Электролизер что такое – Схема электролизера для получения. Что такое электролизер и как его сделать своими руками? Краткая инструкция по деталям к электролизеру

Содержание

Электролиз — Википедия

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Электролиз является одним из лучших способов золочения или покрытия металла медью, золотом.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создаётся электродами — проводниками, соединёнными с полюсами источника электрической энергии. Катодом при электролизе называется отрицательный электрод, анодом — положительный[1]. Положительные ионы — катионы (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы

(ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Реакции, происходящие при электролизе на электродах, называются вторичными. Первичными являются реакции диссоциации в электролите. Разделение реакций на первичные и вторичные помогло Майклу Фарадею установить законы электролиза.

Электролиз широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия , меди, водорода, диоксида марганца

[2], пероксида водорода. Большое количество металлов извлекается из руд и подвергается переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

m=k⋅q=k⋅I⋅t{\displaystyle m=k\cdot q=k\cdot I\cdot t}, если через электролит пропускается в течение времени t постоянный ток с силой тока I.

Коэффициент пропорциональности k{\displaystyle k} называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея[править | править код]

m=miNi{\displaystyle m=m_{i}N_{i}} (1)
mi=M/Na{\displaystyle m_{i}=M/N_{a}} (2)
Ni=Δqqi{\displaystyle N_{i}={\frac {\Delta q}{q_{i}}}} (3)
Δq=IΔt{\displaystyle \Delta q=I\Delta t} (4)
qi=ez{\displaystyle q_{i}=ez}, (5)
где z — валентность атома (иона) вещества,
e — заряд электрона
Подставляя (2)-(5) в (1), получим
m=MzeNAIΔt{\displaystyle m={\frac {M}{zeN_{A}}}I\Delta t}
m=MzFIΔt{\displaystyle m={\frac {M}{zF}}I\Delta t},

где F=eNA{\displaystyle F=eN_{A}} — постоянная Фарадея.

k=MFz{\displaystyle k={\frac {M}{Fz}}}
m=kIΔt{\displaystyle m=kI\Delta t}

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом

иона называется отношение молярной массы A{\displaystyle A} иона к его валентности z{\displaystyle z}. Поэтому электрохимический эквивалент

k = 1F⋅Az{\displaystyle k\ =\ {1 \over F}\cdot {A \over z}},

где F{\displaystyle F} — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

m=M⋅I⋅Δtn⋅F{\displaystyle m={\frac {M{\cdot }I{\cdot }{\Delta }t}{n{\cdot }F}}},
где M{\displaystyle M} — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль
I{\displaystyle I} — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А
Δt{\displaystyle {\Delta }t} — время, в течение которого проводился электролиз, с
F{\displaystyle F} — постоянная Фарадея, Кл·моль−1
n{\displaystyle n} — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного)
Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Не все вещества будут электролизироваться при пропускании электрического тока. Существуют некоторые закономерности и правила.

Катионы активных металловКатионы менее активных металловКатионы неактивных металлов
Li+, Cs+, Rb+, K+, Ba2+, Sr2+, Ca2+, Na+, Mg2+, Be2+, Al3+Mn2+, Cr3+, Zn2+, Ga3+, Fe2+, Cd2+, In3+, Tl+, Co2+, Ni2+, Mo4+, Sn2+, Pb2+Bi3+, Cu2+, Ag+, Hg2+, Pd3+, Pt2+, Au3+
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением водородаВ водном растворе восстанавливается металл (при малой концентрации катионов в растворе — металл и водород)Легко разряжаются, и восстанавливается только металл
Анионы кислородсодержащих кислот и фторид-ионГидроксид-ионы; анионы бескислородных кислот (кроме F)
PO43−, CO32−, SO42−, NO3, NO2, ClO4, FOH, Cl, Br, I, S2−
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением кислородаЛегко разряжаются

Расплавы[править | править код]

Активные металлы, менее активные металлы и неактивные металлы в расплавах ведут себя одинаково.

Растворы[править | править код]

Активные металлы[править | править код]
Менее активные металлы и неактивные металлы[править | править код]

Для запоминания катодных и анодных процессов в электрохимии существует следующее мнемоническое правило:

  • У анода анионы окисляются.
  • На катоде катионы восстанавливаются.

В первой строке все слова начинаются с гласной буквы, во второй — с согласной.

Или проще:

  • КАТод — КАТионы (ионы у катода)
  • АНод — АНионы (ионы у анода)

Электролиз в газах, при наличии ионизатора, объясняется тем, что при прохождении через них постоянного электрического тока наблюдается выделение веществ на электродах. Законы Фарадея в газах не действительны, но существуют несколько закономерностей:

  1. при отсутствии ионизатора электролиз проводиться не будет, даже при высоком напряжении;
  2. электролизу подвергаются только бескислородные кислоты в газообразном состоянии и некоторые газы;
  3. уравнения электролиза, как в электролитах, так и в газах, всегда остаются постоянными.
⛭

Электролитические процессы

Электролизер — это… Что такое Электролизер?

  • электролизер — электролизер …   Орфографический словарь-справочник

  • электролизер — сущ., кол во синонимов: 2 • электролизатор (1) • электролизёр (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Электролизер — сборный аппарат, как правило, фильтр прессного типа, работающий под давлением, состоящий из сжатых между собой концевыми плитами и отделенных изолирующими прокладками биполярных электродов, при прохождении через которые постоянного тока… …   Официальная терминология

  • электролизер — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrolyte pot …   Справочник технического переводчика

  • Электролизер — сборный аппарат, как правило, фильтр прессного типа, работающий под давлением, состоящий из сжатых между собой концевыми плитами и отделенных изолирующими прокладками биполярных электродов, при прохождении через которые постоянного тока… …   Словарь-справочник терминов нормативно-технической документации

  • электролизер — elektrolizeris statusas T sritis chemija apibrėžtis Elektrolizės įrenginys. atitikmenys: angl. electrolyser rus. электролизер …   Chemijos terminų aiškinamasis žodynas

  • Электролизер — электролизёр м. Аппарат для электролиза, состоящий из наполненного электролитом сосуда и расположенных в нём электродов. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • электролизер с ртутным катодом — ртутный электролизер — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы ртутный электролизер EN mercury cell …   Справочник технического переводчика

  • электролизер для получения кислорода и водорода — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN oxygen hydrogen celloxyhydrogen cell …   Справочник технического переводчика

  • печь-электролизер с индукционным обогревом — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN double current furnace …   Справочник технического переводчика

  • Электролизер. Виды и типы. Устройство и работа. Применение

    Электролизер – это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

    Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

    Что это

    Электролизер работает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

    Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

    Виды и типы
    По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
    1. Прессованными обожженными анодами.
    2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
    3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
    Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:

    • Сухие.
    • Проточные.
    • Мембранные.
    • Диафрагменные.
    Устройство

    Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

    Устройство в большинстве случаев состоит из следующих элементов:
    • Электропроводящий корпус.
    • Катод.
    • Анод.
    • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

    Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

    В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

    Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

    Принцип действия

    В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

    При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

    Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

    Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

    Применение

    Электролизер широко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

    • Добычи цветных металлов (магний, алюминий).
    • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
    • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
    • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

    В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

    Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

    Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.

    Похожие темы:

    что это такое, применение, сущность, правила, примеры

    Вопрос о том, что такое электролиз, рассматривается еще в школьном курсе физике, и для большинства людей не является секретом. Другое дело – его важность и практическое применение. Этот процесс с большой пользой используется в различных отраслях и может пригодиться для домашнего мастера.

    Что такое электролиз и где он применяется?

    Что такое электролиз и где он применяется?

    Что такое электролиз?

    Электролиз представляет собой комплекс специфических процессов в системе электродов и электролита при протекании по ней постоянного электрического тока. Его механизм основывается на возникновении ионного тока. Электролит – это проводник 2-го типа (ионная проводимость), в котором происходит электролитическая диссоциация. Она связана с разложением на ионы с положительным (катион) и отрицательным (анион) зарядом.

    Электролизная система обязательно содержит положительный (анод) и отрицательный (катод) электрод. При подаче постоянного электрического тока катионы начинают двигаться к катоду, а анионы – к аноду. Катионами в основном являются ионы металлов и водород, а анионами – кислород, хлор. На катоде катионы присоединяют к себе избыточные электроны, что обеспечивает протекание восстановительной реакции Men+ + ne → Me (где n – валентность металла). На аноде, наоборот, электрон отдается из аниона с протеканием окислительной реакции.

    Таким образом, в системе обеспечивается окислительно-восстановительный процесс. Важно учитывать, что для его протекания необходима соответствующая энергия. Ее должен обеспечить внешний источник тока.

    Законы электролиза Фарадея

    Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

    Первый закон

    Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    Второй закон

    Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

    С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

    Электролиз расплавов

    Один из вариантов электролиза – использование в качестве электролита расплав. В этом случае в электролизном процессе участвуют только ионы расплава. В качестве классического примера можно привести электролиз солевого расплава NaCl (поваренная соль). К аноду устремляются отрицательные ионы, а значит, выделяется газ (Cl). На катоде будет происходить восстановление металла, т.е. оседание чистого Na, образующегося из положительных ионов, притянувших избыточные электроны. Аналогично можно получать другие металлы (К, Са, Li и т.д.) из расправа соответствующих солей.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    При электролизе в расплаве электроды не подвергаются растворению, а участвуют только в качестве источника тока. При их изготовлении можно использовать металл, графит, некоторые полупроводники. Важно, чтобы материал имел достаточную проводимость. Один из наиболее распространенных материалов – медь.

    Особенности электролиза в растворах

    Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

    Электролиз в газах

    Газ может исполнить роль электролита только при наличии ионизатора. В этом случае ток, проходя через ионизированную среду, вызывает необходимый процесс на электродах. При этом законы Фарадея не распространяются на газовый электролиз. Для его осуществления необходимы такие условия:

    1. Без искусственной ионизации газа не поможет ни высокое напряжение, ни большой ток.
    2. Для электролиза подходят лишь кислоты, не содержащие кислорода и находящиеся в газообразном состоянии, и некоторые газы.

    Важно! При выполнении необходимых условий процесс протекает аналогично электролизу в жидком электролите.

    Особенности процессов, происходящих на катоде и аноде

    Для практического применения электролиза важно понимать, что происходит на обоих электродах при подаче электрического тока. Характерны такие процессы:

    1. Катод. К нему устремляются положительно заряженные ионы. Здесь происходит восстановление металлов или выделение водорода. Можно выделить несколько категорий металлов по катионной активности. Такие металлы, как Li, K, Ba, St, Ca, Na, Mg, Be, Al, хорошо восстанавливаются только из расплава солей. Если используется раствор, то выделяется водород за счет электролиза воды. Можно обеспечить восстановление в растворе, но при достаточной концентрации катионов, у следующих металлов — Mn, Cr, Zn, Fe, Cd, Ni, Ti, Co, Mo, Sn, Pb. Процесс протекает наиболее легко для Ag, Cu, Bi, Pt, Au, Hg.
    2. Анод. К этому электроду поступают отрицательно заряженные ионы. Окисляясь, они отбирают электроны у металла, что приводит к их анодному растворению, т.е. переходу в положительно заряженные ионы, которые направляются к катоду. Анионы также подразделяются по своей активности. Только из расплавов могут разряжаться такие анионы PO4, CO3, SO4, NO3, NO2, ClO4, F. В водных растворах электролизу подвергаются не они, а вода с выделением кислорода. Наиболее легко реагируют такие анионы, как ОН, Cl, I, S, Br.
    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    При обеспечении электролиза важно учитывать склонность материала электродов к окислению. В этом отношении выделяются инертные и активные аноды. Инертные электроды делаются из графита, угля или платины и не участвуют в снабжении ионами.

    Факторы, влияющие на процесс электролиза

    Процесс электролиза зависит от следующих факторов:

    1. Состав электролита. Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
    2. Плотность тока. В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
    3. рН электролита. Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
    4. Температура электролита. Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

    Важно! Электролиз можно ускорить или замедлить путем различных воздействий и выбора состава электролита. Для каждого варианта применения существует свой режим, который следует строго соблюдать.

    Где применяется электролиз?

    Электролиз применяется во многих сферах. Можно выделить несколько основных направлений использования для получения практических результатов.

    Гальваническое покрытие

    Тонкое, прочное гальваническое покрытие из металла можно наложить путем электролиза. Покрываемое изделие устанавливается в ванну в виде катода, а электролит содержит соль нужного металла. Так можно покрыть сталь цинком, хромом или оловом.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    Электроочистка — рафинирование меди

    Примером электроочистки может служить такой вариант: катод – чистая медь, анод – медь с примесями, электролит – водный раствор медного сульфата. Медь из анода переходит в ионы и оседает в катоде уже без примесей.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    Добыча металлов

    Для получения металлов из солей они переводятся в расплав, а затем обеспечивается электролиз в нем. Достаточно эффективен такой способ для получения алюминия из бокситов, натрия и калия.

    Что такое электролиз и где он применяется?Что такое электролиз и где он применяется?

    Анодирование

    При этом процессе покрытие выполняется из неметаллических соединений. Классический пример – анодирование алюминия. Алюминиевая деталь устанавливается, как анод. Электролит – раствор серной кислоты. В результате электролиза на аноде оседает слой из оксида алюминия, обладающего защитными и декоративными свойствами. Указанные технологии широко используются в различных отраслях промышленности. Можно осуществить процессы и своими руками с соблюдением техники безопасности.

    Энергетические затраты

    Электролиз требует больших энергетических затрат. Процесс будет иметь практическую ценность при достаточной величине анодного тока, а для этого необходимо приложить значительный постоянный ток от источника электроэнергии. Кроме того, при его проведении возникают побочные потери напряжения – анодное и катодное перенапряжение, потери в электролите за счет его сопротивления. Эффективность работы установки определяется путем отнесения мощности энергозатрат к единице полезной массы полученного вещества.

    Электролиз давно и с высокой эффективностью используется в промышленности. Анодированные и гальванические покрытия стали обычным явлением в повседневной жизни, а добыча и обогащение материалов помогает добывать многие металлы из руды. Процесс можно запланировать и рассчитать, зная основные его закономерности.

    электролизёр — это… Что такое электролизёр?

  • электролизёр — электролизёр …   Русское словесное ударение

  • электролизёр — электролизёр, а …   Русский орфографический словарь

  • электролизёр — электролизёр …   Словарь употребления буквы Ё

  • электролизёр — электролизёр, электролизёры, электролизёра, электролизёров, электролизёру, электролизёрам, электролизёр, электролизёры, электролизёром, электролизёрами, электролизёре, электролизёрах (Источник: «Полная акцентуированная парадигма по А. А.… …   Формы слов

  • ЭЛЕКТРОЛИЗ — совокупность электрохим. процессов, проходящих на электродах, погружённых в электролит, при прохождении по нему электрич. тока. В результате этих процессов в ва, входящие в состав электролита, выделяются в свободном виде. Проводимость… …   Физическая энциклопедия

  • ЭЛЕКТРОЛИЗ — (греч.) Разложение химических соединений посредством электрического (гальванического) тока на их составные части. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭЛЕКТРОЛИЗ греч. Разложение химических соединений на …   Словарь иностранных слов русского языка

  • электролиз — а, м. électrolyse f., > нем. Elektrolyse. Разложение веществ при помощи электрического тока на составные элементы (напр. воды на кислород и водород). Павленков 1911. Химический процесс разложения вещества на составные части при прохождении… …   Исторический словарь галлицизмов русского языка

  • ЭЛЕКТРОЛИЗ — ЭЛЕКТРОЛИЗ, ХИМИЧЕСКАЯ РЕАКЦИЯ, происходящая при прохождении постоянного тока через ЭЛЕКТРОЛИТ. Процесс заключается в перемещении положительных ионов к отрицательному ЭЛЕКТРОДУ (КАТОДУ) и отрицательных ионов к положительному электроду (АНОДУ).… …   Научно-технический энциклопедический словарь

  • электролиз — Ток, проходя по жидким проводникам, разлагает их на составные части. Поэтому жидкие проводники называются проводниками второго рода или электролитами в отличие от металлических проводников, которые называются проводниками. Разложение электролитов …   Справочник технического переводчика

  • ЭЛЕКТРОЛИЗ — ЭЛЕКТРОЛИЗ, процессы электрохимического окисления восстановления, происходящие на погруженных в электролит электродах при прохождении электрического тока. Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении… …   Современная энциклопедия

  • Электролиз — это… Что такое Электролиз?

    Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

    Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный[1]. Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

    Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[источник не указан 1318 дней], диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

    Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

    Первый закон Фарадея

    В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

    если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

    Вывод закона Фарадея

    (1)
    (2)
    (3)
    (4)
    , где z — валентность атома (иона) вещества, e — заряд электрона (5)

    Подставляя (2)-(5) в (1), получим

    где  — постоянная Фарадея.

    Второй закон Фарадея

    Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.

    Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

    где  — постоянная Фарадея.

    Второй закон Фарадея записывается в следующем виде:

    где  — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль;  — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А;  — время, в течение которого проводился электролиз, с;  — постоянная Фарадея, Кл·моль−1;  — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

    Изменение электролизом веществ

    Не все вещества будут электролизироваться при пропускании электрического тока. Существуют некоторые закономерности и правила.

    Катионы активных металловКатионы менее активных металловКатионы неактивных металлов
    Li+, Cs+, Rb+, K+, Ba2+, Sr2+, Ca2+, Na+, Mg2+, Be2+, Al3+Mn2+, Cr3+, Zn2+, Ga3+, Fe2+, Cd2+, In3+, Tl+, Co2+, Ni2+, Mo4+, Sn2+, Pb2+Bi3+, Cu2+, Ag+, Hg2+, Pd3+, Pt2+, Au3+
    Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением водородаВ водном растворе восстанавливается металл (при малой концентрации катионов в растворе — металл и водород)Легко разряжаются и восстанавливается только металл
    Анионы кислородсодержащих кислот и фторид-ионГидроксид-ионы; анионы бескислородных кислот (кроме F)
    PO43−, CO32−, SO42−, NO3, NO2, ClO4, FOH, Cl, Br, I, S2−
    Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением кислородаЛегко разряжаются

    Примеры

    Расплавы

    1) Активные металлы

    1.Соль активного металла и бескислородной кислоты

    NaCl ↔ Na+ + Cl

    K»катод»(-): Na+ + 1e = Na0

    A»анод»(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

    Вывод: 2NaCl → (электролиз) 2Na + Cl2


    2.Соль активного металла и кислородосодержащей кислоты

    Na2SO4↔2Na++SO42−

    K(-): 2Na+ +2e =2Na0

    A(+): 2SO42− −4e =2SO3+O2

    Вывод: 2Na2SO4 → (электролиз) 4Na + 2SO3 + O2


    3. Гидроксид: активный металл и гидроксид-ион

    NaOH ↔ Na+ + OH

    K(-): Na+ +1e =Na0

    A(+): 4OH −4e =2H2O + O2

    Вывод: 4NaOH → (электролиз) 4Na + 2H2O + O2


    2) Менее активные металлы

    Точно так же


    3) Неактивные металлы

    Точно так же

    Растворы

    1) Активные металлы

    1.Соль активного металла и бескислородной кислоты

    NaCl ↔ Na+ + Cl

    K»катод»(-): 2H2O + 2e = H2 + 2OH

    A»анод»(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

    Вывод: 2NaCl + 2H2O(электролиз) → H2 + Cl2 +2NaOH


    2.Соль активного металла и кислородсодержащей кислоты

    Na2SO4↔2Na++SO42−

    K(-): 2H2O + 2e = H2 + 2OH

    A(+): 2H2O — 4e = O2 + 4H+

    Вывод: 2H2O (электролиз) → 2H2 + O2


    3. Гидроксид: активный металл и гидроксид-ион

    NaOH ↔ Na+ + OH

    K(-): 2H2O + 2e = H2 + 2OH

    A(+): 2H2O — 4e = O2 + 4Н+

    Вывод: 2H2O (электролиз) → 2H2 + O2


    2) Менее активные металлы

    1.Соль менее активного металла и бескислородной кислоты

    ZnCl2 ↔ Zn2+ + 2Cl

    K»катод»(-): Zn2+ + 2e = Zn0

    A»анод»(+): 2Cl — 2e = 2Cl0

    Вывод: ZnCl2 (электролиз) → Zn + Cl2


    2.Соль менее активного металла и кислородсодержащей кислоты

    ZnSO4 ↔ Zn2++SO42−

    K(-): Zn2+ + 2e = Zn0

    A(+): 2H2O — 4e = O2 + 4Н+

    Вывод: 2ZnSO4 + 2H2O(электролиз) → 2Zn + 2H2SO4 + O2


    3. Гидроксид: невозможно (нерастворим)

    3) Неактивные металлы

    Точно так же

    Мнемоническое правило

    Для запоминания катодных и анодных процессов в электрохимии существует следующее мнемоническое правило:

    • У анода анионы окисляются.
    • На катоде катионы восстанавливаются.

    В первой строке все слова начинаются с гласной буквы, во второй — с согласной.

    Или проще:

    • КАТод — КАТионы (ионы у катода)
    • АНод — АНионы (ионы у анода)

    Электролиз в газах

    Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 11 мая 2011.

    Электролиз в газах, при наличии ионизатора, объясняется тем, что при прохождении через них постоянного электрического тока, наблюдается выделение веществ на электродах. Законы Фарадея в газах не действительны, но существуют несколько закономерностей;

    1) При отсутствии ионизатора электролиз проводиться не будет даже при высоком напряжении.

    2) Электролизу подвергаются только бескислородные кислоты в газообразном состоянии и некоторые газы.

    3) Уравнения электролиза как в электролитах, так и в газах всегда остаются постоянными.

    См. также

    Примечания

    Ссылки

    Электролизёры — это… Что такое Электролизёры?

    
    Электролизёры
            аппараты для Электролиза, состоящие из одной или многих электролитических ячеек (См. Электролитическая ячейка). Э. представляет собой сосуд (или систему сосудов), наполненный электролитом (См. Электролиты) с размещенными в нём электродами — Катодом и Анодом, соединёнными соответственно с отрицательным и положительным полюсами источника постоянного тока. В промышленности и лабораторной практике применяют Э. различных типов и конструкций (например, открытые и герметически закрытые, для периодической и непрерывной работы, с неподвижными и движущимися электродами, с различными системами разделения продуктов электролиза). В зависимости от назначения Э. рассчитываются для работы при различных температурах — от минусовых (при электрохимическом синтезе малостойких кислородных соединений) до высоких плюсовых (при электролизе расплавленных электролитов в производстве алюминия, кальция и др. металлов). Соответственно Э. снабжают устройствами для нагрева или охлаждения электролита пли электродов.

             Применяют Э. с диафрагмой — пористой перегородкой или мембраной, отделяющей катодное пространство от анодного, проницаемой для ионов, но затрудняющей механическое смешение и диффузию. Для изготовления диафрагм используются асбест, полимерные материалы и керамика, находят применения Э. с ионообменными мембранами. По способу включения в электрическую цепь Э. разделяются на моно- и биполярные. Монополярный Э. состоит из одной электролитической ячейки с электродами одной полярности, каждый из которых может состоять из нескольких элементов, включенных параллельно в цепь тока. Биполярный Э. имеет большое число ячеек (до 100—160), включенных последовательно в цепь тока, причём каждый электрод, за исключением двух крайних, работает одной стороной как катод, а другой как анод.

             Для изготовления анодов применяют графит, углеграфитовые материалы, платину, окислы некоторых металлов, свинец и его сплавы; используются малоизнашивающиеся титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов. Для катодов в большинстве Э. используется сталь. Применяются также Э. с жидкими электродами (например, в одном из методов производства хлора и гидроокиси натрия в качестве катода используют ртуть). Некоторые Э. работают под давлением, например разложение воды ведётся под давлением до 4 Мн/м2 (40 кгс/см2); разрабатываются Э. для работы под более высоким давлением. Материалы для изготовления Э. выбираются с учётом агрессивности электролита и продуктов электролиза, температуры и других условий. Широко применяется сталь, в том числе с различными защитными покрытиями, пластические массы, стекло и стеклопластики, керамика. Современные крупные Э. имеют высокую нагрузку: монополярные до 400—500 ка, биполярные — эквивалентную 1600 ка.

             Л. М. Якименко.

    Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

    • Электролиз
    • Электролитическая диссоциация

    Смотреть что такое «Электролизёры» в других словарях:

    • электролизёр — электролизёр …   Русское словесное ударение

    • электролизёр — электролизёр, а …   Русский орфографический словарь

    • электролизёр — электролизёр …   Словарь употребления буквы Ё

    • электролизёр — электролизёр, электролизёры, электролизёра, электролизёров, электролизёру, электролизёрам, электролизёр, электролизёры, электролизёром, электролизёрами, электролизёре, электролизёрах (Источник: «Полная акцентуированная парадигма по А. А.… …   Формы слов

    • ЭЛЕКТРОЛИЗ — совокупность электрохим. процессов, проходящих на электродах, погружённых в электролит, при прохождении по нему электрич. тока. В результате этих процессов в ва, входящие в состав электролита, выделяются в свободном виде. Проводимость… …   Физическая энциклопедия

    • ЭЛЕКТРОЛИЗ — (греч.) Разложение химических соединений посредством электрического (гальванического) тока на их составные части. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭЛЕКТРОЛИЗ греч. Разложение химических соединений на …   Словарь иностранных слов русского языка

    • электролиз — а, м. électrolyse f., > нем. Elektrolyse. Разложение веществ при помощи электрического тока на составные элементы (напр. воды на кислород и водород). Павленков 1911. Химический процесс разложения вещества на составные части при прохождении… …   Исторический словарь галлицизмов русского языка

    • ЭЛЕКТРОЛИЗ — ЭЛЕКТРОЛИЗ, ХИМИЧЕСКАЯ РЕАКЦИЯ, происходящая при прохождении постоянного тока через ЭЛЕКТРОЛИТ. Процесс заключается в перемещении положительных ионов к отрицательному ЭЛЕКТРОДУ (КАТОДУ) и отрицательных ионов к положительному электроду (АНОДУ).… …   Научно-технический энциклопедический словарь

    • электролизёр — а, м. électrolyseur m. Аппарат для электролиза, состоящий из наполненного электролитом сосуда и расположенных в нем электродов. Электролизер для получения химических продуктов. Электролизер высокого давления. БАС 1. Продукт в виде шлама золота и… …   Исторический словарь галлицизмов русского языка

    • электролиз — Ток, проходя по жидким проводникам, разлагает их на составные части. Поэтому жидкие проводники называются проводниками второго рода или электролитами в отличие от металлических проводников, которые называются проводниками. Разложение электролитов …   Справочник технического переводчика

    • ЭЛЕКТРОЛИЗ — ЭЛЕКТРОЛИЗ, процессы электрохимического окисления восстановления, происходящие на погруженных в электролит электродах при прохождении электрического тока. Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении… …   Современная энциклопедия


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *