Электродвижущая сила самоиндукции – Явление самоиндукции.Индуктивность. Энергия магнитного поля тока. Работа поля. Тесты, курсы по физике

Самоиндукция простыми словами: определение, формулы, примеры

Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.

Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Магнитное поле катушки
Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Явление самоиндукцииРис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Схема опыта с лампочкамиРис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Иллюстрация задержки изменения тока в цепи индуктивностиРис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Возникновение самоиндукцииРис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

ЭДС самоиндукции

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Индуктивность

Выше мы отметили, что индуктивность контура зависит от его геометрии и размеров, а также от магнитной проницаемости среды. Если речь идёт о катушке, то эти утверждения справедливы и для неё. На индуктивность катушки влияет её диаметр и количество витков. Индуктивность существенно повышается, если в катушку добавить ферромагнитный сердечник.

Магнитные поля отдельных витков катушки складываются. Если витков достаточно много, то ток, протекающий через катушку, образует вокруг неё сильное магнитное поле, реагирующее на изменения электрического поля. Индуктивность является той величиной, которая характеризует то, насколько сильно проводник, из которого состоят витки, противодействует электрическому току.

Чем больше индуктивность катушки и чем выше скорость прерывания её цепи, тем больший всплеск ЭДС произойдёт в цепи. При этом полярность вихревых токов на выводах катушки противоположна направлению тока источника питания.

Индуктивность (то есть коэффициент пропорциональности) является важной характеристикой катушек, дросселей и других контурных элементов. Этот параметр можно сравнить с ёмкостью конденсаторов. Тем более что действие катушки индуктивности и конденсатора в электрических цепях очень похожи. RL и RC цепочки часто используют для сглаживания всплесков напряжений в различных фильтрах.

Единицей измерения индуктивности в международной системе СИ является генри. Величина размеров в 1 Гн – это такая индуктивность, при которой ЭДС составляет 1 В, при скорости изменения тока на 1 А за секунду.

Индуктивность определяет количество энергии, выделяющейся в результате действия собственного магнитного поля при самоиндукции. Эту энергию легко рассчитать по формуле: Wм = LI2/2.

Собственная энергия катушки численно равна работе, которую необходимо выполнить источником питания при преодолении ЭДС самоиндукции.

Важно знать, что в результате резкого разрыва цепи с большой индуктивностью, энергия высвобождается в виде искры или даже с образованием дугового разряда.

Примеры использования на практике

Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.

Работает этот важный узел следующим образом:

  1. На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
  2. Электрическая цепь резко обрывается специальным прерывателем.
  3. Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
  4. Искровой разряд зажигает топливную смесь, приводя в движение поршень.

В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.

Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.

В блоках питания электронной аппаратуры таким же способом убирают:

  • шумы:
  • пульсации;
  • нежелательные частоты.

Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.

Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.

В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.

В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.

Видео в помощь

Явление самоиндукции.Индуктивность. Энергия магнитного поля тока. Работа поля. Тесты, курсы по физике

Тестирование онлайн

  • Явление самоиндукции. Индуктивность. Основные понятия

  • Явление самоиндукции. Энергия магнитного поля

Явление самоиндукции

Мы уже изучили, что около проводника с током возникает магнитное поле. А также изучили, что переменное магнитное поле порождает ток (явление электромагнитной индукции). Рассмотрим электрическую цепь. При изменении силы тока в этой цепи произойдет изменение магнитного поля, в результате чего в этой же цепи возникнет дополнительный индукционный ток. Такое явление называется самоиндукцией, а ток, возникающий при этом, называется током самоиндукции.

Явление самоиндукции — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

ЭДС самоиндукции определяется по формуле:

Явление самоиндукции подобно явлению инерции. Так же, как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет явления самоиндукции. Если в цепь, состоящую из двух параллельно подключенных к источнику тока одинаковых ламп, последовательно со второй лампой включить катушку, то при замыкании цепи первая лампа загорается практически сразу, а вторая с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки очень часто перегорают при выключении света.

Энергия магнитного поля

Энергия магнитного поля контура с током:

Самоиндукция — это… Что такое Самоиндукция?

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Самоиндукция и синусоидальный ток

В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (). Ведь скорость изменения функции — это её первая производная, а .

Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки итп устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[4]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

Самоиндукция и скачок тока

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика ее работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

Примечания

  1. Контур может быть и многовитковым — то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
  2. Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
  3. В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
  4. Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

Ссылки

Самоиндукция — это… Что такое Самоиндукция?

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Самоиндукция и синусоидальный ток

В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (). Ведь скорость изменения функции — это её первая производная, а .

Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки итп устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[4]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

Самоиндукция и скачок тока

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика ее работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

Примечания

  1. Контур может быть и многовитковым — то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
  2. Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
  3. В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
  4. Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

Ссылки

Самоиндукция — это… Что такое Самоиндукция?

  • самоиндукция — самоиндукция …   Орфографический словарь-справочник

  • Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение… …   Википедия

  • САМОИНДУКЦИЯ — возникновение эдс индукции в проводящем контуре при изменении в нём силы тока; частный случаи электромагнитной индукции. При изменении тока в контуре меняется поток магн. индукции через поверхность, ограниченную этим контуром, в результате чего в …   Физическая энциклопедия

  • САМОИНДУКЦИЯ — возбуждение электродвижущей силы индукции (эдс) в электрической цепи при изменении электрического тока в этой цепи; частный случай электромагнитной индукции. Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока;… …   Большой Энциклопедический словарь

  • САМОИНДУКЦИЯ — САМОИНДУКЦИЯ, самоиндукции, жен. (физ.). 1. только ед. Явление, состоящее в том, что когда в проводнике изменяется ток, то в нем появляется электродвижущая сила, препятствующая этому изменению. Катушка самоиндукции. 2. Прибор, обладающий… …   Толковый словарь Ушакова

  • САМОИНДУКЦИЯ — (Self induction) 1. Прибор, обладающий индуктивным сопротивлением. 2. Явление, состоящее в том, что когда в проводнике по величине и по направлению изменяется электрический ток, то в нем возникает электродвижущая сила, препятствующая этому… …   Морской словарь

  • САМОИНДУКЦИЯ — наведение электродвижущей силы в проводах, а также в обмотках электр. машин, трансформаторов, аппаратов и приборов при изменении величины или направления протекающего по ним электр. тока. Протекающий по проводам и обмоткам ток создает вокруг них… …   Технический железнодорожный словарь

  • Самоиндукция — электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическим током в этом контуре… Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв.… …   Официальная терминология

  • самоиндукция — сущ., кол во синонимов: 1 • возбуждение электродвижущей силы (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • самоиндукция — Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическим током в этом контуре. [ГОСТ Р 52002 2003] EN self induction electromagnetic induction in a tube of current due to variations… …   Справочник технического переводчика

  • САМОИНДУКЦИЯ — частный случай электромагнитной индукции (см. (2)), состоящий в возникновении наведённой (индуцированной) ЭДС в цепи и обусловленный изменениями во времени магнитного поля, создаваемого изменяющимся по величине током, протекающим в этой же цепи.… …   Большая политехническая энциклопедия

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *