Электромагнитное действие электрического тока используется в: 2___(Электротехника) – Тест с ответами по электротехнике для школьников

2___(Электротехника)

1.7. ОПД.Ф.06 Электротехника и электроника 140 час.

Укажите правильный ответ

1. Наиболее широко используется подключение электрических элементов (потребителей) к сети

1) последовательное

3) смешанное

+2) параллельное

4) последовательное и смешанное

2. Основную часть используемой людьми электроэнергии создают

1) атомные электростанции

4) приливные электростанции

2) ветровые электростанции

5) солнечные электростанции

3) гидроэлектростанции

+6) тепловые электростанции

3. Электрическая энергия передается по линиям электропередачи с помощью высокого напряжения, потому что

1) проще строить высокие линии электропередачи

2) высокое напряжение удобно использовать

+3) меньше потери в проводах при передаче энергии

4) высокое напряжение более безопасно

4. Мощность электрической энергии измеряется в

+1) ваттах

3) амперах

2) вольтах

4) Омах

5. Коллекторные двигатели позволяют

+1) плавно менять скорость вращения ротора

2) уменьшить потери электрической энергии

3) уменьшить габариты двигателя

4) работать в цепях постоянного и переменного тока

6. Для преобразования переменного тока в постоянный применяются

1) двигатели

3) генераторы

2) нагревательные приборы

+4) выпрямители

7. Последовательно или параллельно с бытовым электроприбором в квартире включают плавкий предохранитель на электрическом щите

1) можно последовательно, можно и параллельно

3) параллельно

+2) последовательно

4) параллельно и смешанно

8. Измеряет силу тока

1) вольтметр

3) счетчик электрической энергии

2) ваттметр

+4) амперметр

9. Устройства управления и защиты в электрических цепях выполняют

+1) предохранители и магнитные пускатели

2) трансформаторы и выпрямители

3) выпрямители

4) осветительные приборы и электросчётчики

10. Счетчик электрической энергии измеряет

1) силу тока

2) мощность потребляемой электроэнергии

+3) расход энергии за определенное время

4) напряжение электрической сети

5) частоту тока

11. Сила тока измеряется в

1) киловаттах

4) ваттах

+2) амперах

5) герцах

3) вольтах

12. Технические устройства, в которых используется электромагнитное действие электрического тока

+1) электрические двигатели и генераторы

2) осветительные приборы

3) нагревательные приборы

4) линии электропередачи

5) предохранители

13. Трансформаторы позволяют

1) преобразовать переменный ток в постоянный

2) преобразовать постоянный ток в переменный

+3) преобразовать переменный ток одного напряжения определенной частоты в переменный ток другого напряжения и той же частоты

4) преобразовать частоту колебаний тока на входе

5) преобразовать частоту колебаний тока на выходе

14. Потребители электрической энергии

1) генераторы

+3) электродвигатели

2) трансформаторы

4) выпрямители

15. Тепловое действие электрического тока используется в

1) двигателях постоянного тока

4) выпрямителях

+2) лампах накаливания

5) трансформаторах

3) асинхронных двигателях

16. Основные источники электрической энергии

1) осветительные приборы

2) выпрямители;

3) нагревательные приборы

+4) тепловые, атомные и гидроэлектростанции

5) электродвигатели

17. Электрическая энергия измеряется в

1) амперах

4) Омах

2) вольтах

5) фарадах

+3) ваттах

18. Диоды используются в электротехнике

1) в нагревательных приборах

4) в электродвигателях

2) в осветительных приборах

+5) в выпрямителях

3) в трансформаторах

19. Коллекторные двигатели используются

1) в электроприводе станков

3) в холодильниках

+2) в стартерах автомобилей

4) в грузоподъемных машинах

20. Прибор для измерения напряжения называется

1) счетчик электрической энергии

+3) вольтметр

2) ваттметр

4) амперметр

21. Формула закона Ома имеет вид

+1) I=U/R

4) U=I/R

2) I=R/U

5) R=IU

3) I=UR

22. Емкостью обладает

1) резистор

4) диод

+2) конденсатор

5) фотоэлемент

3) катушка

23. Если линейное напряжение 220 В, то фазное напряжение равно

1) 380

4) 440

+2) 127

5) 660

3) 110

24. Мощность цепи постоянного тока определяется по формуле

1) Р=RI

+4) P=UI

2) P=U/R

5) P=U/I

3) P=ER

25. Емкость измеряется в

1) амперах

+4) фарадах

2) вольтах

5) ваттах

3) омах

26. Для защиты электроустановок от токов короткого замыкания и длительных перегрузок применяют

1) конденсаторы

4) реле времени

2) пускатели

+5) предохранители

3) реостаты

27. К сети 12 В подключена лампа мощностью 60 Вт при этом ток потребления от источника энергии составит

+1) 5А

4) 10А

2) 3А

5) 7,2А

3) 1,5А

28. Единицей измерения магнитной индукции является

1) Ампер

4) Герц

+2) Тесла

5) Фарад

3) Вольт

29. Электрический ток оказывает на проводник действие

+1) тепловое

4) физическое

2) радиоактивное

5) химическое

3) магнитное

30. Резонанс токов в электрической цепи возникнет при соединении индуктивной катушки и конденсатора при

1) параллельном соединении элементов

+2) последовательном соединении элементов

3) смешанном соединении элементов

4) любом соединении элементов

5) никогда не наступит

31. Уравнение, записанное по первому закону Кирхгофа для узла «а» представлено

+1) I1+I2+I3-I4-I5-I6=0

2) I1-I2+I3-I4+I5-I6=0

3) I1-I2+I3+I4-I5-I6=0

4) I1+I3+I4=I2+I5-I6

32. Эквивалентное сопротивление данной схемы определяется по формуле

1) Rэ=R1+R2+R3

2) Rэ= (R1*R2*R3)/R1+R2+R3

+3) 1/Rэ=1/R1+1/R2+1/R3;

4) 1/Rэ=R1+1/R2+1/R3;

Тест с ответами по электротехнике для школьников

1.Для преобразования переменного тока в постоянный используются:

1. нагревательные приборы

2. генераторы

3. выпрямители

4. двигатели

2.Коллекторные двигатели позволяют:

1. плавно менять скорость вращения ротора

2. уменьшить потери электрической энергии

3. уменьшить габариты двигателя

4. работать в цепях постоянного и переменного тока

3.Наиболее широко используется подключение электрических элементов (потребителей) к сети:

1. последовательное

2. параллельное

3. смешанное

4.Измеряет силу тока:

1. вольтметр

2. ваттметр

3. счетчик электрической энергии

4. амперметр

5. Тепловое действие электрического тока используется в:

1. лампах накаливания

2. асинхронных двигателях

3. двигателях постоянного тока

4. выпрямителях

6. Технические устройства, в которых используется электромагнитное действие электрического тока:

1. электрические двигатели и генераторы

2. осветительные приборы

3. нагревательные приборы

4. линии электропередачи

5. предохранители

7. Сила тока измеряется в:

1. киловаттах

2. амперах

3. вольтах

4. ваттах

8. Устройства управления и защиты в электрических цепях:

1. предохранители и магнитные пускатели

2. трансформаторы и выпрямители

3. осветительные приборы и электросчётчики

9. Счетчик электрической энергии измеряет:

1. силу тока

2. расход энергии за определенное время

3. мощность потребляемой электроэнергии

4. напряжение сети

10. Коллекторные двигатели используются:

1. в электроприводе станков

2. в стартерах автомобилей

3. в холодильниках

4. в устройствах электрического транспорта

11. Последовательно или параллельно с бытовым электроприбором в квартире включают плавный предохранитель на электрическом щите:

1. можно последовательно, можно и параллельно

2. последовательно

3. параллельно

12. Мощность измеряется в:

1. ваттах

2. вольтах

3. амперах

13. Электрическая энергия измеряется в:

1. амперах

2. вольтах

3. ваттах

14. Основную часть используемой людьми электроэнергии создают:

1. атомные электростанции

2. ветровые электростанции

3. гидроэлектростанции

4. тепловые электростанции

5. солнечные электростанции

6. приливные электростанции

15. Электрическая энергия передается по линиям электропередачи с помощью высокого напряжения, потому что:

1. проще строить высокие линии электропередачи

2. высокое напряжение более безопасно

3. меньше потери в проводах при передаче энергии

4. высокое напряжение удобно использовать

Методическая разработка по технологии (9 класс) по теме: Тест по электротехнике

   Тесты позволяют диагностировать достигнутый учащимся уровень знаний по разделам (предметных областей: физика, технология, информатика)   и одновременно, скорректировать пробелы, выявленные в ходе прохождении тестов.    А также служат в качестве подготовки к  олимпиадным тестам  по технологии.                                                                                          

                                                            Тест по электротехнике

Определите правильный ответ:

1.В каких единицах измеряется напряжение?

Амперах, Кулонах, Вольтах

2. Что измеряется в Омах?

Сопротивление,   Напряжение,      Мощность.

3. В каких единицах измеряется количество   электричества?

Тоннах, Кулонах, Центнерах.

4.  Основная единица измерения силы тока?

Ампер, ватт, градус

5. Что такое электрический ток?

Поток воды в реке,  движение электронов,  направленное движение электронов.

6. В каких единицах измеряется мощность электрического тока?

Ваттах,   лошадиных силах, килограммах.

7. Как называется прибор с помощью которого измеряют электрическое напряжение?

Вольтметр, Амперметр. Ареометр.

8. С помощью какого прибора измеряют силу электрического тока?

Омметра.  Манометра. Амперметра.

9. Каким прибором измеряют величину сопротивления?

Омметром. Ваттметром. Линейкой.

10. На каком рисунке изображен резистор?

 рис. 1        рис.2              рис.3

11. На каком рисунке изображена батарея питания?

рис.1            рис.2             рис.3

12.  На каком рисунке изображен полупроводниковый  триод — (транзистор)?

рис.1           рис.2               рис.3

13. На каком рисунке изображен трансформатор?

рис.1                  рис.2                                    рис.3

                                         

14. Из каких металлов состоит припой?

   Сталь и алюминий ,   Титан и магний,     Свинец и олово

15.Под каким углом нужно заправлять жало электропаяльника?

 Любым углом.    Примерно 45 градусов.  Острым углом

16.На каком рисунке изображено электромагнитное реле?

Рис.1   рис.2рис.3

17.На каком рисунке изображен фотодиод?

Рис.1      рис.2              рис.3

18.На каком рисунке изображён микрофон?

Рис.1 рис.2  рис.3

19.Основную часть используемой людьми электрической энергии создают:

Атомные экектростанции

Ветровые электростанции

Гидроэлектростанции

Тепловые электро станции

Солнечные электро станции

Прилевные электро станции

20.Электрическая энергия передаётся по линиям электро передачи с помощью высокого напряжения, потому что:

Проще строить высокие линии электропередачи

Высокое напряжение наиболее безопасно

Меньше потери в проводах при передаче энергии

Высокое напряжение удобно использовать

21.Трансформаторы позволяют:

 Преобразовать постоянный ток в переменный

Преобразовать переменный ток в постоянный

Преобразовать переменный ток одного напряжения определённой частоты в переменный ток другого напряжения и той же частоты

Преобразовать частоту колебаний тока на входе трансформатора

22.Диоды используются в электротехнике:

В нагревательных приборах

В осветительных приборах

В выпрямителях

В электродвигателях

В трансфонматорах

23. Коллекторные двигатели позволяют:

Уменьшить потери электрической энергии

Уменьшить габариты двигателя

Плавно менять скорость вращения ротора

Работать в цепях постоянного и переменного тока

24. Коллекторные двигатели используются:

В электроприводе станков

В стартерах автомобилей

В холодильниках

В устройствах электрического транспорта

25. Технические устройства, в которых используется электромагнитное действие электрического тока:

Электрические двигатели и генераторы

Осветительные приборы

Нагревательные приборы

Линии электропередачи

Предохранители

26. Для преобразования переменного тока в постоянный используются:

Двигатели

Генераторы

Выпрямители

Нагревательные приборы

Осветительные приборы

27. Тепловое действие электрического тока используется в:

Электроутюгах

Выпрямителях

Лампах накаливания

Асинхронных двигателях

Двигателях постоянного тока

28.Электромагнитное действие электрического тока  используется в следующих устройствах:

Реле.  Электрическом звонке.  Батарее.   Электрическом двигателе.  Настольной лампе.  Трансформаторе

29.Выберете из нижеперечисленных элементов те, которые являются  составными частями двигателя постоянного тока:

Коллектор.   Переключатель.   Якорь.   Возвратная пружина.   Электромагнит  щётки

30.Трансформатор служит для:

Трансформации тока при постоянстве напряжения

Преобразования напряжения одной величины в напряжение другой величины

Преобразования электрической энергии в другие виды энергии

31.Роторы коллекторных и асинхронных двигателей вращаются под воздействием сил взаимодействия:

Тока в статоре и тока в роторе

Тока в статоре и напряжения на роторе

Напряжения на статоре и напряжения на роторе

Магнитного поля статора с током в обмотке с ротора

Напряжения на  входе двигателя  и тока в обмотке ротора

32.Область применения асинхронных двигателей:

Электропривод; электротяга; для целей освещения; для целей обогрева; в качестве трансформаторов

33.Наиболее широко используется подключение электрических элементов (потребителей) к сети:

Параллельное; последовательное; смешанное; неравномерное.

34.Устройства управления и защиты в электрических цепях:

Выключатели , предохранители.  Магнитные пускатели.   Трансформаторы.   Выпрямители

Осветительные приборы

35.Области применения коллекторных двигателей:

а) Электротранспорт, швейные машины и другие устройства,где требуется изменение скорости вращения ротора в широких пределах

б) Электропривод

в) Осветительные приборы

г) Нагревательные приборы

д) Выпрямители

36.Основные источники электрической энергии:

Тепловые, атомные и гидроэлектростанции

Электродвигатели

Выпрямители

Нагревательные приборы

Осветительные приборы

37.Основные потребители электрической энергии:

Осветительные приборы

Нагревательные приборы

Электродвигатели

Генераторы

трансформаторы

38.Счётчик измерительной энергии измеряет:

Силу тока

Напряжение сети

Мощность потребляемой электроэнергии

Расход энергии за определённое время

39.Электрическая энергия измеряется :

Ваттах; амперах; вольтах; киловатт-часах

40.Последовательно или параллельно с бытовым прибором в квартире включают плавным предохранитель на электрическом щите:

Можно последовательно, можно и параллельно

Последовательно

параллельно

41.Выберите из нижеперечисленных устройств те, в которых используется электромагнитное  действие электрического тока:

Реле.   Батарея.    Трансформатор.   Телефон.    Настольная лампа .   Громкоговоритель.  Колебательный контор

42.Бытовая электрическая сеть может передавать электроэнергию мощностью 1,5 кВт.Можно ли подключить к этой сети одновременно чайник мощностью 1кВт и пылесос мощностью 0,8 кВт?

Можно; нельзя; когда можно, когда нет; скорее можно

43.Потребители электроэнергии имеют мощности: електрочайник-1 кВт, стиральная машина- 1 кВт, пылесос- 0,8 кВт, осветительные приборы- 0,5 кВт. Напряжение сети 220 В. Предохранитель , обеспечивающий работу этих потребителей должен иметь ток срабатывания:

10 А; 15 А; 20 А; 25 А.

44.Дальность действия телевизионной системы определяется использованием:

Механических колебаний

Акустических колебаний

электрических колебаний  

электромагнитных волн

45.Безопасным для человека является напряжение:

400 В; 42 В; 220 В; 12 В; 127 В

46.Радиоприёмник на определённую волну удаётся настроить  при помощи:                                              Усилителя ;  трансформатор;  антенны;  фильтра.

47.Автоматические устройства позволяют поддерживать постоянную температуру:

Ламп накаливание;  электрических двигателей;  электроутюгов;  люминесцентных ламп ;    внутри холодильников

48. Датчики автоматических устройств позволяют:

Получить электрический сигнал, пропорциональный температуре

Получить электрический сигнал ,пропорциональный освещению

Получить электрический сигнал при воздействии неэлектрических величин

49.в автоматических устройствах используется:

Резисторные усилители с разделительными конденсаторами

Полосовые усилители  

Операционные усилители

50.Операционные усилители предназначены для усиления сигналов:

Только высокочастотных

Только низкочастотных

Как постоянного ,так и переменного тока

51.Автоматический регулятор(автоматическое устройство замкнутого типа) включает:

Усилитель, датчик, исполнительное устройство

Датчик, задающий орган, элемент сравнения, исполнительное устройство, объект управления

Объект управления, датчик, элемент сравнения

52.реле-это устройство, которое имеет:

Одно устойчивое состояние

Два устойчивых состояния

Три устойчивых состояния

53.Автоматические устройства используется:

В газовых плитах

В электрических плитах

В стиральных машинах

В холодильниках

54.Преобразование звуковых колебаний в электрические осуществляются с помощью:

Громкоговорителя. Усилителя.  Генератора.  Микрофона

55. При параллельном соединении резисторов R и R величины их сопротивлений:

Складываются (R1+ R2)

Вычитаются (R1 – R2)

Вычисляются по формуле (R1 х R2) / (R1  +R2)

Умножаются (R1 х R2)

Делятся (R1 / R2)

56. натянутые на столбы телефонные провода гудят потом, что …

По ним одновременно идёт много разговоров

По ним  идёт переменный ток низкого напряжения

Их колеблют электромагнитные волны от близлежащих радио и телевизионных передатчиков

Их колеблет ветер

57. Назовите типы электростанций, которые вырабатывают электроэнергию  в промышленных масштабах?

58.Электрические лампы в электричекой цепи не могут соединяться

Последовательно.   Параллельно.   Перпендикулярно.    Смешанно

59.  Условное обозначение  диода:

60. При последовательном соединении конденсаторов их  емкости:

61. Участок электрической цепи состоит из трех ламп, соединенных параллельно.  Одну лампу включают.  Сколько ламп будет гореть при наличии напряжения в цепи?

1; 2; ни одной; 3.

62. Участок электрической цепи состоит из четырех ламп, соединенных  последовательно. При включении напряжения одна лампа перегорела.  Сколько  ламп останется гореть?

3;  2;   1;  ни одной.

63.Участок электрической цепи состоит из трех ламп мощностью 40 Вт,  60 Вт,  и 100 Вт,  соединенных параллельно.  Какая из этих ламп будет гореть ярче всех?

64. На каком рисунке изображена лампа накаливания :

 рис.1                         рис.2                       рис.3

65.  На каком рисунке изображен конденсатор:

  рис.1                        рис.2                        рис.3        

                                                         

                                                                                       

     Ответы.   Электротехника.

  1. Вольтах —  (Напряжение измеряется в: вольтах — В; Киловольтах -кВ; милливольтах — мВ; микровольтах — мкВ!)
  2. Сопротивление  —  (Сопротивление измеряется в:  Омах — Ом;  килоОмах-кОм;  мегаОмах мОм; — гигаОмах — гОм! )        
  3. Кулон (Кл) — единица измерения  количества электричества
  4. Ампер – (Единица измерения силы тока Ампер   названа в честь французского физика)
  5. Электрический ток представляет собой направленное движение электронов.
  6. Ваттах
  7. Вольтметр
  8. Амперметра
  9. Омметром

10.Резистор – рис.3

11. батарея питания – рис.2

 

            12. полупроводниковый триод – рис.1    

13. трансформатор рис.3

14. Свинец и олово

15. Примерно 45 градусов

16.рис.2

              реле

                                           

                                                  17.    

                                                                        рис.3 фотодиод

         18.   рис.1 микрофон

19. Тепловые электростанции

20.Меньше потери в проводах при передаче энергии

21.Преобразовать переменный ток одного напряжения определённой частоты в переменный ток другого напряжения и той же частоты

22. В выпрямителях.                                                                      

   23.Плавно менять скорость вращения ротора

24. В стартерах автомобилей; в устройствах электрического транспорта

25.Электрические двигатели и генераторы

26. Выпрямители

27. Электроутюгах;  Лампах накаливания

28. Реле; Электрическом звонке; Электрическом двигателе

29.коллектор;якорь;электромагнит;щётки

30.преобразования напряжения одной величины в напряжении другой  величины

31.магнитного поля статора с током в обмотке ротора

32.электропривод

33.параллельное

34.выключатели,предохранители; магнитные пускатели

35.электротранспорт,швейные машины и другие устройства,где требуется изменение скорости вращения ротора в широких приделах

36.тепловые, атомные и гидроэлектростанции

37.осветительные приборы; нагревательные приборы; электродвигатели

38.расход энергии за определённое время

39.киловатт-часах

40.последовательно

41.реле; телефон; громкоговоритель.

42.Нельзя

43.10 А

44.электромагнитных волн

45.12 В

46. Антенны

47.внутри холодильников; электроутюгов

48.получить электрический сигнал при воздействии неэлектрических величин

49.Операционные усилители

50.Как постоянного, так и переменного тока

51.Датчик,задаючий орган, элемент сравнения, исполнительное устройство, объект управления

52.два устойчивых состояния

53.в стиральных машинах, в холодильниках

54.Микрофона Вычисляются по формуле (R1 х R2) / (R1  +R2)

55. Вычисляются по формуле (R1 х R2) / (R1  +R2)

56. По ним одновременно идёт много разговоров; По ним  идёт переменный ток низкого напряжения; Их колеблют электромагнитные волны от близлежащих радио и телевизионных передатчиков; Их колеблет ветер

57.Гидроэлектростанции , атомные, тепловая

58. Перпендикулярно

59. Вычисляются по формуле (С1 х С2)/(С1 + С2)

60. Две.

61. ни одной.

62. 100 Вт.

63. лампа накаливания            рис.2  

64.  конденсатор    

                                             рис.1

Применение электромагнетизма

Сферы практического применения электромагнетизма

Невозможно переоценить практическое значение теории электромагнетизма, которая обеспечила интенсивный научно – технический прогресс за прошлые сто пятьдесят лет.

Прошедшие десятилетия принципиально изменили мир. На основе электромагнитной теории разработаны технологии, которые дали возможность сконструировать современные устройства сбора, обработки и хранения информации. Например:

  • Атомно – силовой микроскоп, который служит иллюстрацией электростатического взаимодействия. Это микроскоп обеспечивает атомное разрешение.
  • Сканеры.
  • Интравизоры.
  • Магнитно – резонансный томограф.
  • Металлодетекторы с высокой чувствительностью.
  • Накопители на флэш-памяти с объемом до 1 Тб.
  • Ксерокопировальные устройства.
  • Разные принтеры, аппараты факсимильной связи.

Возможности современных ускорителей заряженных частиц в сверхсильных магнитных полях выходят за рамки воображения. Так, Большой адронный коллайдер дает энергию протонам около 14TэВ.

Современные проезда на магнитной подушке способны развивать скорости более 500 км/ч.

Электромагнитные пушки могут придать снаряду скорость на вылете близкую к первой космической, при попадании в мишень снаряд такой пушки превращает твердую мишень в облако плазмы.

Огромный прогресс достигнут в повсеместном использовании интернета, мобильной и космической связи.

К актуальным вопросам, относимым, в том числе, к компетенции электромагнетизма причисляют:

  1. Проблему применения электричества атмосферы.
  2. Транспортировку энергии без проводов.
  3. Проблемы магнетизма Земли.
  4. Защиту нашей планеты от солнечного ветра.
  5. Вопросы солнечной энергетики.
  6. Замещение невосстанавливаемых источников энергии альтернативами.
  7. Создание наноструктур и материалов, которые имеют уникальные электрические и магнитные свойства.

Однако не следует забывать, что многие современные приборы и устройства имеют в своей основе процессы и явления, описанные еще в XIX веке, поэтому следует их изучать. Рассмотрим некоторые из них.

Машина постоянного тока

Явление электромагнитной индукции используется в электрических генераторах. В них электрический ток возникает при движении проводника в магнитном поле.

При перемещении проводника, имеющего длину $l$ нормально к вектору магнитной индукции ($\vec B$) магнитного поля, в этом проводнике появляется электродвижущая сила индукции, следовательно, в проводнике будет течь индукционный ток. На проводник с током оказывает действие сила Ампера ($\vec F_A$).

Используя правило левой руки несложно убедиться, что направление силы Ампера противоположно направлению скорости перемещения проводника ($\ vec v$) (рис.1). Для осуществления движения проводника с постоянной скоростью на этот проводник необходимо действовать с некоторой силой $\vec F$, которая будет равна по величине силе Ампера, но направлена в противоположную сторону.

Данная внешняя сила при перемещении проводника на расстояние $\Delta l=v\Delta t$ будет совершать работу:

$A=F\Delta l=IBl\Delta l$=$\frac{q}{\Delta t}B\Delta S=q\frac{\Delta Ф}{\Delta t}=q\bullet Ɛ_{i}\left( 1\right)$.

Выражение (1) показывает, что работа внешних сил, заставляющих проводник перемещаться в магнитном поле, равна работе ЭДС индукции.

Замечание 1

Физический принцип генератора постоянного тока основан на явлении электромагнитной индукции при вращении рамки из проводника в магнитном поле

Основные части генератора постоянного тока:

  • индуктор, создающий магнитное поле;
  • якорь, в его обмотке возникает ЭДС индукции;
  • коллектор; электрические щетки.

Рисунок 1. Машина постоянного тока. Автор24 — интернет-биржа студенческих работ

Определение 1

Коллектором называют пластины из проводника, разделенные изолятором. Эти пластины соединены с катушками.

По пластинам коллектора скользят электрические щетки, которые осуществляют соединение концов обмоток с внешней электрической цепью.

Индуктор может быть неподвижен, в этом случае его называют статором.

Тогда якорь машины совершает вращение и носит название ротора. Якорь содержит сердечник из стали в форме цилиндра. Концы обмоток якоря соединяются с пластинами коллектора.

Если якорь вращается в магнитном поле индуктора, то в его обмотках возникает ЭДС индукции. При помощи скользящих контактов коллектора и электрических щеток обмотка якоря, в которой ЭДС индукции максимальна в данный момент времени, соединяется с потребителями.

Электродвигатель

Машина постоянного тока является обратимой. Это означает то, что данную машину можно применять для преобразования механической энергии в электрическую и обратно.

При использовании генератора постоянного тока как электродвигателя через обмотку индуктора пропускают постоянный ток.

Если подключить к щеткам постоянное напряжение в обмотке якоря появляется электрический ток, тогда провода обмотки испытывают действие силы Ампера со стороны магнитного поля. На противоположных сторонах якоря силы Ампера имеют противоположные направления, при их воздействии якорь начинает вращаться. При помощи электрического двигателя приводятся в движение колеса электрического транспорта.

Электрические приборы

Ряд электрических приборов использует то, что магнитные поля оказывают воздействие на проводники с током. В этих приборах электрический ток, который следует измерить, пропускают через проводящую рамку, которая размещена в поле постоянного магнита. Рамка находится на оси.

Вначале, когда через рамку начинают пропускать электрический ток, на рамку действуют силы Ампера, момент этих сил заставляет ее поворачиваться. Момент сил Ампера больше, чем момент сил упругости пружин, которые противостоят повороту. Подвижная часть прибора совершает поворот с ускорением. Достигается угол поворота, при котором моменты сил уравновешиваются. Подвижная часть приобретает запас кинетической энергии вращения, проходит положение равновесия и тормозится возвращающими пружинами, останавливается и начинает движение в обратную сторону. Так, происходят затухающие колебания. С целью успокоения колебаний используют специальные успокоители.

Угол поворота стрелки в устройствах магнитоэлектрической системы пропорционален силе тока.

Процессы, происходящие в тканях организма под действием электрических токов и электромагнитных полей

Живые ткани являются композиционными средами. Объемное сочетание разнородных компонентов.

Одни структурные элементы тканей обладают свойствами проводников, а другие — диэлектриков.

Проводники — это вещества, в которых есть свободные заряды, способные перемещаться под действием электрического поля (ионы)

Диэлектрики — все заряды неподвижны=связанные заряды(диполи) определяют поляризацию биологических тканей.

Первичное действие постоянного тока связано с:

Направленным движением ионов, их разделением и изменением их концентрации в разных элементах тканей у БМ, а так же с поляризационными явлениями. Тело – свойства проводника. В тканях возникает ток проводимости, который течет по межклеточной жидкости. Здесь ток встречает наименьшее сопротивление.

Лечебное применение: гальванизация (50 мА, 60-80В), электрофорез (50 мА, 60-80В), франклинизация, аэроионизация

Аэроионы – ионы в воздухе, образованные благодаря действию космической, почвенной и солнечной радиации. Могут присоед к нейтральным молекулам и взвешенным частицам. Легкие отрицательные ионы – усиливают заряд эритроцитов

Импульсные токи НЧ: раздражающее, стимулирующее действие. Т.к. есть быстрое перемещение и накопление ионов Na и K у клеточных мембран, а во время паузы – быстрое удаление.

Лечение: динамические токи (постоянные по направлению синусоидальные импульсные токи 50 Гц и 100 Гц, I=50 мА, U=60-80В), электросон, амплипульстерапия (синусоидальные переменные токи 5000 Гц, модулированных колебаниями 50-150 Гц), стимуляторы, дефибриллятор

Токи и поля высокой частоты(>200 Гц): тепловое + осцилляторное + специфическое воздействие

При этой частоте смещение ионов соизмеримо с их смещением в результате молекулярно-теплового движения

Преимущества ВЧ прогревания:

1. Тепло внутри организма

2. Селективное прогревание тканей, зависящее от удельного сопротивления

3. Управление мощностью тепловыделения

4. Дозирование нагрева

  1. Пассивные электрические свойства биологических тканей

Живые ткани являются композиционными средами: объемное сочетание разнородных компонентов

Биологические ткани разнородны по электропроводимости и являются:

  1. Проводники (внутриклеточная и межклеточная жидкость)

Электропроводность – способность тканей пропускать электротокк под воздействием электрополя. Связана с присутствием ионов, которые являются свободными зарядами, создающими ток проводимости. В организме определяется элек свойствами крови, лимф, межклеточной жидкости и цитозоля. Электрич ток выбирает путь, где наименьшее сопротивление. Чем больше в тканях жидкости, тем больше электропроводность G. Определяется: наличием свободных ионов (их концентрацией и подвижностью), явлениями поляризации

  1. Диэлектрики (БМ)

Диэлектрики – вещества, в которых нет свободных носителей зарядов, а только связанные заряды – диполи. При помещении во внешнее электрич поле, диполи ориентируются вдоль силовых линий поля. Поле внутри диэлектрика слабеет, возникают токи смещения.

  1. Электрический диполь.

Это система 2 зарядов, равных модулю,но противоположных по знаку. Дипольный момент направлен от минуса к плюсу.

Элекрическое поле диполя. Сам диполь является источником электр. поляпотенциал в т. А прямо пропорционален проекции дипольного момента.

Диполь – частный случай системы эл зарядов, обладающий определенной симметрией. Общее название – эл мультиполь

  1. Токовый диполь

— Это двухплюсная система из истока + и стока — тока в проводящей среде

Ток токового диполя: I= ЭДС/r

Эл момент токового диполя – от минуса к плюсу, от возбужденного к невозбуженному

электрическое поле токового диполя в неограниченной проводящей среде.

потенциал электрического поля токового диполя: (дипольного электрического генератора) (формула)

Откуда берется токовый диполь и дипольный момент в организме? Это распределение волны возбуждения по нервным и мышечным волокнам. Изменения эл поля сердца происходят при деполяризации и реполяризации мембраны клеток сердца. На диполь действует сила, завис от его электр момента и степени неоднородности поля

Какое действие тока используется в электрических лампах — MOREREMONTA

  • 5 — 9 классы
  • Физика
  • 8 баллов

Какое действие электрического тока используется в электрических лампочках?

Сегодня сложно представить себе жизнь без света в доме, который создает электрический ток в лампе. Давайте посмотрим, как это происходит?

На сегодняшний день есть несколько типов приборов освещения (давайте назовём лампы таким образом). Самая первая группа светильников работала без электричества. Это была либо химическая реакция, либо огонь. Затем люди узнали про электричество и после долгих экспериментов появилась лампа накаливания. Конструктивно лампа состоит из трех обязательных частей: цоколя, колбы и источника свечения. В лампе накаливания в качестве источника света выступает спираль из тугоплавкого металла. Помните, буквально недавно мы говорили закон Джоуля-Ленца, закон Ома и про мощность электрического тока? Так вот, лампочка очень наглядно демонстрирует все эти законы. Сопротивление спирали лампочки накаливания подбирается таким образом, чтобы ток, протекая по спирали, разогревал её настолько, чтобы спираль светилась, но не разрушалась от воздействия высокой температуры. А колба вокруг спирали нужна для того, чтобы кислород при высокой температуре не вступал в реакцию со спиралью, вызывая сильное окисление и разрушение. Колба заполняется либо инертным газом, который никоим образом не может вступить в реакцию с металлом спирали, либо, наоборот, в колбе создаётся вакуум.

В общем, там, где есть высокая температура, там всегда есть большие потери, низкий КПД, малое время работы и куча прочих недостатков, поэтому люди стали искать альтернативу. Со временем появились различные группы осветительных приборов, которые можно объединить в две большие группы: газоразрядные и светодиодные.

В газоразрядных используется возможность электрического тока создавать ионный поток, тлеющий разряд, плазму и т.д. В зависимости от устройства такой лампы, используемого газа и конструкции вызывают тот или иной эффект работы электрического тока. А работа тока в конечном итоге приводит к свечению паров газа.

В светодиодных несколько иной принцип действия. В процессе рекомбинации полупроводникового перехода выделяется энергия. В зависимости от типов комбинации p-n перехода эта энергия может быть в видимом диапазоне. Открою вам небольшой секрет. До сих пор не найдена комбинация, при котором получился бы белый цвет светодиодов, поэтому белый цвет получается либо при помощи ультрафиолетового светодиода с люминофорным покрытием, либо комбинацией красного, синего и зеленого.

Вот так, вкратце работает электрический ток в лампе. Конечно, можно по каждому типу осветительного прибора написать отдельную статью. Это удивительно, как по разному можно заставить ток освещать наши дома и улицы в тёмное время суток.

Измерение мощности работы тока в электрической лампе

Давайте теперь подумаем, как узнать какую мощность развивает электрический ток в лампе и как можно это измерить. Казалось бы, можно использовать много методом, но на самом деле измерить мощность можно только с помощью ваттметров или ампермера с вольтметром. Почему это так? Предположим, что мы измерим сопротивление лампы накаливания и попробуем по закону Ома вычислить мощность, которую она сможет развить. Но без учёта термодинамики мы получим неверные данные. Дело в том, что при разогреве сопротивление нити накала увеличивается. То есть, холодная нить накала и горячая имеют разные сопротивления. И это касается не только ламп накаливания, но и всех остальных типов приборов освещения. Ну а измерить сопротивление газоразрядных или неоновых ламп и вовсе не представляется возможным. Сначала, конечно же, нужно собрать схему. Она очень проста:

Какие методы можно использовать?

  1. Можно использовать ваттметр. По сути, ваттметр это комбинация амперметра и вольтметра. Обратите внимание, одна обмотка ваттметра включена последовательно (это токовая обмотка), а вторая параллельно (обмотка напряжения). Магнитные потоки этих обмоток взаимодействуют и отклоняют стрелку ваттметра, который сразу покажет мгновенное значение мощности. Это самый простой метод вычисления мощности осветительного прибора.
  2. Можно использовать амперметр и вольтметр. Метод не сложный, но требует вычислений. Амперметр подключается последовательно. Вольтметр параллельно. На схеме это видно. Теперь, зная значение напряжения и тока достаточно лишь их перемножить. То есть, P=U*I. Однако, для более точных расчётов нужно учитывать, что вольтметр имеет свое собственное сопротивление. Оно хоть и очень большое и почти не влияет на результаты измерения, но, тем не менее, если требуется очень большая точность, это нужно учитывать. Я уже писал, как это делать в статье про параллельное и последовательное соединение сопротивлений.
  3. Можно использовать счётчик электрической энергии. По сути, это ваттметр, который показывает не мгновенное значение мощности, а накопительное – с учётом времени. Счетчик подключается точно так же, как ваттметр. Он точно так же содержит две обмотки. Но его конструктивная особенность такова, что он показывает ватт*часы. То есть, количество энергии за определенный промежуток времени. Чтобы узнать мощность лампочки с помощью счётчика потребуется еще и секундомер. Собираем схему, включаем ее и одновременно запускаем отсчёт времени. Ждём, пока счётчик сделает нужный нам отсчет потреблённой электроэнергии, останавливаем секундомер и начинаем считать. Допустим, счётчик показал потребление 1 кВт энергии за четыре часа. Значит, за один час расходовалось 250 ватт энергии. Допустим, потребление энергии 1 кВт произошло за 10 минут. Значит, за час такой прибор израсходует 6 кВт электроэнергии. Как видите, здесь расчёт не очень сложный. Единственное условие, что для получения мощности нам нужно, чтобы мощность была в киловаттах, а время в часах. Неудобство же заключается в том, что этот метод мы можем использовать только в сетях 220 или 380 вольт, то есть, имея счётчики с подходящим напряжением, или используя трансформаторы (либо другие устройства) преобразующие напряжение к тому, на которое рассчитан счётчик.

Вот, в принципе, и всё, что вам нужно знать об этой теме.

Какой физический эффект лежит в основе работы лампы накаливания?

Прочитайте текст и выполните задания 14 и 15.

Лампа накаливания — источник света, в котором происходит преобразование электрической энергии в световую в результате сильно нагретой металлической спирали при протекании через неё электрического тока.

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 K недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампы делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

«>

Урок физики «Действия тока»

ТЕСТ

I вариант

1. Электрический ток – это…

а) упорядоченное движение частиц,

б) упорядоченное движение свободных электронов,

в) упорядоченное движение заряженных частиц,

г) движение заряженных частиц.

2. Какое действие тока всегда наблюдается в твердых, жидких и газообразных проводниках?

а) тепловое, б) химическое,

в) магнитное, г) биологическое.

3. В каком из перечисленных случаев используется химическое действие тока?

а) нагревание воды электрическим током,

б) хромирование деталей,

в) рефлекторное сокращение мышц,

г) свечение электрической лампы.

4. Какое действие тока используют в устройстве пылесоса?

а) химическое, б) магнитное, в) биологическое, г) тепловое.

5. В устройстве какого бытового прибора используется тепловое действие тока?

а) телевизор, б) тостер, в) пылесос, г)вентилятор.

ТЕСТ

II вариант

1.Электрический ток в металлах – это…

а) упорядоченное движение частиц,

б) упорядоченное движение свободных электронов,

в) упорядоченное движение заряженных частиц,

г) движение заряженных частиц.

2.Как называется действие тока, которое может вызвать сильные конвульсии и кровотечения из носа?

а) тепловое, б) химическое,

в) магнитное, г) биологическое.

3. В каком из перечисленных случаев используется биологическое действие тока?

а) нагревание воды электрическим током,

б) хромирование деталей,

в) рефлекторное сокращение мышц,

г) свечение электрической лампы.

4. Какое действие тока используют в устройстве гальванометра?

а) химическое, б) магнитное,

в) биологическое, г) тепловое.

5. В устройстве какого бытового прибора используют одновременно

тепловое и магнитное действие тока?

а) телевизор, б) фен,

в) пылесос, г) электрическая лампа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *