Электроэнергетика. | Промышленность. Отрасли промышленности
Электроэнергетика – это одна из ведущих отраслей энергетики, в которую входит сбыт, передача и производство электроэнергии. Данная отрасль энергетики считается важной, так как у нее большие преимущества относительно других видов энергии, а именно: распределение между потребителями, ее легко транспортировать на большие расстояния и превращать в другую энергию (тепловую, механическую, световую, химическую и др.). Отличительная черта электрической энергии – это ее одновременность в генерации и потреблении энергии, так как по сетям электрический ток распространяется почти со скоростью света.
Генерация электроэнергии. Это процесс, при котором различные виды энергии преобразовываются в электрическую энергию. Это происходит на электростанциях. На данный период существуют несколько видов:
- Тепловая электроэнергетика. Принцип таков – энергия сгорания (тепловая) органических топлив превращается в электрическую энергию. В тепловую электроэнергетику входят тепловые электростанции – конденсационные и теплофикационные.
- Ядерная энергетика. В нее входят атомные электростанции. Принцип вырабатывания электроэнергии схож с вырабатыванием энергии на тепловых электростанциях. Отличие в то, что тепловая энергия получается при делении атомных ядер в реакторе, а не при сжигании топлива.
- Гидроэнергетика. К этому виду вырабатывания энергии относятся гидроэлектростанции. Здесь энергия течения воды (кинетическая) преобразуется в электроэнергию. С помощью плотин создается искусственный перепад уровней поверхности на реках. Под действием силы тяжести, вода из верхнего бьефа переливается по специальным протокам в нижний отсек. В протоках находятся водяные турбины, их лопасти раскручивает водяной поток.
Морские течения на много мощнее течений рек всего мира, поэтому в данное время идет работа над созданием морских гидроэлектростанций.
- Альтернативная энергетика. Сюда относятся типы генерации электроэнергии, которые имеют ряд достоинств, по отношению к традиционным, но по некоторым причинам они не получили достаточного распространения. Основные виды альтернативной энергетики:
Ветроэнергетика – чтобы получить электроэнергию, используют кинетическую энергию ветра.
Гелиоэнергетика – электрическую энергию получают из энергии солнечных лучей.
Недостаток этих видов альтернативной энергии в том, что они маломощные, а генераторы дорогие.
- Геотермальная энергетика. Здесь используют естественное тепло Земли, чтобы выработать электроэнергию. Геотермальные станции – это обычные ТЭС, где ядерный реактор и котел – это источник тепла для нагрева.
Также к видам генерации относятся: приливная энергетика, водородная энергетика и волновая энергетика.
Передача электроэнергии от электростанций к потребителям выполняется с помощью электрических сетей. Если смотреть с технической стороны, то электрическая сеть – это совокупность трансформаторов, которые расположены на подстанциях и линий электропередач.
Крупнейшие компании электроэнергетики | Министерство энергетики
Группа «Интер РАО»
Группа «Интер РАО» — диверсифицированный энергетический холдинг, управляющий активами в России, а также в странах Европы и СНГ.
Установленная мощность – 33,7 ГВт. Объем выработки электрической энергии – 132,5 млрд кВт∙ч.
https://www.interrao.ru/
АО «Концерн Росэнергоатом»
АО «Концерн Росэнергоатом» (входит в Электроэнергетический дивизион Госкорпорации «Росатом») является одним из крупнейших предприятий электроэнергетической отрасли России и единственной в России компанией, выполняющей функции эксплуатирующей организации (оператора) атомных станций.
Установленная мощность – 29,0 ГВт. Объем выработки электрической энергии – 204,3 млрд кВт∙ч.
http://www.rosenergoatom.ru/
Группа РусГидро
Группа РусГидро — один из крупнейших российских энергетических холдингов. РусГидро является лидером в производстве энергии на базе возобновляемых источников, развивающим генерацию на основе энергии водных потоков, солнца, ветра и геотермальной энергии.
Установленная мощность – 39,4 ГВт. Объем выработки электрической энергии – 144,2 млрд кВт∙ч.
http://www.rushydro.ru/
ООО «Газпром энергохолдинг»
ООО «Газпром энергохолдинг» является одним из крупнейших в России владельцем электроэнергетических (генерирующих) активов (контрольные пакеты акций ПАО «Мосэнерго», ПАО «МОЭК», ПАО «ТГК-1» и ПАО «ОГК-2»).
Установленная мощность – 39,0 ГВт. Объем выработки электрической энергии – 146,5 млрд кВт∙ч.
http://energoholding.gazprom.ru/
АО «Юнипро»
Основной вид деятельности ПАО «Юнипро» (до июня 2016 года –
ОАО «Э.ОН Россия») –– производство и продажа электрической энергии и мощности и тепловой энергии. ПАО «Юнипро» также представлено на рынках распределенной генерации и инжиниринга в Российской Федерации.
Установленная мощность – 11,2 ГВт. Объем выработки электрической энергии – 46,6 млрд кВт∙ч.
http://www.unipro.energy/
ПАО «Энел Россия»
ПАО «Энел Россия» является генерирующей компанией и ключевым активом Группы Enel в России.
Установленная мощность – 9,4 ГВт. Объем выработки электрической энергии – 41,3 млрд кВт∙ч.
https://www.enelrussia.ru/
ПАО «Фортум»
ПАО «Фортум» является одним из ведущих производителей и поставщиков тепловой и электрической энергии на Урале и в Западной Сибири, а также развивает возобновляемые источники генерации в России.
Установленная мощность – 4,9 ГВт. Объем выработки электрической энергии – 28,1 млрд кВт∙ч.
https://www.fortum.ru/
Публичное акционерное общество «Квадра – Генерирующая компания» (ПАО «Квадра»).
ПАО «Квадра» является одной из крупнейших российских территориально-генерирующих компаний (ТГК), компания была создана на базе тепловых генерирующих мощностей и теплосетевых активов региональных АО-энерго в 11 регионах Центрального федерального округа.
Установленная мощность – 2,9 ГВт. Объем выработки электрической энергии – 9,7 млрд кВт∙ч.
https://www.quadra.ru/
АО «ЕвроСибЭнерго»
Установленная мощность – 19,5 ГВт. Объем выработки электрической энергии – 67,6 млрд кВт∙ч.
ООО «Сибирская генерирующая компания»
Основу ООО «Сибирская генерирующая компания» составили энергетические объекты, ранее входившие в «Кузбассэнерго» и «Енисейскую ТГК». До 2009 года они работали в составе Сибирской угольной энергетической компании (СУЭК).
Установленная мощность – 10,9 ГВт. Объем выработки электрической энергии – 46,0 млрд кВт∙ч.
http://sibgenco.ru/
ПАО «Т плюс»
Установленная мощность – 15,7 ГВт. Объем выработки электрической энергии – 55,0 млрд кВт∙ч.
https://www.tplusgroup.ru/
Сетевые компании.
Публичное акционерное общество «Российские сети» (ПАО «Россети»)
ПАО «Россети» – оператор энергетических сетей в России – является одной из крупнейших электросетевых компаний в мире. Компания управляет 2,35 млн. километров линий электропередачи, 507 тыс. подстанций трансформаторной мощностью более 792 тыс. МВА. В 2018 году полезный отпуск электроэнергии потребителям составил 761,5 млрд кВт∙ч. Численность персонала Группы компаний «Россети» — 220 тыс. человек.
Имущественный комплекс ПАО «Россети» включает 35 дочерних и зависимых обществ, в том числе 15 межрегиональных, и магистральную сетевую компанию.
Контролирующим акционером является государство в лице Федерального агентства по управлению государственным имуществом РФ, владеющее 88,04 % долей в уставном капитале.
http://www.rosseti.ru/
ОАО «Сетевая компания»
ОАО «Сетевая компания» по величине передаваемой мощности Компания входит в десятку самых крупных электросетевых компаний России. Компания занимает лидирующие позиции по сравнению с прочими территориальными сетевыми компаниями, входящими в составы МРСК, по показателю общей протяженности эксплуатируемых воздушных и кабельных линий, а также по количеству подстанций, трансформаторных подстанций и распределительных пунктов.
В филиалах ОАО «Сетевая компания» находится в эксплуатации 374 подстанции 35-500 кВ установленной мощностью 18628,3 МВА, общая протяженность воздушных линий (ВЛ) 35-500 кВ по трассе составляет 10237,6 км, по цепям – 12650,3 км, кабельных линий (КЛ) 35-220 кВ – 106,3 км. В 2018 году полезный отпуск электроэнергии составил 21 млрд кВт∙ч.
http://gridcom-rt.ru/
АО «БЭСК»
Сфера деятельности – транзит электроэнергии между центральной частью страны и Уралом, передача электроэнергии на территории Башкирии и распределение конечным потребителям, проектирование и сооружение объектов в области электросетевого строительства, а также оказание полного комплекса услуг строительства «под ключ», и управление строящимися и реконструируемыми объектами. В 2018 году полезный отпуск электроэнергии составил 47,6 млрд кВт∙ч.
https://bashes.ru/
АО «РЭС»
АО «РЭС» системообразующее электросетевое предприятие энергосистемы Новосибирской области, осуществляет передачу и распределение электрической энергии, технологическое присоединение потребителей. В 2018 году полезный отпуск электроэнергии составил 13 млрд кВт∙ч.
http://www.eseti.ru/
ОАО «ИЭСК»
В 2018 году полезный отпуск электроэнергии составил 47,6 млрд кВт∙ч.
http://www.irk-esk.ru/
ПАО «СУЭНКО»
Сибирско-Уральская энергетическая компания (СУЭНКО) – межрегиональная многопрофильная энергетическая компания юга Тюменской и Курганской областей.
Общая протяженность электрических сетей СУЭНКО составляет 36 тысяч километров, на балансе находится более 11 тысяч объектов электросетевого хозяйства (подстанций и распределительных пунктов).
http://www.suenco.ru/
1.1. Значение, особенности, технологическая структура и топливная база электроэнергетики
Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия — товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия — важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды.
Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение — например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.
В каком-то смысле электроэнергия — стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т.н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. — двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.
Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.
Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.
Электроэнергетика — базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1.1.1).
Рис. 1.1.1. Электроэнергетика в современной экономике
Роль электроэнергетики в ХХI в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно корреспондирует с уровнем деловой активности и с уровнем жизни населения. Научно-технический прогресс и развитие новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни населения предопределяют расширение сфер использования электроэнергии и усиление требований к надежному и бесперебойному энергоснабжению.
Особенности электроэнергетики как отрасли обуславливаются спецификой ее основного продукта – электроэнергии, а также характером процессов ее производства и потребления.
Электроэнергия по своим свойствам подобна услуге: время производства совпадает со временем потребления. Однако это подобие не является неотъемлемым физическим свойством электроэнергии — ситуация изменится, если появятся эффективные технологии хранения электроэнергии в значительных масштабах. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.
Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива. Чем больше максимальное (хотя и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги.
Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса производства, передачи и потребления электроэнергии. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла производства, передачи и потребления продукта, в том числе по частоте электрического тока и напряжению.
Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя. Последнее обстоятельство, по понятным причинам, может иметь большое число совершенно неожиданных следствий.
Очевидно, потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, от времени суток, от технологических режимов различных производственных процессов в отраслях-потребителях, от особенностей домашних хозяйств и даже от программы телепередач. Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.
Экономические характеристики производства электроэнергии зависят от типа электростанции и вида технологического топлива, от степени ее загрузки и режима работы. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.
С учетом всех этих особенностей в электроэнергетике необходимо и целесообразно объединение устройств, производящих энергию – генераторов, в единую энергетическую систему, что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Эти же свойства обуславливают наличие в отрасли системного оператора, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии. Решения системного оператора принимаются на основании рыночных сигналов от производителей о возможностях и стоимости производства электроэнергии, от потребителей – о спросе на нее в определенные временные интервалы. В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.
Большая часть производства электроэнергии в мире осуществляется на электрических станциях трех типов:
· на тепловых электростанциях (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор, преобразуясь, таким образом, в электроэнергию. Опыт продемонстрировал эффективность одновременного производства тепла и электроэнергии на ТЭЦ, что привело к распространению в ряде стран централизованного теплоснабжения;
· на гидроэлектростанциях (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;
· на атомных электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.
Три типа электростанций определяют состав используемых в электроэнергетике энергоресурсов. Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.
Первичные энергоносители – это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. В разговорной речи эти материалы называют просто «первичной энергией». Солнечное излучение, ветер, водные ресурсы – все это тоже первичная энергия.
Вторичная энергия – это продукт переработки, «облагораживания» первичной энергии, например электричество, бензин, мазут. Та энергия, которая попадает непосредственному потребителю, именуется конечной энергией. Чаще всего это вторичная энергия – электричество или мазут, но иногда конечная энергия бывает и первичной, например дрова, солнечное излучение или природный газ.
Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, и они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, ядерное топливо, по большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.
В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь. Это объясняется относительной дешевизной и широкой распространенностью запасов данного вида топлива. Однако транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает нерентабельным этот вид топлива для электростанций, находящихся на значительном удалении от мест добычи угля. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде. В последние десятилетия ХХ века появились технологии, позволяющие использовать уголь для производства электроэнергии с большей эффективностью и меньшим загрязнением окружающей среды по сравнению с тем, как это происходило в первых двух третях ХХ в.
Значительный рост использования газа в мировой электроэнергетике за последние годы объясняется существенным ростом его добычи, появлением высокоэффективных технологий производства электроэнергии, основанных на применении данного вида топлива, а также ужесточением политики по охране окружающей среды. Использование газа при производстве электроэнергии позволяет сократить выброс в атмосферу вредных веществ, в первую очередь углекислого газа.
Все более широкое распространение получает производство электроэнергии за счет использования урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако использование урана и прочих радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии, а также чрезвычайно высокой капиталоемкостью возведения АЭС и утилизации отработанного топлива. Кроме того, сдерживающим фактором для развития этого вида энергетики является сложность технологии производства атомной энергии. Пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.
Сохраняют высокую значимость в структуре источников электроэнергии гидроресурсы, хотя их доля несколько сократилась за последние десятилетия. Важность данного источника электроэнергии заключается в его возобновляемости и относительной дешевизне. Однако возведение гидростанций сопряжено с необратимым воздействием на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водоемов на планете и зависимость водных ресурсов от климатических условий ограничивают их гидроэнергетический потенциал.
Существенное сокращение использования нефти и нефтепродуктов для производства электроэнергии за последние тридцать лет объясняется как ростом стоимости данного вида топлива, высокой эффективностью его применения в других отраслях, так и дороговизной его транспортировки на значительные расстояния, а также возросшими требованиями к экологической безопасности.
В последние десятилетия резко возросло внимание к возобновляемым источникам энергии. В частности, активно разрабатываются технологии использования энергии солнца и ветра. Потенциал данных источников энергии огромен. Однако, на сегодняшний день производство электроэнергии в промышленных масштабах из солнечной энергии в большинстве случаев оказывается менее эффективным, чем ее производство из традиционных видов ресурсов. Что касается энергии ветра, то здесь ситуация несколько иная. В развитых странах, особенно под влиянием экологических движений, преобразование энергии ветра в электрическую выросло весьма значительно. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов: Исландия, Новая Зеландия, Россия (Камчатка, Ставропольский край, Краснодарский край, Калининградская область). Однако пока еще все эти виды электрогенерации успешно развиваются в тех странах, где производство и (или) потребление электроэнергии на основе возобновляемых ресурсов дотируется государством.
В конце XX – начале XXI резко возрос интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе заняло заметное место в энергетическом балансе. В США бала принята специальная программа субсидирования биотоплива. Однако, в настоящее время резко возросли сомнения в перспективах развития данного направления в электроэнергетике. С одной стороны, оказалось, что при производстве биотоплива очень неэффективно используются такие природные ресурсы, как земля и вода; с другой – отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно. Все это в обозримой перспективе делает весьма проблематичным широкое использование биотоплива в электроэнергетике.
Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия — товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия — важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды.
Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение — например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.
В каком-то смысле электроэнергия — стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т.н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. — двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.
Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.
Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.
Электроэнергетика — базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми сектораСледующая >1.2. Российская электроэнергетика и ее место в мире |
---|
Электроэнергетика России и ее значение для экономики страны (стр. 1 из 7)
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Международный факультет управления
Кафедра экономики
ЭЛЕКТРОЭНЕРГЕТИКА РОССИИ И ЕЕ ЗНАЧЕНИЕ ДЛЯ ЭКОНОМИКИ СТРАНЫ
Научный руководитель:
старший преподаватель
__________ А.С.Громова
Курсовая работа
студентки I курса
________К.К.Мамченко
Томск 2008
Оглавление
Введение 3
1 Электроэнергетика и ее основные функции 6
1.1 Понятие электроэнергетики —
1.2 Экономическая эффективность электрификации 9
1.3 Значимость, необходимость государственного
регулирования в электроэнергетике 10
2 Современное состояние электроэнергетики 15
2.1 Современное состояние электроэнергетики
и перспективы дальнейшего развития —
2.2 Программа развития ТЭК 17
2.3 Мировой опыт 20
3 Реформирование электроэнергетической отрасли 24
3.1 Программа реформирования электроэнергетической отрасли —
3.2 Реформирование РАО «ЕЭС России» 25
3.3 Программа развития электроэнергетики и роль государства 26
Заключение 30 Список использованной литературы 33
Приложения 34
Введение
Электроэнергетика является ключевой отраслью экономики многих стран мира. Это немало для любой страны, а для российского климата и расстояний является достоянием, утратой которого рисковать непозволительно.
Актуальность данной темы заключается в том, что от состояния энергосистемы страны зависят основные параметры ее экономического развития, уровень национальной безопасности и политическая стабильность в обществе, качество среды обитания. На сегодняшний день современному человеку трудно представить себе жизнь без электричества. Мы в прямом смысле слова зависим от поставок электроэнергии. Медицинские, учебные и другие социальные учреждения не могут обходится без электричества долгий период времени. Именно поэтому нам важно знать состояние электроэнергетического комплекса, и именно поэтому государство должно контролировать все процессы происходящие внутри него.
Цель данной работы проанализировать современное состояние электроэнергетики и ее.основные проблемы. Основная задача состоит в том чтобы дополнить уже имеющиеся исследования электроэнергетики России комплексным взаимосвязанным анализом состояния и перспектив развития, посмотреть по-новому на развитие электроэнергетики в условиях перехода к рыночной экономике и интеграции ее в мировое хозяйство.
Российская электроэнергетика, несмотря на кризисные явления последних лет, продолжает оставаться одной из крупнейших в мире. На долю России приходится около 10% мирового производства электроэнергии.
В перспективе значение и роль электроэнергетики в Европе и мире будут возрастать. Согласно прогнозам, ежегодный прирост мирового потребления электроэнергии на ближайшие десять лет составит 3,0 -3,5%. Ее доля в мировом энергетическом балансе должна увеличиться. В связи с этим потребуются огромные капиталовложения. Общий объем ожидаемых мировых инвестиций в данную отрасль оценивается в сумме более чем 2 трлн. долл. Почти 60% из них будет вложено в развивающихся странах, более 30% — в Западной Европе, США и других развитых странах, около 10% — в странах с переходной экономикой, включая Россию.
Начавшийся в мире процесс глобализации рынков энергоресурсов благодаря принципиально новым информационным технологиям, потребности стран в крупных капиталовложениях в разработку новых источников энергии и новых способов ее преобразования и использования, в производство, передачу и распределение электроэнергии остро ставит вопрос о необходимости глубокого реформирования данной отрасли. Страны Западной Европы, а также США, Австралия, Бразилия, Аргентина, Китай и другие приступили к кардинальным изменениям своих электрических хозяйств. Идет процесс расчленения трехступенчатой иерархии естественных энергомонополий. Пересматриваются сложившиеся системы государственного регулирования электроэнергетики с целью обеспечения конкурентной среды. Создаются условия для международных слияний и поглощений и образования мощных транснациональных энергетических компаний, способных функционировать на глобальном рынке. Осуществляются меры по либерализации национальных энергорынков в целях стимулирования экспортно-импортных операций, трансграничного движения инвестиционных ресурсов, научно-технических знаний, информации.
По разным оценкам, для модернизации и реструктуризации российской электроэнергетики потребуется от 20 до 100 млрд. долл. капиталовложений. Значительную их долю могут осуществить только частные инвесторы — отечественные и иностранные — и лишь при условии функционирования рынка и перестройки системы государственного регулирования российской электроэнергетики. Только таким путем можно решить острейшие проблемы, возникающие из-за неплатежей, ненадежности энергопоставок, перебоев в энергоснабжении российских предприятий и населения.
Растущее воздействие на российскую энергетику оказывают процессы региональной интеграции, прежде всего, в Европе. Созданные в разные годы объединения энергосистем стран Западной, Северной и Восточной Европы (UCPTE, NORDEL, CENTREL), а также Балтии (BALTREL) и Средиземноморья (SUDEL) работают по единым стандартам, но на разных технологических принципах. Их интеграция в единую европейскую энергосистему потребует адаптации к наиболее развитой, с жесткими стандартами, интегрированной системе UCPTE других объединений и стран Европы, что сопряжено с немалыми финансовыми и техническими трудностями.
Российская электроэнергетика, до распада СССР и СЭВ практически была изолирована от западноевропейской и мировой, за исключением опыта создания объединенной энергосистемы «Мир», экспорта электрооборудования и строительства электростанций в отдельных странах. Попытки восстановления единой энергосистемы с бывшими республиками СССР, а также подключения к энергообъединению восточно-европейских стран пока не увенчались успехом. Между тем вхождение России в мировую, прежде всего европейскую, энергосистему становится все более актуальным. Интеграция ЕЭС России с существующими в Европе региональными энергообъединениями, создание в перспективе Трансевропейской энергетической системы могут дать значительный экономический выигрыш всем его участникам и прежде всего самой России. Такого рода акции откроют принципиально новые возможности для развития экспорта российской электроэнергии на европейский рынок, широкого привлечения в российскую энергетику западноевропейских инвестиций, позволят получить крупный синергетический эффект от интеграции нацио- нальных энергосистем и региональных объединений европейских стран. Очевидно, что Россия сможет интегрироваться в европейскую энергосистему лишь при условии радикальной реструктуризации отрасли, создания транспарентной, достаточно открытой энергосистемы, способной работать в условиях современного рынка.
Появилась возможность вскрыть специфику отраслевой интеграции между крупной страной с переходной экономикой, какой является Россия, и европейскими странами, находящимися на разных ступенях развития рыночной экономики и в разной степени втянутых в интеграционный процесс.
1 Электроэнергетика и её основные функции.
1.1 Понятие электроэнергетики
Электроэнергетика является базовой инфраструктурной отраслью, обеспечивающей внутренние потребности народного хозяйства и населения в электроэнергии, а также экспорт в страны ближнего и дальнего зарубежья. От её функционирования зависят состояние систем жизнеобеспечения и развитие экономики России.
Значение электроэнергетики велико, так как она является базовой отраслью экономики России, благодаря ее существенному вкладу в социальную стабильность общества и конкурентоспособность промышленности, включая энергоемкие отрасли. Строительство новых мощностей по выплавке алюминия в основном привязано к гидроэлектростанциям. Также в энергоемкий сектор входит черная металлургия, нефтехимия, строительство и т.д.
Электроэнергетика— отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения[1]
Производственная база электроэнергетики представлена комплексом энергетических объектов: электростанций, подстанций, котельных, электрических и тепловых сетей, обеспечивающих совместно с другими предприятиями, а также строительными и монтажными организациями, НИИ, проектными институтами — функционирование и развитие электроэнергетики.
Технологическую основу функционирования электроэнергетики составляют электрические станции всех типов, единая национальная (общероссийская) электрическая сеть, территориальные распределительные сети и единая система диспетчерского управления.
География электроэнергетической промышленности России 2 (стр. 1 из 4)
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Кафедра общей и региональной экономики
КУРСОВАЯ РАБОТА
по дисциплине «Экономическая география России»
География электроэнергетической промышленности России.
Научный руководитель: доцент Землянская Т.В.
Курсовую работу выполнила студентка первого курса группы Э-108
Кустова Екатерина Николаевна
Кемерово
2011
Содержание
Введение………………………………………………………………3
1. Роль и место электроэнергетики в топливно-энергетическом комплексе и экономике……………………………………………………………….4
2. Уровень развития электроэнергетики в России в сравнении с другими странами (объем производства на ушу населения)……………………6
3. Структура производства электроэнергии, динамика ее развития
в сравнении с другими странами. ………………………………………8
4. Структура потребления элекроэнергии по отраслям народного хозяйства в сравнении с другими странами. Программа энергосбережения………………………………………………………10
5. Типы электростанций: их достоинства и недостатки, факторы размещения……………………………………………………………..12
5.1. Тепловая электростанция
5.2. Гидравлическая электростанция
5.3. Атомная электростанция
5.4. Альтернативные источники энергии
6. Исторические особенности формирования электроэнергетики……17
6.1. План ГОЭЛРО и география электростанции
6.2. Развитие электроэнергетики в 50-70-е годы
7. Перспективы развития отрасли. «Второй план ГОЭЛРО».
8. Регионообразующее значений крупнейших электростанций.
9. Характеристика Единой системы России, реформа РАО ЕЭС.
10. Крупнейшие корпорации отрасли
Заключение
Список литературы
Введение
Электроэнергетическая промышленность — ведущая и составная часть энергетики. Она обеспечивает производство, трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет региоонообразующую роль, является стержнем материально-технической базы общества, а также способствует оптимизации территориальной организации производительных сил. Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно — хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.
Основным объектом исследования является энергетическая отрасль, ее специфика и значение.
Основными задачами исследования является:
— Определения значимость данной отрасли в хозяйственном комплексе страны;
— Изучение энергетических ресурсов и факторы размещения электроэнергетической промышленности в России;
— Рассмотрение различных типов электростанции, их положительные и отрицательные факторы;
— Изучение альтернативных источников энергии, какую роль они играют в современной энергетике;
— Изучение целей реструктуризации и перспективы российской электроэнергетической промышленности.
Основной целью данной курсовой работы является изучение принципов функционирования рассматриваемой отрасли в современных условиях, выявления основных проблем, связанных с экономическими, географическими, экологическими факторами и пути их преодоления.
1.Роль и место электроэнергетики в топливно-энергетическом комплексе и экономики России.
Совокупность предприятий, установок и сооружений, обеспечивающих добычу и переработку первичных топливно-энергетических ресурсов, их преобразование и доставку потребителям в удобной для использования форме, образует топливно-энергетический комплекс (ТЭК). ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.
Электроэнергетика играет особую роль не только в ТЭК, но и в экономике любой страны, и особенно России.
Электроэнергетика – основная системообразующая отрасль любой экономики. От ее состояния и развития зависят уровень и темпы социально-экономического развития страны. В процессе своего функционирования и развития электроэнергетика сотрудничает со многими отраслями хозяйства и конкурирует с некоторыми из них. Огромная роль принадлежит электроэнергетике в обеспечении нормальной деятельности всех отраслей хозяйства, в улучшении функционирования социальных структур и условий жизни населения. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – это основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан.
Электроэнергетика имеет очень важное преимущество перед энергией других видов — она легка для передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).
Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).
Последние 50 лет электроэнергетика является одной из наиболее динамично развивающихся отраслей народного хозяйства России. Основное потребление электроэнергии в настоящее время приходится на долю промышленности, в частности тяжелой индустрии (машиностроения, металлургии, химической и лесной промышленности). В промышленности электроэнергия применяется в действие различных механизмов и самих технологических процессах: без нее невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Велико значение электроэнергии в сельском хозяйстве, транспортном комплексе и в быту.
Электроэнергетика отличается большим районообразующим значением. Обеспечивая научно-технический прогресс, она сильно воздействует на развитие и территориальную организацию производительных сил.
Передача энергии на большие расстояния способствует эффективному освоению топливно-энергетических ресурсов независимо от их удаленности и места потребления.
Электроэнергетика способствует увеличению плотности размещения промышленных предприятий. В местах больших запасов энергетических ресурсов концентрируются энергоемкие (производство алюминия, магния, титана) и теплоемкие (производство химических волокон) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше, чем в традиционных отраслях.
2.Уровень развития отрасли в сравнении с другими странами (по объемам производства и на душу населения)
К числу крупнейших в мире производителей электроэнергии в 2009 г. относились США, Китай, Япония, Россия, Канада, Германия и Франция. Разрыв в производстве электроэнергии между развитыми и развивающимися странами велик: на долю развитых стран приходится около 65% всей выработки электроэнергии, развивающихся — 22%, стран с переходной экономикой — 13%.
В целом, в мире более 60% всей электроэнергии вырабатывается на тепловых электростанциях, около 20% — на гидроэлектростанциях, около 17% — на атомных электростанциях и около 1% — на геотермальных, приливных, солнечных, ветровых электростанциях. Однако в этом отношении наблюдаются большие различия по странам мира. Например, в Норвегии, Бразилии, Канаде и Новой Зеландии практически вся электроэнергия вырабатывается на ГЭС. В Польше, Нидерландах и ЮАР, наоборот, почти всю выработку электроэнергии обеспечивают ТЭС, а во Франции, Швеции, Бельгии, Швейцарии, Финляндии, Республике Корее электроэнергетика в основном базируется на АЭС.
В России находится много ГЭС, АЭС, ТЭЦ, ГРЭС, которые производят электроэнергию.
Таблица№1: Производство электроэнергии электростанциями в РФ
По сравнению с 1990 г. к 2000 г. произошло снижение производства энергии. В немалой степени это объясняется старением энергетического оборудования. Резкое снижение мощности вызывает критическое положение в снабжении электроэнергией ряда регионов России (Дальний Восток, Северный Кавказ и др.).
Если производство электроэнергии в 1990 г. взять за 100%, то в 2000 г. выработано всего 78%, т.е. на 22% меньше. А в 2000 в 2008 годах наблюдается рост производства электроэнергии. Сейчас Россия занимает четвертое место в мире по выработке электроэнергии, пропуская впереди США, Китай, Японию. На Россию приходится десятая часть производимой в мире электроэнергии, но по среднедушевому производству электроэнергии Россия находится в третьем десятке государств.
1.1. Структура электроэнергетической отрасли. Эксплуатация электрических подстанций и распределительных устройств
1.1. Структура электроэнергетической отрасли
Электроэнергетика является важнейшей фундаментальной отраслью народного хозяйства, обеспечивающей нормальную деятельность всех других отраслей экономики, функционирование социальных структур и необходимые условия жизни населения.
Согласно ГОСТ 19431—84 электроэнергетика представляет собой раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.
Энергетическая система (энергосистема) — это совокупность электрических станций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и тепла при общем управлении этой системой (ГОСТ 21027-75).
Электроэнергетическая система — это находящееся в данный момент в работе электрооборудование энергосистемы и приемников электрической энергии, объединенное общим режимом и рассматриваемое как единое целое в отношении протекающих в них физических процессов (ГОСТ 21027—75).
В точках разграничения электросетей с электроприемными устройствами устанавливается граница балансовой принадлежности и эксплуатационной ответственности продавца и потребителя электрической энергии, формируется специфический рынок электроэнергии. В таких точках вступают в силу договорные взаимоотношения и осуществляется реализация электроэнергии по установленным тарифам.
Непрерывную, неразделимую цепь производства, транспортирования, преобразования, распределения и сбыта электроэнергии можно представить в виде отдельных структур энергосистемы (в настоящее время — коммерческих компаний), показанных на рис. 1.1.
В ходе реорганизации отрасли сложилась определенная структура сетевых энергетических компаний. Например, в состав ОАО «МРСК ЮГА» входят следующие филиалы и их производственные отделения:
Волгоградэнерго: Волгоградские, Правобережные, Левобережные, Камышинские, Михайловские и Урюпинские сети;
Ростовэнерго: Восточные, Западные, Северные, Северо-Восточные, Центральные, Южные, Юго-Восточные и Юго-Западные сети;
Калмэнерго: Калмыкские, Городовиковские, Сарпинские, Каспийские и Магистральные электрические сети;
Кубаньэнерго: Краснодарские, Сочинские, Армавирские, Адыгейские, Тимашевские, Тихорецкие, Ленинградские, Славянские, Юго-Западные, Лабинские и Усть-Лабинские электрические сети;
Астраханьэнерго: Северный, Черноярский, Енотаевский, Ахтубинский, Харабалинский, Красноярский, Володарский, Лиманский, Камызякский, Икрянинский, Приволжский, Правобережный, Городской, Заболдинский, Трусовский и Центральный районы электрических сетей (РЭС).
ОАО «ЛЕНЭНЕРГО» включает следующие филиалы: Кабельная сеть, Выборгские, Гатчинские, Кингисеппские, Лодейнопольские, Лужские, Новоладожские, Пригородные и Тихвинские сети.
Филиалы ОАО «МОЭсК»: Московские кабельные сети, Центральные, Южные, Западные, Северные и Восточные электросети, Высоковольтные кабельные сети.
Таким образом, электрическая энергия вырабатывается на электростанциях, передается по воздушным (ВЛ) и кабельным (КЛ) линиям электропередачи к центрам потребления, трансформируется на подстанциях (ПС) в потребительское напряжение, распределяется через распределительные устройства (РУ) среди потребителей электрической энергии и потребляется электроприемниками (нагрузкой) при различных значениях номинального напряжения.
В качестве иллюстрации на рис. 1.2. приведена условная схема электроснабжения города.
Для снижения потерь электрическая энергия передается на повышенном напряжении, поскольку потери обратно пропорциональны квадрату напряжения. На подстанциях напряжение с помощью трансформаторов (автотрансформаторов) понижается (трансформируется) до рабочего напряжения приемных устройств, потребляется нагрузкой или передается далее в распределительную сеть.
При передаче электроэнергии на дальние расстояния применяются шунтирующие реакторы, которые по своей конструкции близки к трансформаторам (автотрансформаторам). Они представляют собой индуктивности, предназначенные для компенсации емкостного сопротивления линий электропередачи (ЛЭП) большой протяженности. Их, как правило, включают непосредственно по концам ЛЭП сверхвысокого напряжения, а также подключают к шинам среднего напряжения и к третичным обмоткам автотрансформаторов на ПС дальних передач. В эксплуатации используются шунтирующие реакторы с отбором мощности, которые имеют вторичные обмотки или ответвления от основной обмотки, используемые для подключения нагрузки.
Данный текст является ознакомительным фрагментом.Читать книгу целиком
Поделитесь на страничкеСледующая глава >