Электродвижущая сила измеряется в: Электродвижущая сила. Видеоурок. Физика 10 Класс – суть и принцип для начинающих чайников

Содержание

Электродвижущая сила. Видеоурок. Физика 10 Класс

На этом уроке мы подробнее разберем механизм обеспечения длительного электрического тока. Введем понятия «источник питания», «сторонние силы», опишем принцип их действия, а также введем понятие электродвижущей силы.

Тема: Законы постоянного тока
Урок: Электродвижущая сила

В одной из прошлых тем (условия существования электрического тока) уже затрагивался вопрос о необходимости источника питания для длительного поддержания существования электрического тока. Сам по себе ток, конечно же, можно получать и без таких источников питания. Например, разрядка конденсатора при вспышке фотоаппарата. Но такой ток будет слишком скоротечным (рис. 1).

Рис. 1. Кратковременный ток при взаимной разрядке двух разноименно заряженных электроскопов (Источник)

Кулоновские силы всегда стремятся свести разноименные заряды, выровняв тем самым потенциалы по всей цепи. А, как известно, для наличия поля и тока необходима разность потенциалов. Поэтому никак нельзя обойтись без каких-либо других сил, разводящих заряды и поддерживающих разность потенциалов.

Определение. Сторонние силы – силы неэлектрического происхождения, направленные на разведение зарядов.

Эти силы могут быть разной природы в зависимости от типа источника. В батареях они химического происхождения, в электрогенераторах – магнитного. Они-то и обеспечивают существование тока, так как работа электрических сил по замкнутому контуру всегда равна нулю.

Вторая задача источников энергии, помимо поддержания разности потенциалов, – это восполнение потерь энергии на столкновении электронов с другими частицами, вследствие чего первые теряют кинетическую энергию, а внутренняя энергия проводника повышается.

Сторонние силы внутри источника выполняют работу против электрических сил, разводя заряды в стороны, противоположные их естественному ходу (как они движутся во внешней цепи) (рис. 2).

Рис. 2. Схема действия сторонних сил

Аналогом действия источника питания можно считать водяной насос, который пускает воду против ее естественного хода (снизу вверх, в квартиры). Обратно же вода естественным образом под действием силы тяжести спускается вниз, но для непрерывной работы водоснабжения квартиры необходима непрерывная работа насоса.

Определение. Электродвижущая сила – отношение работы сторонних сил по перемещению заряда к величине этого заряда. Обозначение – :

Единица измерения:

Вставка. ЭДС разомкнутой и замкнутой цепи

Рассмотрим следующую цепь (рис. 3):

Рис. 3.

При разомкнутом ключе и идеальном вольтметре (сопротивление бесконечно велико) никакого тока в цепи не будет, и внутри гальванического элемента будет совершаться только работа по разделению зарядов. В этом случае вольтметр покажет значение ЭДС.

При замыкании ключа по цепи пойдет ток, и вольтметр уже не будет показывать значение ЭДС, он будет показывать значение напряжения, такого же, как на концах резистора. При замкнутом контуре:

Электродвижущая сила — Википедия

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1][2].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил E→ex{\displaystyle {\vec {E}}_{ex}}, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд к величине этого заряда. Тогда в замкнутом контуре L{\displaystyle L} ЭДС будет равна:

E=∮L⁡E→ex⋅dl→,{\displaystyle {\mathcal {E}}=\oint \limits _{L}{\vec {E}}_{ex}\cdot {\vec {dl}},}

где dl→{\displaystyle {\vec {dl}}} — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

ЭДС и закон Ома

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]:

φ1−φ2+E=IR,{\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,}

где φ1−φ2{\displaystyle \varphi _{1}-\varphi _{2}} — разность между значениями потенциала в начале и в конце участка цепи, I{\displaystyle I} — сила тока, текущего по участку, а R{\displaystyle R} — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ1−φ2=0{\displaystyle \varphi _{1}-\varphi _{2}=0} и предыдущая формула переходит в формулу закона Ома для

замкнутой цепи[1]:

E=IR,{\displaystyle {\mathcal {E}}=IR,}

где теперь R{\displaystyle R} — полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи (Re{\displaystyle R_{e}}) и внутреннего сопротивления самого́ источника тока (r{\displaystyle r}). С учётом этого следует:

E=IRe+Ir.{\displaystyle {\mathcal {E}}=IR_{e}+Ir.}

ЭДС источника тока

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

φ1−φ2=IR.{\displaystyle \varphi _{1}-\varphi _{2}=IR.}

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода φa{\displaystyle \varphi _{a}} и катода φk{\displaystyle \varphi _{k}} можно записать:

φa−φk=IRe,{\displaystyle \varphi _{a}-\varphi _{k}=IR_{e},}

где как и ранее Re{\displaystyle R_{e}} — сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E=IRe+Ir{\displaystyle {\mathcal {E}}=IR_{e}+Ir} нетрудно получить

φa−φkE=ReRe+r{\displaystyle {\frac {\varphi _{a}-\varphi _{k}}{\mathcal {E}}}={\frac {R_{e}}{R_{e}+r}}} и затем φa−φk=ReRe+rE.{\displaystyle \varphi _{a}-\varphi _{k}={\frac {R_{e}}{R_{e}+r}}{\mathcal {E}}.}

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока φa−φk{\displaystyle \varphi _{a}-\varphi _{k}} меньше, чем ЭДС источника.
  2. В предельном случае, когда Re{\displaystyle R_{e}} бесконечно (цепь разорвана), выполняется E=φa−φk.{\displaystyle {\mathcal {E}}=\varphi _{a}-\varphi _{k}.}

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи

[1].

ЭДС индукции

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

E=−dΦdt,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi }{dt}},}

где Φ{\displaystyle \Phi } — поток магнитного поля через замкнутую поверхность, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектрический характер ЭДС

Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектрической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электрической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектрической природы (центробежная сила, сила Лоренца, силы химической природы) которая бы преодолевала электрическую силу.

Сторонние силы

Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

См. также

Примечания

Какая единица используется для измерения электродвижущей силы — MOREREMONTA

ЭДС. Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи. Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна

За единицу измерения электродвижущей силы в системе СИ принимается вольт (в). Источник электрической энергии обладает эдс в 1 вольт, если при перемещении по всей замкнутой цепи заряда в 1 кулон совершается работа, равная 1 джоулю. Физическая природа электродвижущих сил в разных источниках весьма различна.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока I в контуре пропорционально меняется и магнитный поток Bчерез поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС E. Это явление и называется самоиндукцией.

Понятие родственно понятию взаимоиндукции, являясь его частным случаем.

Мощность. Мощность – это работа производимая единицу времени.Мощность-это работа производимая в еденицу времени, т.е для переноса заряда в эл. цепи или в замкнутой затрачивается энергия, которая равна А=U*Q так как кол-во электричества равна произведению силы тока , то Q=I*t отсюда следует что A=U*I*t. P=A/t=U*Q/t=U*I=I*t*R=P=U*I(И)

1Вт=1000мВ, 1кВт=1000В, Pr=Pп+Po-формула баланса мощности. Pr-мощность генератора(ЭДС)

Pr=Е*I,Pп=I*U полезная мощность, т.е мощность которая расходуется без потерь. Po=I^2*R-теряемая мощность. Для того что бы цепь функционировала необходимо соблюдать баланс мощности в эл.цепи.

12.Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R; [A = В / Ом]

13.Закон Ома для полной цепи.

Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

— ЭДС источника напряжения(В), — сила тока в цепи (А), — сопротивление всех внешних элементов цепи(Ом), — внутреннее сопротивление источника напряжения(Ом) .1)E=I(R+r)? 2)R+r=E/I

14.Последовательное, параллельное соединение резисторов, эквивалентное сопротивление. Распределение токов и напряжения.

При последовательном соединении нескольких резисторов конец первого резисторасоединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.

Uэ=U1+U2+U3. Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Rэ=R1+R2+R3, Iэ=I1=I2=I3, Uэ=U1+U2+U3.

При последовательном соединении сопротивление цепи увеличивается.

Параллельное соединение резисторов. Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму — концы.

Общее сопротивление параллельно включенных сопротивлений определяется по формуле

Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.

при параллельном соединении сопротивлений напряжения на них равны между собой. Uэ=U1=U2=U3 В цепи притекает ток I, а токи I1, I2, I3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:Iэ=I1+I2+I3 Следовательно, третье свойство параллельного соединения может сформулирована так: Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях. Для двух парал.резисторов:

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока).

Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника. Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи..

Определение: Работа, совершаемая источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется ЭДС источника

За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское).

ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),

1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов.

Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую.

На электрических схемах источники электрической энергии и генераторы обозначаются так, как это показано на рис. 1.

Рисунок 1. Условные обозначения источников электрической энергии: а — источник ЭДС, общее обозначение, б — источник тока, общее обозначение; в — химический источник электрической энергии; г — батарея химических источников; д — источник потоянного напряжения; е — источник переменного нарияжения; ж — генератор.

У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время. Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом.

От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Определение : Совокупность источника электрической энергии, ее потребителя и соединительных проводов называется электрической цепью.

Простейшая электрическая цепь показана на рис. 2.

Рисунок 2. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).

Для того чтобы по цепи проходил электрический ток, она должна быть замкнутой. По замкнутой электрической цепи непрерывно проходит ток, так как между полюсами источника электрической энергии существует некоторая разность потенциалов. Эта разность потенциалов называется напряжением источника и обозначается буквой U. Единицей измерения напряжения служит вольт. Так же как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения величины ЭДС и напряжения применяется прибор, называемый вольтметром. Если вольтметр подключить непосредственно к полюсам источника электрической энергии, то при разомкнутой электрической цепи он покажет ЭДС источника электрической энергии, а при замкнутой — напряжение на его зажимах: (рис. 3).

Рисунок 3. Измерение ЭДС и напряжения источника электрической энергии: а— измерение ЭДС источника электрической энергии; б — измерение напряжения на зажимах источника электрической энергии..

Заметим, что напряжение на зажимах источника электрической энергии всегда меньше его ЭДС.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.

Определение ЭДС в физике

ЭДС – электродвижущая сила. Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила — скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.

ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Схема водонапорной башни

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

Водокачка

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Советская батарейка

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

ЭЛЕКТРОДВИЖУЩАЯ СИЛА — что такое в Физической энциклопедии

Смотреть что такое ЭЛЕКТРОДВИЖУЩАЯ СИЛА в других словарях:

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс)        физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом п… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), физ. величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в … смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(э. д. с.), причина, вызывающая в замкнутой цепи электр. ток. Э. с. создается источником тока, преобразующим в электр. энергию какой-либо другой вид эн… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс) — энергетич. хар-ка неэлектростатич. поля, действующего на заряж. частицы, т. е. индуктированного электрического паля и поля сторонних сил. Эдс р… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах.<br><br><br>… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (Эдс) — величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная Эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах.<br>… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), величина, характеризующая источник энергии в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах. <br>… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

— (эдс) — величина, характеризующая источник энергиинеэлектростатической природы в электрической цепи, необходимый дляподдержания в ней электрического тока. Эдс численно равна работе поперемещению единичного положительного заряда вдоль замкнутой цепи. Полнаяэдс в цепи постоянного тока равна разности потенциалов на концахразомкнутой цепи. Эдс индукции создается вихревым электрическим полем,порождаемым переменным магнитным полем. В СИ измеряется в вольтах…. смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС), сумма РАЗНОСТЕЙ ПОТЕНЦИАЛОВ по ЭЛЕКТРИЧЕСКОЙ ЦЕПИ в целом. Когда цепь разомкнута и ток не идет, эта сила равна разности пот… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс), физ вели чина, характеризующая источник энергии неэлектростатич. природы в электрич. цепи, необходимый для поддержания в ней электрич. тока. Эдс… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс), величина, характеризующая источник энергии в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах…. смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

«…Электродвижущая сила — скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрически… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

Electromotive force — Электродвижущая сила. (1) Сила, которая определяет поток электричества; разность электрического потенциала. (2) Электрический потенциал; напряжение. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО «Профессионал», НПО «Мир и семья»; Санкт-Петербург, 2003 г.)… смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

1. Скалярная величина, характеризующая способность стороннего поля и индуктированного электрического пол вызывать электрический ток Употребляется в документе: ГОСТ Р 52002-2003 Электротехника. Термины и определения основных понятий Телекоммуникационный словарь.2013…. смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС)

Морской словарь

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС) (EMF — Electromotive force) — причина, вызывающая движение электричества (электрический ток). В гальванических элементах Э…. смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС)

Энциклопедический словарь естествознания

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс) , величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах…. смотреть

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС)

Большой энциклопедический словарь

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах…. смотреть

ЭДС, мощность. Единицы измерения.

ЭДС. Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи. Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна

E=A/q

За единицу измерения электродвижущей силы в системе СИ принимается вольт (в). Источник электрической энергии обладает эдс в 1 вольт, если при перемещении по всей замкнутой цепи заряда в 1 кулон совершается работа, равная 1 джоулю. Физическая природа электродвижущих сил в разных источниках весьма различна.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока I в контуре пропорционально меняется и магнитный поток Bчерез поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС E. Это явление и называется самоиндукцией.

Понятие родственно понятию взаимоиндукции, являясь его частным случаем.

Мощность. Мощность – это работа производимая единицу времени.Мощность-это работа производимая в еденицу времени, т.е для переноса заряда в эл. цепи или в замкнутой затрачивается энергия, которая равна А=U*Q так как кол-во электричества равна произведению силы тока , то Q=I*t отсюда следует что A=U*I*t. P=A/t=U*Q/t=U*I=I*t*R=P=U*I(И)

1Вт=1000мВ, 1кВт=1000В, Pr=Pп+Po-формула баланса мощности. Pr-мощность генератора(ЭДС)

Pr=Е*I,Pп=I*U полезная мощность, т.е мощность которая расходуется без потерь. Po=I^2*R-теряемая мощность. Для того что бы цепь функционировала необходимо соблюдать баланс мощности в эл.цепи.

12.Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R; [A = В / Ом]

1)U=I*R, 2)R=U/R

 

 

13.Закон Ома для полной цепи.

Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

— ЭДС источника напряжения(В), — сила тока в цепи (А), — сопротивление всех внешних элементов цепи(Ом), — внутреннее сопротивление источника напряжения(Ом) .1)E=I(R+r)? 2)R+r=E/I

14.Последовательное, параллельное соединение резисторов, эквивалентное сопротивление. Распределение токов и напряжения.

При последовательном соединении нескольких резисторов конец первого резисторасоединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.

Uэ=U1+U2+U3. Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Rэ=R1+R2+R3, Iэ=I1=I2=I3, Uэ=U1+U2+U3.

При последовательном соединении сопротивление цепи увеличивается.

Параллельное соединение резисторов. Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму — концы.

Общее сопротивление параллельно включенных сопротивлений определяется по формуле

Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.

при параллельном соединении сопротивлений напряжения на них равны между собой. Uэ=U1=U2=U3 В цепи притекает ток I, а токи I1, I2, I3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:Iэ=I1+I2+I3 Следовательно, третье свойство параллельного соединения может сформулирована так: Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях. Для двух парал.резисторов:


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *