излучил источник, но еще не принял приемник. Согласно теории Максвелла, источник передает энергию электромагнитной волне, в которой она и находится, пока не будет передана поглотившему волну приемнику. При этом на каждом этапе соблюдается закон сохранения энергии. Таким образом, электромагнитные волны обладают энергией (а также импульсом), что заставляет считать их столь же реальными, как, например, атомы. Электроны и протоны, находящиеся на Солнце, передают энергию электромагнитному излучению, в основном в инфракрасной, видимой и ультрафиолетовой областях спектра; примерно через 500 с, достигнув Земли, оно эту энергию отдает: повышается температура, в зеленых листьях растений происходит фотосинтез, и т.д. В 1901 П.Н.Лебедев экспериментально измерил давление света, подтвердив, что свет имеет не только энергию, но и импульс (причем соотношение между ними согласуется с теорией Максвелла).
Фотоны и квантовая теория. На рубеже 19 и 20 вв., когда казалось, что исчерпывающая теория электромагнитного излучения, наконец, построена, природа преподнесла очередной сюрприз: оказалось, что помимо волновых свойств, описываемых теорией Максвелла, излучение проявляет также свойства частиц, причем тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем. Оказалось, что энергия каждого выбитого электрона зависит от частоты n падающего света, но не от его интенсивности. Это свидетельствует о том, что энергия, связанная со световой волной, передается дискретными порциями — квантами. Если увеличивать интенсивность падающего света, то растет число выбитых в единицу времени электронов, но не энергия каждого из них. Иными словами, излучение передает энергию определенными минимальными порциями — как бы частицами света, которые были названы фотонами. Фотон не имеет ни массы покоя, ни заряда, но обладает спином, а также импульсом, равным hn/c, и энергией, равной hn; он перемещается в свободном пространстве с постоянной скоростью c. Каким же образом электромагнитное излучение может иметь все свойства волн, проявляющиеся в интерференции и дифракции, но вести себя как поток частиц в случае фотоэффекта? В настоящее время наиболее удовлетворительное объяснение этой двойственности можно найти в сложном формализме квантовой электродинамики. Но и эта изощренная теория имеет свои трудности, а ее математическая непротиворечивость вызывает сомнения.
См. также
МОМЕНТЫ АТОМОВ И ЯДЕР;
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ;
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ;
КВАНТОВАЯ МЕХАНИКА;
ВЕКТОР. К счастью, в макроскопических задачах излучения и приема миллиметровых и более длинных электромагнитных волн квантовомеханические эффекты обычно не имеют существенного значения. Число фотонов, излучаемых, например, симметричной вибраторной антенной, столь велико, а энергия, переносимая каждым из них, столь мала, что можно забыть о дискретных квантах и считать, что испускание излучения — непрерывный процесс.
ЛИТЕРАТУРА
Крауфорд Ф. Волны. М., 1976 Ахиезер А.И., Ахиезер И.А. Электромагнетизм и электромагнитные волны. М., 1985

Энциклопедия Кольера. — Открытое общество. 2000.

  • ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
  • ТЯГОТЕНИЕ

Смотреть что такое «ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ» в других словарях:

  • электромагнитное излучение — Явление, процесс, при котором энергия излучается источником в пространство в виде электромагнитных волн. [ГОСТ 30372—95 ] электромагнитное излучение Процесс испускания электромагнитных волн. Примечание Под термином «электромагнитное… …   Справочник технического переводчика

  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, вид энергии, существующий в форме волн широкого диапазона частот. Электромагнитное излучение проходит через космическое пространство со скоростью света, т.е. около 300 000 км/сек; через различные материалы оно проходит …   Научно-технический энциклопедический словарь

  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — см. в ст. Излучение. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 …   Физическая энциклопедия

  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — см. (2) …   Большая политехническая энциклопедия

  • Электромагнитное излучение —     Классическая электродинамика …   Википедия

  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — 73. ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ процесс образования свободного электромагнитного поля. Источник: ПНАЭ Г 05 035 94: Учет внешних воздействий природного и техногенного происхождения на ядерно и радиационно опас …   Словарь-справочник терминов нормативно-технической документации

  • Электромагнитное излучение — электромагнитные волны, которые возбуждаются заряженными частицами, атомами, молекулами, антеннами и другими излучающими системами. Форма энергии, которая распространяется в вакууме со скоростью c, равной 3*108 м/сек. Название отражает характер… …   Астрономический словарь

  • электромагнитное излучение — elektromagnetinė spinduliuotė statusas T sritis Standartizacija ir metrologija apibrėžtis Elektromagnetinės bangos, kurias kuria įvairūs spinduoliai. atitikmenys: angl. electromagnetic radiation vok. elektromagnetische Strahlung, f rus.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • электромагнитное излучение — elektromagnetinė spinduliuotė statusas T sritis fizika atitikmenys: angl. electromagnetic radiation vok. elektromagnetische Strahlung, f rus. электромагнитное излучение, n pranc. rayonnement électromagnétique, m …   Fizikos terminų žodynas

  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ — см. Излучение электромагнитное …   Большой энциклопедический политехнический словарь


Электромагнитное излучение | Контроль Разума

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение электрических и магнитных полей.

Глубина проникновения ЭМИ в ткани находится в прямой зависимости от длины волны, а величина поглащения — в обратной. Воздействие излучений миллимитрового (от 30 до 300 ГГц) и сантиметрового (от 3 до 30 ГГц) вызывает в основном термические ожоги, а излучения дециметрового (от 0,3 до 3 ГГц) , проникают глубже, поражая внутренние органы.

Ткани с высоким коэффициентом содержания воды (сердце, кровь, мышцы) обладают значительно большим коэффициентом экранирования, т.к. лучше поглощают энергию ЭМП.

При поглощении энергии ЭМП, из-за химической неоднородности, и помимо интегрального воздействия, возникают «горячие пятна». Если эти «горячие пятна» находятся на месте жизненноважных органов, то это может очень сильно повлиять на организм и при меньшей энергии ЭМП. «Горячие пятна» в голове человека возникают в диапазоне 750-2500 МГц.

    Характеристики электромагнитного излучения Править

    Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения (фазовая) в вакууме равна скорости света, в других средах эта скорость меньше.

    Описанием свойств и параметров электромагнитного излучения занимается наука — электродинамика.

    Существуют различные теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения, например, «Квантовая теория поля» (для электромагнитного излучения, как правило, не применяется, а используется для моделирования «поведения» элементарных частиц), для описания свойств излучения используют, как правило, «Уравнения Максвелла», причём существуют упрощения в прикладных применениях, например для оптического излучения достаточно знания основных понятий оптики, а гамма-излучение чаще всего является предметом ядерной физики, с других позиций изучается воздействие электромагнитного излучения в радиологии.

    Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

    • наличие трёх взаимноперпендикулярных векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
    • Электромагнитные волны — это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

    Диапазоны электромагнитного излучения Править

    Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

    Радиоволны. Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые или микрометровые. Волны с длиной λ < 1 м (ν > 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

    Жёсткие лучи. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгенов

    Излучение электромагнитных волн

    Излучение электромагнитных волнИзлучение электромагнитных волн

    Излучение электромагнитных волн

    Излучение электромагнитных волн, подвергаясь смене частоты колебания зарядов, меняет длину волны и приобретает различные свойства. Человек буквально окружен устройствами, которым присуще излучение и прием электромагнитных волн. Это сотовые телефоны, радио, телевещание, рентген-аппараты в медучреждениях и т.д. Даже тело человека обладает электромагнитным полем и, что очень интересно, каждый орган имеет свою частоту излучения. Распространяющиеся излучаемые заряженные частицы воздействуют друг на друга, провоцируя смену частоты колебания и выработку энергии, что может быть использовано как в созидательных, так и в разрушительных целях.

    Электромагнитное излучение. Общая информация

    Электромагнитное излучение представляет собой изменение состояния и интенсивности распространения электромагнитных колебаний, вызванных взаимодействием электрического и магнитного полей.

    Глубоким изучением свойств характерных для электромагнитных излучений занимаются:

    • электродинамика;
    • оптика;
    • радиофизика.
    Инфракрасное и ультрафиолетовое излученияИнфракрасное и ультрафиолетовое излучения

    Инфракрасное и ультрафиолетовое излучения

    Излучение электромагнитных волн создается и распространяется благодаря колебанию зарядов, в процессе чего выделяется энергия. Они обладают характером распространения, подобным механическим волнам. Движению зарядов присуще ускорение – с течением времени их скорость меняется, что является основополагающим условием для излучения электромагнитных волн. Мощность волны напрямую связана с силой ускорения и прямо пропорциональна ей.

    Показатели, определяющие характерные особенности электромагнитного излучения:

    • частота колебания заряженных частиц;
    • длина волны излучаемого потока;
    • поляризация.

    Электрическое поле, которое находится наиболее близко к заряду, подверженному колебаниям, претерпевает изменения. Промежуток времени, затраченный на эти изменения, будет равен промежутку времени колебаний заряда. Движение заряда можно сравнить с колебаниями тела, подвешенного на пружине, разница лишь в частоте перемещения.

    К понятию «излучение» относятся электромагнитные поля, которые устремляются как можно дальше от источника возникновения и теряют свою интенсивность с увеличением расстояния, образуя волну.

    Распространение электромагнитных волн

    Труды Максвелла и открытые им законы электромагнетизма позволяют извлечь значительно больше информации, нежели могут представить факты, на основе которых проводится исследование. Например, одним из выводов на основе законов электромагнетизма выступает заключение, что электромагнитное взаимодействие имеет конечную скорость распространения.

    Если следовать теории дальнодействия, то получаем, что сила, которая оказывает воздействие на электрический заряд, находящийся в неподвижном состоянии, изменяет свои показатели при смене местоположения соседнего заряда. Согласно этой теории заряд буквально «ощущает» сквозь вакуум присутствие себе подобного и мгновенно перенимает действие.

    Сформировавшиеся понятия о близкодействии имеют совершенно другой взгляд на происходящее. Заряд, перемещаясь, обладает переменным электрическим полем, которое, в свою очередь, способствует возникновению переменного магнитного поля в близлежащем пространстве. После чего переменное магнитное поле провоцирует возникновение электрического и так цепочкой далее.

    Таким образом происходит «возмущение» электромагнитного поля, вызванное сменой места заряда в пространстве. Оно распространяется и, как результат, воздействует на существующее поле, изменяя его. Добравшись до соседнего заряда, «возмущение» вносит изменения в показатели силы, действующей на него. Происходит это спустя некоторое время после смещения первого заряда.

    Вопросом принципа распространения электромагнитных волн увлеченно занимался Максвелл. Затраченное время и силы в итоге увенчались успехом. Он доказал наличие конечной скорости этого процесса и привел тому математическое обоснование.

    Реальность существования электромагнитного поля подтверждается наличием конечной скорости «возмущения» и соответствует показателям скорости света в пространстве, лишенном атомов (вакууме).

    Шкала электромагнитных излучений

    Электромагнитное полеЭлектромагнитное поле

    Электромагнитное поле

    Вселенная наполнена электромагнитными полями с разным диапазоном излучения и кардинально различающейся длиной волны, которая может варьироваться от нескольких десятков километров до ничтожной доли сантиметра. Они позволяют получать информацию об объектах, находящихся на огромных расстояниях от Земли.

    На основе утверждения Джеймса Максвелла о разности длины электромагнитных волн была разработана специальная шкала, которая содержит классификацию диапазонов существующих частот и длин излучений, образующих переменное магнитное поле в пространстве.

    В своих наработках Г. Герц и П. Н. Лебедев экспериментально доказали верность утверждений Максвелла и обосновали тот факт, что излучение света – это волны электромагнитного поля, характеризующиеся небольшой длиной, которые образуются путем естественной вибрации атомов и молекул.

    Между диапазонами не наблюдается резких переходов, но они также не имеют четких границ. Какой бы ни была частота излучения, все пункты шкалы описывают электромагнитные волны, которые появляются благодаря изменению положения заряженных частиц. На свойства зарядов оказывает влияние длина волны. При изменении ее показателей изменяется отражающая, проникающая способности, уровень видимости и т.д.

    Характерные особенности электромагнитных волн дают им возможность свободно распространяться как в вакууме, так и в пространстве, заполненном веществом. Нужно отметить, что, перемещаясь в пространстве, излучение меняет свое поведение. В пустоте скорость распространения излучения не меняется, потому частота колебаний жестко взаимосвязана с длиной волны.

    Электромагнитные волны разных диапазонов и их свойства

    К электромагнитным волнам относятся:

    • Инфракрасное излучение (еще называют «тепловое»). Согласно классификации шкалы электромагнитных излучений, область распространения инфракрасных излучений находится после радиоволн и перед видимым светом. Инфракрасные волны излучают все тела, испускающие тепло. Примерами источников таких излучений выступают печи, батареи, используемые для отопления, основанные на теплоотдаче воды, лампы накаливания. На сегодняшний день разработаны специальные устройства, которые позволяют увидеть в полной темноте предметы, от которых исходит тепло. Такими природными датчиками распознавания тепла в области глаз обладают змеи. Это позволяет им отслеживать добычу и охотиться ночью. Человек применяет инфракрасные излучения, например, для обогрева зданий, для сушки овощей, а также древесины, в области военного дела (например, приборы ночного видения или же тепловизоры), для беспроводного управления аудиоцентром или телевизором и другими устройствами с помощью пульта.
    • Низкочастотные волны. Характеризуются частотой колебаний не более 100 КГц. Данный диапазон применяется для работы электрических устройств и двигателей, например, микрофона или громкоговорителя, телефонных сетей, а также в области радиовещания, киноиндустрии и др. Волны низкочастотного диапазона отличаются от тех, что обладают более высокой частотой колебаний, фактическим падением скорости распространения пропорционально квадратному корню их частоты. Весомый вклад в открытие и изучение низкочастотных волн сделали Лодж и Тесла.
    • Радиоволны. Открытие Герцем радиоволн в 1886 г. подарило миру возможность передавать информацию, не используя провода. Длина радиоволны влияет на характер ее распространения. Они, подобно частотам звуковых волн, возникают благодаря переменному току (в процессе осуществления радиосвязи переменный ток протекает в приемник – антенну). Высокочастотная радиоволна способствует значительному испусканию радиоволн в окружающее пространство, что дает уникальную возможность передавать информацию на большие расстояния (радио, телевидение). Подобного рода сверхвысокочастотные излучения используются для осуществления связи в условиях космоса, а также в быту. Например, микроволновая СВЧ-печь, излучающая радиоволны, стала хорошей помощницей для хозяек.
    • Видимый свет. Обладает световым спектром от красного до фиолетового и воспринимается глазом человека, что является главной отличительной чертой. Цвет, излучаемый разной длиной волны, оказывает электрохимическое воздействие на систему визуального восприятия человека, но не входит в раздел свойств электромагнитных волн данного диапазона.
    • Ультрафиолетовое излучение. Не фиксируется глазом человека и обладает длиной волны по значению меньше, нежели у фиолетового света. В небольших дозировках лучи ультрафиолета вызывают лечебный эффект, способствуют выработке витамина Д, осуществляют бактерицидное воздействие и положительно влияют на центральную нервную систему. Преизбыточная насыщенность окружающей среды ультрафиолетовыми лучами приводит к повреждению кожных покровов и разрушению сетчатки глаза, потому офтальмологи рекомендуют использование солнечных очков в летние месяцы. Ультрафиолетовое излучение применяют в медицине (лучи ультрафиолета используются для кварцевых ламп), для проверки подлинности денежных купюр, в развлекательных целях на дискотеках (подобное освещение заставляет светиться светлые материалы), а также для определения годности продуктов питания.
    • Рентгеновское излучение. Такие волны не заметны для человеческого глаза. Они обладают удивительным свойством проникать сквозь слои вещества, избегая сильного поглощения, что недоступно лучам видимого света. Излучение способствует возникновению свечения некоторых разновидностей кристаллов и оказывает воздействие на фотографическую пленку. Используется в области медицины для диагностирования заболеваний внутренних органов и для лечения определенного списка болезней, для проверки внутреннего устройства изделий на предмет наличия дефектов, а также сварных швов в технике.
    • Гамма-излучение. Наиболее коротковолновое электромагнитное излучение, испускающее ядра атома. Уменьшения длины волны приводит к изменениям качественных показателей. Гамма-излучение имеет проникающую способность, во много раз превышающую рентгеновские лучи. Может проходить сквозь бетонную стену толщиной один метр и даже сквозь свинцовые преграды толщиной в несколько сантиметров. В ходе распада веществ или единения происходит выброс составных элементов атома, что получило название радиация. Такие волны относят к списку радиоактивных излучений. При взрыве ядерной боеголовки на короткое время образуется электромагнитное поле, которое является продуктом реакции между лучами гамма-спектра и нейтронами. Оно же выступает основным элементом ядерного оружия, оказывающим поражающее воздействие, полностью блокирует или нарушает работу радиоэлектроники, проводной связи и систем, обеспечивающих электроснабжение. Также при взрыве ядерного оружия высвобождается много энергии.

    Выводы

    Волны электромагнитного поля, обладая определенной длиной и находясь в определенном диапазоне колебания, могут оказывать как положительные влияние на организм человека и его уровень адаптации к окружающей среде, благодаря разработке вспомогательных электрических приборов, так и отрицательное, и даже разрушающее воздействие на здоровье и среду обитания человека.

    Автор статьи: Беспалова Ирина Леонидовна

    Беспалова Ирина ЛеонидовнаБеспалова Ирина Леонидовна

    Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

    Беспалова Ирина Леонидовна опубликовала статей: 443

    Шкала электромагнитных излучений: свойства и особенности

    Шкала электромагнитных волнШкала электромагнитных волн

    Шкала электромагнитных волн

    Шкала электромагнитных волн или излучений представляет собой ряд диапазонов электромагнитных волн, которые распределяются в соответствии с частотой. Распространяющиеся в пространстве периодически изменяющиеся вихревые электрическое и магнитное поля представляют собой электромагнитные колебания.

    Общее понятие

    Свойства электромагнитных колебаний открыты в начале XIX века английским ученым Д. К. Максвеллом. Физик считал, что электромагнитные волны перпендикулярны направлению распространения волны, ее скорости. Но электромагнитное поле существует отдельно от указанных выше двух. Магнитное и электрическое поля, взаимодействуя друг с другом, действуют на заряженные частицы поверхности волнового фронта, создают поле, существующее независимо, обладающее собственными свойствами.

    Электромагнитные волны могут распространяться в разных средах, в том числе и в вакууме. Само поле — материя, которая распространяется в среде. Скорость распространения электромагнитной волны в вакууме равна скорости света, т. е. 3*10 в 8 степени м/с. Значение не затухает, проходя через пространство, постоянно.

    Шкала электромагнитных излучений показывает, как один качественный вид излучений переходит в другой по мере того, как изменяются взаимосвязанные количественные показатели частоты, длины волны. Один из видов диапазонов излучений — видимый свет.

    Дополнительные цвета спектра

    Спектр видимого света содержит как основные, так и дополнительные цвета. Каким образом можно получить дополнительные цвета? Их получение основано на опыте И. Ньютона, который в 1671 году, используя призму, разложил белый луч солнечного света на спектр: последовательно расположенные красный, оранжевый, желтый, зеленый, синий и фиолетовый цвета.

    Дополнительные цвета спектра получаются разными способами:

    Дополнительные цвета спектраДополнительные цвета спектра

    Дополнительные цвета спектра

    1. Если разделить спектр на две части (красно-оранжево-желтую и зелено-сине-фиолетовую), две смеси из трех первых и трех вторых дадут два цвета. Особенность последних такова, что если собрать их вместе линзой, снова получается белый.
    2. Если физически закрыть в спектре один цвет, затем собрать линзой оставшиеся цвета, полученный цвет будет дополнительным по отношению к закрытому. Например, если закрыть зеленый, соберется красный, закрывая желтый — фиолетовый. Красный цвет будет дополнительным к зеленому, а фиолетовый — к желтому.

    Замкнув последовательность цветов спектра в круг, получим схему, называемую спектральным кругом.

    Первичные дополнительные цвета:

    • красный и зеленый;
    • желтый и фиолетовый;
    • синий и оранжевый.

    Таблица 1. Дополнительные цвета.

    Выделенная частьКраснаяОранжеваяЖелтаяЖелто-зеленаяЗеленаяГолубовато-зеленая
    Цвет смеси оставшихся лучейГолубовато-зеленыйГолубойСинийФиолетовыйПурпурныйКрасный

    При смешении дополнительных цветов, что доказано опытным путем, чистый цвет получить уже невозможно — любая примесь дополнительного цвета к основному снижает насыщенность.

    Спектр солнечного излучения

    Солнце — источник жизни на планете, источник излучения, солнечного света, несущего энергию.

    Спектр солнечного излученияСпектр солнечного излучения

    Спектр солнечного излучения

    В электромагнитный спектр солнечного света включаются три разных вида волн:

    • ультрафиолетовое излучение;
    • видимый свет;
    • инфракрасное излучение.

    Первый последовательный вид обладает наиболее низкими частотами и относительно длинной волной, последний — высокими частотами и короткой волной.

    Видимая часть спектра

    Д. К. Максвелл сделал вывод, что видимый свет — один из видов электромагнитных излучений, спектр видимого солнечного света состоит из семи цветов. Человек может увидеть, как в призме, преломляясь, свет распадается на семь цветов, может любоваться преломленным в каплях дождя светом, глядя на радугу.

    Цвета распределены на шкале в соответствии с частотой и на шкале занимают маленький отрезок, умещаются в сравнительно небольшом диапазоне, но это все, что можно увидеть глазами. Инфракрасное и ультрафиолетовое излучения, с меньшими и большими значениями, уже недоступны человеческому зрению.

    РадугаРадуга

    Радуга

    В радуге один цвет постепенно переходит в другой согласно определенной последовательности, отображающей распределение цветов при разделении луча видимого света белого цвета. Свойства цвета (красного, синего, желтого) определяются свойствами длины соответствующих волн.

    Видимая часть солнечного спектра — часть спектра, которая при воздействии на орган зрения вызывает зрительные ощущения. Наиболее сильные отзывы в человеческом глазу вызывает желто-зеленый луч, остальные менее чувствительны. Лучи, видимые глазу, обладают длиной волны в пределах 400–760 нм. Глазу доступны некоторые более длинноволновые и более коротковолновые лучи при их достаточной интенсивности.

    Свет важен для человека. Раздражая орган зрения, свет активизирует обмен веществ, улучшает самочувствие, вдохновляет, способствует повышению работоспособности. Можно заметить, что недостаточное освещение приводит к снижению активности, на предприятиях приводит к ошибкам, производственным травмам.

    Шкала электромагнитных излучений

    Отличаясь друг от друга количественно, электромагнитные волны определенным образом могут быть получены с использованием приборов. Существуют естественные и искусственные источники явления. Помимо приборов и источников волн на Земле, электромагнитные волны излучаются и космическими объектами.

    Низкочастотные волны, радиоволны, инфракрасное световое излучение, оптическое излучение, рентгеновские спектры, невидимые излучения гамма — различные участки условной шкалы, показывающей области λ — области длин волн.

    Таблица спектра электромагнитных излучений

    НазваниеЧастотаДлина волнИсточники,Космические источники
    Низкочастотные излученияболее 10000м0-30 кГцГенератор переменного тока, домашняя и офисная электротехника, ЛЭП и др.Магнитное поле Земли
    Радиоволны1мм-10000м30кГц-300ГГцПеременный ток в колебательном контуре, полупроводниковые приборыСолнце, планеты и малые тела Солнечной системы, облака межзвездного газа, реликтовое излучение на ранней стадии расширения Вселенной, квазары
    Инфракрасное световое излучение1мм-780нм300ГГц-429ТГцТепловые источники, лазер, ртутно-кварцевая лампаСолнце, межзвездная и околозвездная пыль, реликтовое излучение на ранней стадии расширения Вселенной, планеты, малые тела Солнечной системы
    Видимое излучение световое780-380нм429-750ТГцЛампа накаливания, пламя, молния, лазерСолнце, другие звезды (с температурой 10-100 тысяч градусов)
    Ультрафиолетовое излучение380-10нм7,5*1000000000000000-3*100000000000000000ГцУглеродная дугаСолнце, горячие Звезды, высокотемпературная плазма
    Рентгеновское излучение10-5*10в-3 степени нм3*100000000000000000-6*100000000000000000000ГцРентгеновская трубкаСолнце, нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам – квазары, отдаленные галактики и их скопления.
    Гамма-излучениеменее 5*10 в 3 степени нмболее 6*100000000000000000000 ГцАтомные ядра, Кобальт-60Солнце, фоновое Космическое излучение, некоторые пульсары (нейтронные звезды), сверхновые звезды, Млечный Путь, области галактического центра, многих галактик и квазаров

     

    Чувствительность человеческого глаза
    Одно из главных свойств электромагнитных волн является степень их поглощения веществом. Различие можно обнаружить между длинноволновыми и коротковолновыми излучениями. Первые поглощаются с гораздо большей интенсивностью, чем коротковолновые, однако обладают дополнительным свойством: при поглощении обнаруживают свойства частиц.

    Спектральная чувствительность глаза Спектральная чувствительность глаза

    Спектральная чувствительность глаза

    Преобразуя энергию, идущую от источника видимого светового диапазона, в зрительной системе человек получает сигналы из окружающей среды. Свет попадает на сетчатку глаза, возбуждает фоторецепторы, от которых сигнал передается в нейронные связи коры головного мозга, находящиеся в затылочной доле коры больших полушарий. В головном мозге в результате подобных преобразований формируется зрительный образ.

    Развиваясь эволюционно, человеческий глаз сформировался наилучшим образом для восприятия солнечного света. В результате зрительный орган современного человека улавливает электромагнитное излучение в диапазоне длин волн 400–750 нм (видимое излучение). От более низковолновых излучений (ультрафиолета) глаз защищен областью хрусталика с низкой прозрачностью.

    Определение спектральных границ чувствительности глаза

    Зная законы преломления света, можно опытным путем определить спектральную чувствительность глаза. Основной инструмент — дифракционная решетка с определенным периодом.

    Луч света, проходя через решетку, попадает на сетчатку. Глаз играет роль линзы, собирающей лучи в пучок, результат зависит от угла луча. Опыт доказывает, что чувствительность человеческого глаза совпадает с диапазоном видимого света по шкале.

    Электромагнитная природа света

    На заре изучения природы света до открытия электромагнитных световых волн существовали различные мнения. Так, история открытия гласит, что из рассуждений И. Ньютона развилась теория о свете как о потоке частиц, квантов, об электрических колебаниях, а из рассуждений Х. Гюйгенса — волновая теория света.
    Согласно квантовой теории, от источников энергии атомов последняя передается веществу, то же происходит и с энергией квантов. Волны светового спектра излучений обладают квантовыми свойствами.

    Электромагнитная природа света была доказана и описана при помощи формул Д. К. Максвеллом.

    Теоретическое исследование природы электромагнитных излучений принесло несомненную пользу человечеству. Явление стало применяться в медицине, быту, радиовещании и многих других областях.

    Автор статьи: Беспалова Ирина Леонидовна

    Беспалова Ирина ЛеонидовнаБеспалова Ирина Леонидовна

    Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

    Беспалова Ирина Леонидовна опубликовала статей: 443

    Прибор для измерения электромагнитного излучения и поля

    Прибор для измерения электромагнитного излученияПрибор для измерения электромагнитного излучения

    Прибор для измерения электромагнитного излучения

    Прибор для измерения электромагнитного излучения (ЭМИ) позволяет обнаружить зоны, негативно влияющие на состояние здоровья и самочувствие человека. В условиях изобилия бытовой и компьютерной техники такой аппарат нужен в каждом доме.

    Общие сведения об источниках электромагнитных полей

    Электромагнитным полем называют форму материи, возникающую на базе электрического поля. Движущиеся заряды вызывают «возмущение» в расположенном рядом с ними пространстве, образуя при этом магнитное поле. Для него характерен волновой тип распространения от источника ― электричества. Электромагнитное поле ― это совокупность электрического и магнитного полей.

    Электромагнитные волны различаются по частотам и разделены на 6 диапазонов. Все они отличаются степенью проникновения в различные вещества и скоростью распространения в пространстве. Могут оказывать как положительные, так и отрицательные воздействия на живые организмы. Большую роль в этом играет длина волны. Чем выше этот показатель, тем большее количество энергии распространяют и переносят волны.

    Вокруг подключенных к электросети бытовых приборов всегда формируется силовое поле. Оно оказывает влияние на человека, животных и растения. Различают два вида ЭМИ:

    • ионизирующее (радиоактивное): гамма-лучи, рентгеновское, отдельные диапазоны ультрафіолетового излучения;
    • неионизирующее: инфракрасное, видимое, радиоволны.

    Первый тип излучения способен вызывать изменения в клетках, нарушая естественные биологические процессы. Наиболее высокую силу воздействия имеют гамма-лучи, провоцирующие развитие лучевой болезни. Неионизирующие виды излучения имеют небольшой энергетический потенциал и способны вызвать незначительные изменения в структуре клеток, атомов и молекул.

    Открытое распределительное устройствоОткрытое распределительное устройство

    Открытое распределительное устройство

    Есть источники постоянного магнитного поля (ПМП):

    • электросети;
    • магниты;
    • электролитные ванны;
    • МГД-генераторы;
    • термоядерные устройства.

    Многочисленными исследованиями доказано негативное воздействие ПМП на организмы живых существ. Источниками сигнала могут быть любые электронные приборы:

    • мобильные телефоны;
    • компьютеры;
    • телевизоры;
    • музыкальные центры;
    • игровые приставки.

    Микроволновые печи

    Микроволновым называют сверхчастотное излучение (СВЧ), для которого характерна длина волны от 1 мм до 1 м. Этот тип излучения используется не только в микроволновых печах, но и в радионавигации, спутниковом телевидении, сотовой связи. В бытовых микроволновках вырабатываются волны длиной 12 см и частотой излучения 2450 мГц (2,45 ГГц).

    На шкале частот микроволны находятся между инфракрасным и рентгеновским излучениями. В исправно работающих СВЧ-печах они всегда поглощаются пищей и посудой, в которой она разогревается. Непосредственно на человека, животных и растения не оказывают никакого влияния. В неисправных печах возможно проникновение микроволн за пределы корпуса. Но и в этом случае они не способны причинить вред живым организмам, так как относятся к категории неионизирующего излучения.

    Компьютеры

    КомпьютерКомпьютер

    Компьютер

    Компьютеры последних поколений продуцируют поля двух видов:

    • электромагнитное;
    • электростатическое.

    Устаревшие мониторы с электронно-лучевой трубкой излучали рентгеновские волны. Модели LCD или LED лишены этого недостатка. Однако работающий компьютер генерирует ЭМИ в диапазоне частот от 20 до 300 МГц. Это достаточно интенсивное силовое поле, которое при систематическом воздействии способно вызывать негативные изменения в работе некоторых органов и систем организма. Это может выражаться в возникновении следующих симптомов:

    • головные боли;
    • слезоточивость;
    • покраснение глазного яблока;
    • расстройства сна и психики;
    • повышение утомляемости;
    • ухудшение мозговой деятельности.

    Важна и направленность волн, исходящих от компьютерной техники. Если компьютер или ноутбук находятся на уровне живота, наибольшее негативное воздействие оказывается на эту часть тела. Это может привести к различным отклонениям в работе пищеварительной системы. Если монитор расположен на уровне головы, можно ожидать негативной симптоматики от верхней части тела.

    Телефоны

    Изо всех бытовых источников ЭМИ самыми опасными являются телефоны. Они в постоянном режиме поддерживают радиоконтакт со станцией сотовой связи. При перемещении человека с мобильником устройство переключается с одной станции на другую. В состоянии бездействия (отсутствия звонка), аппарат находится в режиме ожидания и с одинаковой периодичностью излучает волны.

    Телефон в непосредственной близости от тела ― опасное соседство. Мобильник является мощным источником ЭМИ радиочастотного диапазона. Во время разговора они частично поглощаются тканями головы, поэтому человек при длительном разговоре чувствует нагрев в области ушной раковины и виска.

    Низкочастотное излучение в большей степени опасно для детей. Череп и ткани головы ребенка не способны отразить воздействие электромагнитных волн, и те почти полностью проникают в них. ЭМИ оказывает сильное влияние на мозговые ритмы, что не может не сказаться на состоянии здоровья.

    Потенциально опасны и технологии беспроводного доступа в интернет. Оборудование для Wi-Fi в непрерывном режиме генерирует пульсирующее ЭМИ. Поэтому специалисты ВОЗ (Всемирной организации здравоохранения) не рекомендуют использование Wi-Fi в дошкольных учреждениях и учебных заведениях.

    Как именно влияют электромагнитные излучения на здоровье человека?

    Учеными доказано негативное влияние электромагнитного излучения на здоровье человека. Наиболее чувствительны к ЭМИ системы организма, выполняющие регуляторные функции:

    • нервная;
    • сердечно-сосудистая;
    • эндокринная;
    • репродуктивная.

    У тех, кто длительное время контактирует с источниками постоянного магнитного поля, чаще всего развиваются следующие патологические состояния:

    • вегето-сосудистая дистония и периферические вазовегетативные синдромы;
    • сенситивные расстройства в дистальном отделе рук;
    • нарушения двигательных и рефлекторных функций.
    Бессонница у женщиныБессонница у женщины

    Бессонница у женщины

    ЭМИ меньше всего влияет на кровь. При систематическом контакте с источником наблюдается лишь уменьшение количества эритроцитов и снижение уровня гемоглобина, развивается умеренный лейко- и лимфоцитоз. Первые симптомы воздействия на организм электромагнитных волн:

    • повышенная утомляемость;
    • нарушения сна;
    • раздражительность;
    • ухудшение памяти;
    • снижение способности сосредоточения.

    Интенсивность воздействия зависит от значений концентрации потока энергии. Американские ученые выявили прямую зависимость между развитием онкологических заболеваний и профессиональной занятостью. В группе риска:

    • полицейские, часто использующие радиопередатчики;
    • специалисты, вынужденные по долгу службы находиться рядом с электронным оборудованием (в качестве вредного фактора выступают и дисплейные терминалы).

    Излучение опасно и для беременных женщин. У тех из них, кто подолгу работает на компьютере, в 1,5 раза чаще происходят самопроизвольные выкидыши.

    Санитарные нормы воздействия электрического поля

    Самые строгие нормы в Европе. ПДУ излучения базовых станций мобильной связи не должны превышать 2,5 мкВт/см². В Москве и России допустима плотность потока энергии 10 мкВт/см². Контроль за соблюдением норм возложен на органы санитарного надзора, службы охраны труда и инспекции по радиосвязи.

    Согласно санитарным правилам, разработаны рекомендации по допустимому времени непрерывной работы за компьютером детей разного возраста.

    ВозрастМаксимально допустимое время непрерывной работы (минуты)
    57
    610
    7-1015
    11-1320
    14-1525
    16-1730 на первом часе занятий, 20 на втором часе
    Нормы ЭМИНормы ЭМИ

    Нормы ЭМИ

    Предельно допустимая норма ЭМИ — от 0,2 до 10 мкТл. Повышенным уровнем считают достижение частоты излучения 50 Гц. Для электрических полей установлены следующие нормы:

    • жилые помещения ― до 0,5 кВ/м;
    • в зоне жилой застройки — до 1 кВ/м;
    • вне зоны жилой застройки — до 5 кВ/м.

    Измерение уровня ЭМИ

    Учеными разработаны приборы для измерения электромагнитных полей и излучений ― ручные анализаторы. С их помощью допустимо узнать уровень напряженности (плотность потока энергии) электромагнитного поля. Измеряющие устройства работают в широком диапазоне частот и способны отслеживать заданную частоту. Можно выбрать единицы измерения: В/м (вольтметр) или мкВт/см² (микроватт/см²).

    Анализатор «АТТ-2593»

    Популярный и недорогой прибор ― «АТТ-2593». Он предназначен для мониторинга ненаправленных измерений напряженности электрического и магнитного полей, а также плотности потока их мощности. «АТТ-2593» работает в диапазоне частот от 5 мГц до 8 Гц. На основании результатов тестирования делают выводы о том, насколько вредно длительное нахождение рядом с источником ЭМИ.

    Анализатор «ВЕ-метр-АТ-003»

    Замерить излучение от компьютеров, телефонов и ноутбуков поможет анализатор «ВЕ-метр-АТ-003». Прибор позволяет определить уровень магнитного поля и время прохождения волн. «ВЕ-метр-АТ-003» может использоваться не только в бытовых целях. Он подходит для измерения магнитной и электрической составляющих силового поля на производствах, рабочих местах, в общественных зданиях и на селитебных территориях. Прибор работает в диапазоне частот от 5 Гц до 5 кГц.

    Экспертиза магнитных полей

    Детектор электромагнитного излученияДетектор электромагнитного излучения

    Детектор электромагнитного излучения

    Экспертиза силовых полей — востребованная услуга, которая входит в компетенцию специализированных аккредитованных лабораторий. Учреждение должно иметь соответствующий сертификат. Наиболее частыми причинами проведения экспертизы являются:

    • недочеты в проектировании зданий, влекущие неправильное распределение и монтаж электросетей;
    • нахождение вблизи жилых домов трансформаторных подстанций;
    • расположение дач вблизи ЛЭП.

    Для того чтобы измерить ЭМИ, используют детектор электромагнитного излучения. Это прибор, предназначенный для измерения напряженности электрических и магнитных полей вокруг систем радиосвязи, бытовой техники, производственного оборудования. Перед тем как заказать экспертизу, рекомендуется узнать о том, какой измеритель электромагнитного поля будет использоваться, и о сроке его поверки.

    Как замерить электромагнитное излучение в квартире и кому необходима данная процедура?

    Есть простой и доступный способ измерить электромагнитное излучение в домашних условиях. Для этого понадобится индикаторная отвертка, которую можно купить в любом магазине хозяйственных товаров и строительных материалов. Индикаторы таких отверток реагируют на ЭМИ. Поэтому если поднести инструмент к работающей бытовой или компьютерной технике, то он отреагирует свечением. Оно будет тем более интенсивным, чем выше ЭМИ в зоне измерения.

    Но точные данные удастся получить только с помощью анализатора. Каждому, кто имеет дома бытовую и компьютерную технику, необходимо знать о том, какова интенсивность излучаемых ею волн. Это поможет найти способы минимизации вредного воздействия.

    Как уменьшить электромагнитное излучение?

    Специалистами разработаны меры по защите от воздействия ЭМИ на организм человека. Главная из них ― это нахождение на больших расстояниях от источника излучения. Так, не рекомендуется находиться вблизи работающей СВЧ-печи или роутера. Телевизор с диагональю 60-70 см нужно смотреть на расстоянии от 1,5 м. Чем шире экран, тем выше показатель интенсивности ЭМП и тем дальше должен находиться зритель.

    Стены из любых строительных материалов не являются преградой для ЭМИ. Это нужно учитывать при расстановке мебели и своевременно поинтересоваться, где у соседей расположены приборы, создающие магнитный фон.

    Необходимо использовать средства защиты от ЭМИ ― экранирующие материалы. Один из них ― металлическая сетка, которую закладывают в стяжку и стены при строительстве дома. Она способна отражать излучение по направлению к его источнику. Существуют специальные защитные пленки и экраны для дисплеев компьютеров и телефонов.

    С целью снижения уровня воздействия ЭМИ рекомендуется выключать из электросети неработающие приборы. Также необходимо сократить время разговоров по мобильному. При выполнении рекомендаций по защите себя и своего помещения от магнитного излучения, можно минимизировать причиняемый им вред.

    Автор статьи: Беспалова Ирина Леонидовна

    Беспалова Ирина ЛеонидовнаБеспалова Ирина Леонидовна

    Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

    Беспалова Ирина Леонидовна опубликовала статей: 443

    Электромагнитные волны — это… Что такое Электромагнитные волны?

    Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение электрических и магнитных полей.

    Характеристики электромагнитного излучения

    Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света (принцип максимальности скорости света не нарушается, так как скорость переноса энергии и информации в любом случае не превышает световой скорости).

    Описанием свойств и параметров электромагнитного излучения занимается электродинамика.

    Существуют различные теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из них является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других позиций изучается воздействие электромагнитного излучения в радиологии.

    Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

    • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
    • Электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

    Диапазоны электромагнитного излучения

    Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

    Радиоволны. Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые (микрометровые). Волны с длиной λ < 1 м (ν > 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ). Деление радиоволн на диапазоны см. в статьях Радиоизлучение и Диапазоны частот.

    Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ, а энергия гамма-квантов — больше 0,1 МэВ. В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).


    Радиоволны

    Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.

    Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.

    Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.

    Микроволновое излучение

    Инфракрасное излучение (Тепловое)

    Видимое излучение (Оптическое)

    Прозрачная призма разлагает луч белого цвета на составляющие его лучи.

    Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).

    Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества. По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

    Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза). Именно потому, что мы родились возле такой звезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.

    Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см. Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см. Болометрия).

    Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии. Источником энергии для большинства живых существ на Земле является фотосинтез — биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

    Ультрафиолетовое излучение

    Жёсткое излучение

    В области рентгеновского и гамма-излучения на первый план выступают квантовые свойства излучения. Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов. Гамма-излучение появляется в результате процессов, происходящих внутри атомных ядер, а также в результате превращения элементарных частиц. Оно появляется и при торможении быстрых заряженных частиц.

    Особенности электромагнитного излучения разных диапазонов

    Распространение электромагнитных волн, временны́е зависимости электрического \mathit E(t)\, и магнитного \mathit H(t)\, полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.

    Электромагнитные излучения различных частот взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволн обычно можно описать с помощью соотношений классической электродинамики; а вот для волн оптического диапазона и, тем более, жестких лучей необходимо учитывать уже их квантовую природу.

    История исследований

    В 1800 году английский учёный У. Гершель открыл инфракрасное излучение.

    Существование электромагнитного излучения теоретически предсказал английский физик Фарадей в 1832 году.

    В 1865 году английский физик Дж. Максвелл рассчитал теоретически скорость электромагнитных волн в вакууме.

    В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём. Интересно, что Герц не верил в существование этих волн и проводил свой опыт с целью опровергнуть выводы Максвелла.

    Электромагнитная безопасность

    Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др..

    Влияние на живые существа

    Существуют национальные и международные гигиенические нормативы уровней ЭМП, в зависимости от диапазона, для селитебной зоны и на рабочих местах.

    Оптический диапазон

    Существуют гигиенические нормы освещённости; также разработаны нормативы безопасности при работе с лазерным излучением.

    Радиоволны

    Допустимые уровни электромагнитного излучения (плотность потока электромагнитной энергии) отражаются в нормативах, которые устанавливают государственные компетентные органы, в зависимости от диапазона ЭМП. Эти нормы могут быть существенно различны в разных странах.

    Нахождение в зоне с повышенными уровнями ЭМП в течение определённого времени приводит к ряду неблагоприятных последствий: наблюдается усталость, тошнота, головная боль. При значительных превышениях нормативов возможны повреждение сердца, мозга, центральной нервной системы. Излучение может влиять на психику человека, появляется раздражительность, человеку трудно себя контролировать. Возможно развитие трудно поддающихся лечению заболеваний, вплоть до раковых. В частности, корреляционный анализ показал прямую средней силы корреляцию заболеваемости злокачественными заболеваниями головного мозга с максимальной нагрузкой от ЭМИ даже от использования такого маломощного источника, как мобильные радиотелефоны.[1] Эти данные не должны быть причиной для радиофобии, однако очевидна необходимость в существенном углублении сведений о действии ЭМИ на живые организмы.

    В России действует СанПиН 2.2.4.1191—03 Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы, а также гигиенические нормативы ГДР (ПДУ) 5803-91 (ДНАОП 0.03-3.22-91) Предельно допустимые уровни (ПДУ) воздействия электромагнитных полей (ЭМП) диапазона частот 10—60 кГц Промышленное электроснабжение 50 Гц [2][3]

    • Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
    Украина: 2,5 мкВт/кв.см. (самая жёсткая санитарная норма в Европе)
    Россия, Венгрия: 10 мкВт/кв.см.
    США, Скандинавские страны: 100 мкВт/кв.см.

    Параллельное развитие гигиенической науки в СССР и западных странах привело к формированию разных подходов к оценке действия ЭМИ. Для части стран постсоветского пространства сохраняется преимущественно нормирование в единицах плотности потока энергии (ППЭ), а для США и стран ЕС типичным является оценка удельной мощности поглощения (мобильных радиотелефонов (МРТ) не позволяют прогнозировать все неблагоприятные последствия, многие аспекты проблемы не освещены в современной литературе и требуют дополнительных исследований. В связи с этим, согласно рекомендациям ВОЗ, целесообразно придерживаться предупредительной политики, т. е. максимально уменьшить время использования сотовой связи.»

    Проникающая неионизирующая радиация

    Допустимые нормативы регулируются нормами радиационной безопасности — НРБ-99.

    Влияние на радиотехнические устройства

    Существует административные и контролирующие органы — инспекция по радиосвязи (на Украине, например, Укрчастотнадзор), которая регулирует распределение частотных диапазонов для различных пользователей, соблюдение выделенных диапазонов, отслеживает незаконное пользование радиоэфиром.

    См. также

    Ссылки

    Литература

    • Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 874—876. ISBN 5-85270-306-0 (БРЭ)
    • Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. Учебник для ВУЗов. — М.: ФИЗМАТЛИТ, 2008. — 184 с — ISBN 978-5-9221-0848-5

    Примечания

    1. В. Н. Дунаев «Электромагнитные излучения и риск популяционному здоровью при использовании средств сотовой связи» //Гигиена и санитария, № 6, 2007, с. 56—57
    2. ПДУ магнитных полей частот 50 Гц. Харьков, 1986, СН-3206-85.2
    3. Методические указания но гигиенической оценке основных параметров полей частотой 50Гц. Харьков, 1986. СН 3207-85

    Wikimedia Foundation. 2010.

    Обсуждение:Электромагнитное излучение — Википедия

    Эта статья предлагалась к объединению со статьёй Электромагнитные колебания и по итогам обсуждения была оставлена. — Alexander Potekhin — 20:37, 27 июня 2009 (UTC)

    О разделе «Электромагнитная безопасность»[править код]

    Создал черновик этого раздела, но нужны свежие ссылки и уровни. В перспективе раздел следует выделить в отдельную статью, оставив здесь небольшое пояснение и ссылку, и то же — в статье ЭМП.

    Для развития этого раздела предлагаю обдумать форму таблиц(ы), обобщающих имеющиеся сведения по ЭМБезопасности (частотный диапазон, раб. зона/промышленность/боевые условия, по разным странам). Alexandrov 12:59, 14 мая 2008 (UTC)

    • Несколько пополнил раздел Безопасность ссылками на источники. Их ещё много требуется, и на стандарты. Теперь следует выбрать наиболее весомые и актуальные, возможно, и исторический разрез дать. И тогда можно быдет выделять раздел, т.к. в Мобильная связь, ЭМП — всюду такие фрагменты полезны — но только в общей статье электромагнитная безопасность можно дать цельную картину. Alexandrov 09:52, 22 мая 2008 (UTC)

    Привет, Алекс!

    Возможно, будет интересно. Дело в том, что я в своё время по собственной инициативе начал экспиременты с ребятами из Военно-медицинской Академии по воздействию лазера на орган зрения (кроли, обезьяны) и начал публиковать данные в УФН в начале 70-х годов. К чести моего шефа А.А.Мака, могу отметить, что он не отказался подписывать соответствующие справки . Затем написал совместно с компанией книгу по лазерной безопасности (все библиографические данные остались в Петербурге) и принял участие в составлении ГОСТа на лазерное излучение. Возможно, эти опусы были бы к месту в рассматриваемой здесь тематике.

    С уважением Витольд Муратов (обс, вклад) 11:11, 4 марта 2009 (UTC)

    Если найдётся точная ссылка на ГОСТ — очень даже стоит её проставить. А вот добавлять в статью данные исследований — имеет смысл только при (опять же точной) ссылке на рецензируемый научный журнал, см. ВП:ПРОВ, а это может оказаться затруднительно. Sergej Qkowlew 13:27, 4 марта 2009 (UTC)
    • Спасибо! Конечно, это было бы очень полезное добавление — тем более, что как раз действие лазера — в наибольшей степени было вне моего пласта информации 🙂 , и я о нём не мог написать внятно. Жаль — времени так мало 🙁 — сейчас отвлекает (из «викичного») обсуждение «посливать — или разделять статьи» на ВП:Фарм… Alexandrov 13:28, 4 марта 2009 (UTC)

    Неверные значения в таблице частот. 7,5×10^13 Гц это не 750 ТГц.

    Предлагаю написать, что электромагнитное излучение полезно, или, что его польза не изучена. Чего уж там. 109.232.189.182 00:59, 22 августа 2017 (UTC)

    Наверное, более правильно будет вместо перечисленных диапазонов указать названия по их длинам волн, т.е. от мириаметровых волн, до децимиллиметровых волн.—Angstorm 17:36, 11 октября 2009 (UTC)

    нельзя ли как-то доработать таблицу в «Диапазоны электромагнитного излучения»? — если % установить там, то ужимаются Источники безобразно, если убрать — «прижаты» сильно пр. ячейки.. -/ —Tpyvvikky 21:33, 10 марта 2015 (UTC)

    Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

    Можно понять, что существуют переменные электромагнитные поля, которые на это не способны.Что неверно. Дальность распространения определяется лишь силой тока и его частотой. Если же поля чем-либо экранируются или ослабляются то это не их вина, а среды, в которой происходит распространение.

    Двусмысленную фразу убираю от греха. Витольд Муратов (обс, вклад) 20:27, 7 декабря 2011 (UTC)

    • Никаких проблем не вижу в этой фразе. Всего-то и сказано, что излучение это часть электромагнитного поля, которая на бесконечности затухает медленно. Alexander Mayorov 21:09, 7 декабря 2011 (UTC)

    Вопрос по рисунку с соленоидом.[править код]

    На рисунке изображены слипшиеся электроны? Я думаю что провода.

    Обычно между атомами расстояние больше классического диаметра электрона. Поэтому было бы лучше показать между проводами расстояние. Чтобы нарисовать замкнутые кружочки «силовых линий» «магнитного поля» ведь пока монополя Дирака не нашли. (это моё личное мнение). С уважением. Андроид. 91.205.25.30 16:50, 26 марта 2013 (UTC)

    Максимальная и минимальная длина электромагнитной волны.[править код]

    А вот мне интересно, какая максимально возможная и минимально возможная длина может быть у электромагнитных волн? 109.205.252.166 16:46, 28 апреля 2013 (UTC)

    От 1,6*10^-35 м до 1,4*10^10 световых лет. Д.Ильин 17:39, 28 апреля 2013 (UTC).

    Ничего не написано про длина волны данных колебаний (напр. светового диапазона) — её определение\измерение и тп. (или всё идет через частоту, с пересчетом).. —Tpyvvikky 15:08, 24 декабря 2013 (UTC)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *