Электричество из ветра: Ветроэнергетика — Википедия – Ветрогенератор для дома — минусы и минусы. Расклад по ценам и киловаттам. Цена за 1квт от ветряка.

Содержание

Как получают и где используют энергию ветра

Преобразование энергии ветра в электрическую или механическую силу стало основной задачей в современном обществе.  Для того чтобы получать энергию ветра, человечество изобрело огромное количество технических средств. Учёные по всему миру пытаются создать нечто новое, что поможет увеличить объемы, получаемой энергии из воздушных масс. Но, каким образом происходит добыча механической или электрической энергии из потоков воздуха?

Как получить энергию ветра

Что-то подобное вы могли изучать на уроках физики в школе, сейчас мы постараемся объяснить вам, как получают энергию ветра в современной науке.

В каких странах данная отрасль развита наиболее сильно?

Каждая страна в любой точке земного шара старается идти в ногу со временем, и не отставить от общего прогресса. Это провоцирует создание новых технологий, способствующих скорейшему развитию всего человечества.

Добыча энергии альтернативными способами не остается в стороне, а, так как сила ветра считается неиссякаемой, ей уделяется отдельное внимание ученых.

Энергия ветра добывается при помощи специальных ветрогенераторов, которые напоминают по своему виду ветреную мельницу. Однако не обязательно. В Соединённых Штатах Америки уже давно используется ветрогенераторы, которые по своему строению напоминают спираль. Данная форма была адаптировано для городских условий, используется для снабжения электричеством каждого небоскрёба в частности.

Энергия ветра

Государство в Европе, которое преуспело в разработки ветрогенераторов больше всего – это Дании. 42 % всей электроэнергии добываемой на территории Дани приходится на ветряные электростанции. Этому способствует уникальные климатические условия этой страны. Так как побережье государства омывается Северным морем, на территории страны постоянно дуют сильные ветра. Это способствует постоянному развитию процедуры переработки силы ветра в электрическую и механическую энергии. Для добычи электроэнергии датчане используют ветрогенераторы, которые достигают 260 м в высоту.

Строение такого генератора довольно простое, настолько простое, что даже не опытный электрик сможет собрать его дома. Длина лопасти такого генераторов составляет 80 м. Он способен обеспечить электричеством до 2000 домов. Учитывая то, что население Дании составляет менее 6 миллионов человек, обеспечить все жилые и нежилые постройки альтернативными источниками питания – не составляет особого труда для государства.

В среднем в Евросоюзе процент электричества добываемого при помощи ветрогенераторов равен семи.  Давайте более подробно разберём, каким образом работает ветряная электростанция.

Принцип работы ветряной электростанции

Существует два вида ветрогенераторов, которые отличаются друг от друга направленностью вращения:

  1. вертикальные;
  2. горизонтальные.

Также их можно разделять по количеству глупостей, однако это не играет особой роли добычи электроэнергии при помощи ветра. Данный факт становится важным только в том случае, если объемы добываемого электричества должны быть очень большими. Например, если вы хотите снабдить ветрогенератором небольшой частный дом, тем самым автоматизировать его, сделать независимым от центрального электроснабжения, вам понадобится более мелкий прибор. Он будет иметь не три лопасти, как мы привыкли видеть обычно на больших образцах, а больше.

Однако, получение энергии из ветра возможно именно из-за глупостей. Металл, из которого они будут изготовлены, напрямую влияет на объем вырабатываемого электричества.

Принцип работы ветряной электростанции

В классической ветряной электростанции, большую роль, чем лопасти, играет, непосредственно, электрогенератор и числовое программное устройство. Именно эти приборы позволяют преобразовывать полученную кинетическую энергию в электрическую или механическую.

Но, небольшим устройством, без которого работа всей ветряной электростанции стало бы невозможной, является датчик направления ветра, также именуемый анимоментром. Его неисправная работа может привести к поломке всей ветряной электростанции, или снизить количество добываемый электроэнергии до минимума. Все объясняется банально и просто. Если устройство не будет знать, откуда дует ветер, то не сможет работать. Направленность лопастей навстречу ветру обязательна для нормального функционирования всего механизма.

После того как лопасти начали вращаться, электро генератор преобразовывает механическое вращение в электрическую энергию, и направляет в аккумуляторы или сразу в сеть.

Отраслей, где используется энергия ветра, с каждым днём становится все больше. Причиной тому есть возможность преобразования силы ветра, как в электрическую, так и в механическую энергию.

Берегите энергию, и пользуйтесь ей правильно!

польза на службе у человека и принцип работы

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является ветроэнергетика.

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, во всем мире таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность — одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину КПД ветроустановок — 59,3 %, что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие самыми мощными на сегодня ветроэлектростанциями.

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Способ преобразования энергии ветра в электрическую энергию: устройство и принципы работы ветрогенератора

Способ преобразования энергии ветра в электрическую энергию: устройство и принципы работы ветрогенератора

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор. Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла — ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство — независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство — контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Рекомендуемые товары

готовые решения и проблемы, существующие в ветроэнергетике

Электроэнергия в России

Обеспеченность пользователей электроэнергией в России далеко не стопроцентная, хотя страна является энергоизбыточной и способна поставлять ресурс на экспорт. Причины такого положения в большой площади, создающей большие трудности в доставке электроэнергии.

Отдаленные регионы, труднодоступные участки до сих пор не имеют централизованного снабжения энергией и вынуждены использовать дизельные и бензиновые генераторы, обходящиеся дорого и требующие постоянного обслуживания, ремонта, снабжения топливом и прочих действий.

Для жителей таких районов крайне необходимо использование альтернативных источников, менее требовательных к топливным ресурсам и позволяющим получить автономные устройства, производящие электроэнергию. Среди этих источников наиболее предпочтительными являются ветровые электростанции или установки, имеющие большие возможности.

Важность освоения альтернативных источников энергии

Освоение и широкое использование альтернативных источников энергии крайне важно для всех современных людей, независимо от мест проживания и близости к действующим энергоресурсам. Причины этого:

  • чем больше источников энергии, тем меньше загруженность магистральных линий
  • состояние многих электростанций требует срочной модернизации, реконструкции или ремонта. Срок службы многих сооружений подходит к концу, вынуждая задумываться о способах замещения старых источников новыми
  • возможность иметь свой, независимый источник электроэнергии освобождает пользователя от зависимости от ресурсоснабжающих компаний
  • экологическая чистота альтернативных источников намного предпочтительнее, чем опасность радиоактивных загрязнений или прорыва плотины с непредсказуемыми последствиями

Кроме этих неоспоримых достоинств ветроэнергетики, существует еще одно важное обстоятельство: обеспеченность отдаленных и труднодоступных регионов есть и будет под большим вопросом. Экономическое обоснование возможности проведения линии электропередач в эти места крайне отрицательное, отсутствие промышленных объектов или важных военных, исследовательских центров низводит вероятность создания магистрали до нуля.

Вынужденный характер применения альтернативных вариантов усиливается постоянным ростом использования электроприборов как для связи, так и для прочих бытовых, медицинских или иных целей, необходимых для нормальной жизни в современном мире.

Перспективы и возможности ветрогенераторных установок

Ветроэнергетика переживает второе рождение. Из экзотических видов, применяемых в отдельных регионах планеты, где нет возможности применять другие способы производства электричества, ветроэнергетика становится полноценным видом добычи энергии.

Кроме того, весьма привлекателен сам источник. Потоки ветра обладают огромными запасами кинетической энергии, который никогда не иссякнет. В отличие от углеводородов или радиоактивных источников, ветер будет существовать всегда, пока на Земле есть атмосфера. Пользование таким источником абсолютно бесплатно, ограничивается только возможностями оборудования. Привлекательность источника, имеющего такие свойства, бесспорна и не требует никаких дополнительных аргументов.

Современные ветрогенераторы имеют достаточную производительность, чтобы обеспечивать большие количества потребителей. Такие страны, как Дания, Германия, США, Индия и Китай обладают крупными ветровыми электростанциями, играющими важную роль в энергообеспеченности этих стран.

Так, Китай имеет самую мощную на сегодня ВЭС, способную по производительности соперничать с гидроэлектростанциями, лидирующими среди всех разновидностей электростанций. Немного отстают индийские станции, имеющие несколько мощных станций с большим количеством ветроагрегатов.

Между тем активно ведутся разработки небольших установок, позволяющих снабжать энергией отдельные пункты, дома, экспедиционные отряды и т.д. Возможность автономного обеспечения энергией от устройства, перевозимого с собой или установленного рядом с домом, дает полную независимость от поставщиков энергии, роста тарифов и иных неудобств централизованного энергоснабжения.

Готовые решения

В качестве готовых устройств, предлагаемых для пользователя в настоящее время, могут быть использованы различные варианты ветроустановок. Они имеют массу вариантов конструкции, размеров, могут быть использованы для отдельных потребителей или обеспечивать энергией целые участки с множеством пользователей.

Виды ветрогенераторов

В первую очередь, все известные конструкции делятся на две большие группы:

  • горизонтальные. Это устройства, ось вращения ротора у которых находится в горизонтальной плоскости. Они более эффективны, чем вертикальные ветряки, но нуждаются в постоянной коррекции положения в зависимости от направления ветра. Вследствие большей эффективности активно используются в качестве крупных промышленных моделей, способных вырабатывать большие объемы энергии. Все устройства, используемые в качестве элементов крупнейших ветроэлектростанций, имеют горизонтальный тип конструкции
  • вертикальные. Ось вращения этих конструкций расположена по вертикали. Преимущество таких устройств в том, что необходимость установки на ветер у них отсутствует. При этом, особенностью конструкции является одновременное воздействие потока ветра на рабочую и обратную стороны лопастей, что создает как полезную, так и паразитную нагрузку, противодействующую вращению. Для устранения от останавливающих воздействий разработано множество вариантов конструкции, в той или иной степени снижающих вредное действие на задние части лопастей

Вертикальные конструкции, в силу меньшей эффективности, используются как небольшие ветроустановки для частного пользования. В этом качестве они оказались намного предпочтительнее, чем горизонтальные устройства, так как обладают большей независимостью от направления ветра и не нуждаются в подъеме на большую высоту.

Примечательно, что большинство самодельных конструкций, создаваемых для личного пользования, имеют вертикальный тип. Они просты и устойчивы к различным нагрузкам, позволяют в широких пределах изменять конструкцию, добавлять или удалять элементы, менять форму лопастей и т.д.

Существует большое количество типов вертикальных турбин:

Это только некоторые из множества типов вертикальных конструкций. Одни существуют уже очень давно, другие появились в течение последнего десятилетия. Постоянно ведется поиск новых, более удачных конструкций, невосприимчивых к отрицательному воздействию потока и способных развивать большую мощность. Большинство из них известны только как теоретически существующие разновидности, используемые самодеятельными производителями как основа для собственных разработок и устройств, собранных для обеспечения своих нужд.

Использование ветра как альтернативного источника энергии: виды, проблемы и возможности ветрогенераторных установок

Использование ветра как альтернативного источника энергии: виды, проблемы и возможности ветрогенераторных установок

Выбор оборудования

Выбор готового устройства — непростая задача, требующая серьезных исследований. Для того, чтобы приобрести оптимальный вариант, надо узнать направление и силу преобладающего в регионе ветра, выяснить возможность шквальных порывов, их частоту и силу потока.

Кроме того, надо подсчитать собственные потребности, сложив потребляемую мощность всех приборов в доме или на определенном участке и увеличив полученное значение на 15-20 %. Этот запас поможет организовать работу установки в более свободном режиме, обеспечивающем большую долговечность.

Сравнение возможностей устройства, потребностей пользователя и предоставляемых местностью параметров воздушных потоков дает значение наиболее предпочтительной мощности ветроустановки.

Все исследования и расчеты следует произвести как можно более тщательно, поскольку цены на ветрогенераторы весьма высоки, и приобретение неподходящего устройства крайне нежелательно. Долговечность агрегата в среднем составляет 20-25 лет, поэтому приобретать надо установку с некоторым запасом мощности. Количество потребляемой энергии из года в год возрастает, это надо учитывать и предвидеть рост требуемых мощностей на время службы устройства.

Проблемы, существующие в ветроэнергетике

Основная проблема, которая упоминается противниками ветроэнергетики в первую очередь — нестабильность и неравномерность воздушных потоков. Эта проблема — единственная, не поддающаяся регулированию или снижению какими-либо методами, техническими или научными. Мало того, территории многих стран, в частности — России, имеют огромный ветровой потенциал, но он базируется лишь на большой территории государства.

Показатели ветра в отдельно взятых регионах чаще всего тяготеют к средним и слабым, что создает некоторые сложности для конструкторов. Приходится проектировать модели, оптимизированные для слабых ветров, но имеющих большой запас прочности на случай редких, но возможных шквалистых порывов, грозящих разрушить неподготовленную конструкцию.

Еще одной проблемой является низкий КПД или, для ветроустановок, КИЭВ. Этот показатель ограничен, теоретические исследования показывают максимальное значение в 59,3 %. Большинство ныне ведущихся разработок призваны максимально увеличить КПД и, по возможности, перешагнуть расчетные пределы, опираясь на изменения в конструкции.

Рекомендуемые товары

Энергия ветра как альтернативный источник энергии

Человечество постоянно продолжает искать новые источники энергии. Постоянной проблемой, и причиной для этого становится невозможность постоянного использования одного вида сырья. Естественно, причиной этому послужило истощение ресурсов нашей планеты. Нефть, газ и прочие источники энергии совсем скоро закончатся, и человечеству придется уже более плотно осваивать альтернативные и совсем новые источники получения желанной энергии.

Ветер как источник энергии

Естественно в нашем мире существуют неиссякаемые источники энергии, однако, у них есть один минус, но о нем мы говорим немного позже. К таким неиссякаемым источникам энергии относят океанические течения, солнечную энергию и ветер. Вы можете сказать, что первые два вида рано или поздно могут закончится, но возьмите во внимание то, что, если потухнет солнце, или остановятся течения в океанах, то мы столкнемся с проблемой хуже, чем отсутствие света в вашей квартире, и невозможность читать наш блог, потому что выключился роутер. Тогда мы столкнемся с катаклизмами, которые приедут к окончанию жизни человечества в принципе. Поэтому мы можем смело утверждать, что они – вечные.

Энергия ветра, как альтернативный источник энергии, также имеет свой огромный минус. Она катастрофически непостоянна. Мы не можем быть уверенными в том, что завтра на той или иной территории может быть сильный ветер. Да, существуют отдельные участки Земли, где они дуют постоянно, но прелесть альтернативных источников питания в том, чтобы они могли служить не массово, а по одиночке. Децентрализация источников поставки электричества – вот основная цель ветряных и солнечных электростанций.

Энергия ветра, как альтернативный источник энергии

Оптимальная скорость ветра, при которой ветряная электростанция функционирует на полную, в среднем равна 20-25 м/с.

Вы знаете много мест на планете Земля, где постоянно дуют такие сильные ветра?

На самом деле, такую скорость ветра требуют те агрегаты по адаптации его энергии в электрическую, которые могут снабдить током не обыкновенный одноэтажный частный дом, а огромный небоскреб.

Вам же потребуется небольшой, можно сказать, вентилятор, который с легкостью даст вам то, чего вы потребуете.

Принцип работы ветряной электростанции

Всем известно, что ветер, как источник энергии, используется в мире довольно давно. На рынок стран постсоветского пространства он пришел в начала 2010-х годов, однако завоевал огромную популярность не только у фермеров и других бизнесменов, но и у обычных людей, которые проживают в частных домах.

Но мало кто понимает, каким образом работает данное устройство.

Первым, что необходимо для использования данного устройства – это, естественно ветер. Если его не будет, вы можете сам крутить лопасти, чтобы получить электричество в дом.

Итак, основные составляющие любой ветряной электростанции:

  1. лопасти;
  2. первичный вал;
  3. тормоз;
  4. коробка передач;
  5. генератор;
  6. вал генератора;
  7. поворотный механизм с мотором;
  8. числовое программное управление;
  9. ротор.

Принцип работы ветряной электростанцииВетер приводит в действие лопасти, которые, в свою очередь начинают вращать первичный вал. Для чего нужна коробка передач? Она позволяет минимизировать нагрузку на детали, что помогает избегать преждевременного изнашивания всего механизма, так как скорость дуновения ветра бывает разной, а постоянно ветер не дует.

Самым главным предметом в данном устройстве является числовое программное управление. Именно оно, в содействии с датчиком ветра определяют направление всего механизма, что позволяет вам, без никаких механических вмешательств, наблюдать за работой ветряной электростанции.

Генератор – этот тот прибор, который, собственно, и создает электричество за счет вращения лопастей. Его устройство – это более сложная тема, поэтому говорить о ней мы не будем.

ветряная электростанция в домашних условия

Как вы можете подумать, собрать такую ветряную электростанцию в домашних условия, если вы хоть что-то понимаете в технике, довольно не сложно, но. Оснастить ее специальным числовым программным управлением, которое будет упрощать использование, у вас получится вряд ли.

К тому же, не стоит забывать, что любое устройство, которое позволяет добывать электричество альтернативным путем, не может быть подключено к сети без соответствующего разрешения от местных органов, контролирующих деятельность данной отрасли. Мы очень сомневаемся, что вам позволят добывать ток при помощи несертифицированной продукции.

К тому же, стоит заметить, что установка данной техники требует больших физических усилий, и людей, которые имеют соответствующую квалификацию. Люди, у которых нет опыта в установке такой техники, могут привести ее в негодность за считанные секунды.

Берегите свои средства, и добывайте энергию правильно!

разбираемся в самых популярных мифах о ветряных электростанциях

Рынок ветроэнергетики во всем мире достаточно развит: совокупный объем установленных мощностей электростанций, использующих энергию ветра, по данным на конец 2018 года достиг 564 ГВт. Наибольший прирост показали Китай, США и Германия.

При правильном развертывании ветряные электростанции позволят достичь цели, установленной Парижским соглашением — не допустить повышения температуры более чем на 2 °C по сравнению с доиндустриальным уровнем в этом столетии. Ветряки, в отличие от угольных и газовых электростанций, не производят прямых выбросов в атмосферу и безопаснее для здоровья человека и окружающей среды, чем традиционная энергетика. Но это согласно официальной информации, однако у обывателей к создателям ветроэнергетических установок (ВЭУ) свои вопросы. Поэтому рассказываем о том, стоит ли опасаться альтернативной — ветряной — энергетики.

Миф 1: Шум от ветряных электростанций приводит к проблемам со здоровьем и просто мешает жить

Постоянный шум и свист появляется в ближайших к месту установки ветряной электростанции населенных пунктах — так звучит один из самых распространенных мифов о ветроэнергетике. На самом деле, ветряные электростанции не издают много шума — звуковое загрязнение, производимое лопастями и оборудованием ВЭУ, гораздо ниже, чем то, которому человек подвергается в городских условиях.

Согласно действующим в России санитарным нормам, эквивалентный уровень шума в населенных пунктах составляет 55 дБ в течение дня и 45 дБ ночью. На практике: в сельской местности, где шум в ночное время колеблется от 20 до 40 дБ, ветряк будет издавать звук мощностью 35–45 дБ. Но это значение справедливо только в радиусе 350 м от электростанции (если речь идет об одиноко стоящем ветряке) — далее уровень шума соответствует естественному фону.

Что касается различных заболеваний, начиная от бессонницы и заканчивая раком, то существует ряд исследований (например, проведенное Минздравом Канады), которые свидетельствуют о нулевом влиянии ветровых электростанций на здоровье человека.

В январе 2012 года Департамент охраны окружающей среды штата Массачусетс, США, опубликовал исследование о возможном воздействии ветряных электростанций на здоровье. В документе, составленном группой независимых врачей и инженеров, говорится о «недостаточном количестве доказательств того, что шум от ветряных турбин напрямую влияет на сон и вызывает проблемы со здоровьем или болезни».

Миф 2: Ветер — не слишком экологичный источник энергии

Энергия ветра снижает, а не увеличивает выработку углекислого газа в энергетическом секторе. Например, в Великобритании расчетное сокращение выбросов CO₂ по сравнению с ожидаемым объемом к 2020 году составило 15 млн т в год. Переход на альтернативные источники энергии — ветер, солнце и вода — а точнее, замена 61% традиционных электростанций на «зеленые» позволит сократить выбросы углекислого газа в Европе к 2030 году на 265 млн т.

Да, ветряные электростанции приводят к непрямым выбросам CO₂, но они составляют всего 11 г/кВт*ч. Для сравнения, тот же показатель у газовых электростанций составляет 490 г/кВтч, а у угольных — 820 г/кВтч.

Еще одна претензия к ветроэнергетике касается использования в ветрогенераторах редкоземельных металлов, таких как неодим. Это отчасти верно — в конструкции электродвигателя ветряной электростанции используются постоянные магниты из содержащие данный элемент, что увеличивает их эффективность в 10 раз в сравнении обычными магнитами. Однако, редкоземельные металлы широко используются в оборудовании и материалах, используемых в повседневной жизни — в мобильных телефонах, ноутбуках, автомобилях, самолётах в значительно большем объеме .

Миф 3: Ветряная энергетика не создает рабочих мест

Согласно прогнозам, к 2030 году в секторе возобновляемой энергетики будет задействовано около 24 млн человек — в 2017 году в нем уже работало около 8,8 млн сотрудников. Это сделает ветроэнергетику и ВИЭ в целом одним из драйверов развития мировой экономики. Только в Европе к 2030 году появится 90 тыс. дополнительных рабочих мест.

К тому же цены на нефть в последние несколько лет падают — это приводит к сокращению рабочих мест в нефтедобывающих компаниях. В 2015 году из-за снижения стоимости ископаемого топлива без работы осталось 250 тыс. человек.

Кроме того, игроки энергорынка активно сокращают сотрудников из-за растущей автоматизации труда. В 2018–2019 годах General Electric и Siemens по этой причине сократили несколько тысяч человек.

Миф 4: Ветряные электростанции — это дорого

Затраты на строительство ветряных электростанций ниже, чем при возведении традиционных электростанций, а стоимость энергии ветра постепенно снижается вместе с ростом объема новых ветропарков. По данным Bloomberg, стоимость строительства и эксплуатации ветряных электростанций за последние 10 лет по всему миру сократилась на 38%.

По данным правительства России, в 2015–2017 годах затраты на строительство ветряных электростанций упали на 33,6%. В июне 2019 года министр энергетики России Александр Новак заявил, что стоимость возведения ветряных электростанций сравнялась со строительством газотурбинных ТЭЦ при пересчете на расходы станции по производству 1 кВт*ч.

Согласно отчету компании Coface от 2018 года, ветроэнергетика быстро растет благодаря постоянному снижению цен на ветрогенераторы. При этом строятся они значительно быстрее традиционных.

Миф 5: Ветряные электростанции работают только 30% времени и не производят электричество в снег и штиль

Эффективность ветряных электростанций часто путают с коэффициентом использования установленной мощности (КИУМ). Современные ветряные турбины вырабатывают электроэнергию 80–85% времени, а объем производимой энергии зависит от скорости ветра. КИУМ для ветряных электростанций составляет 28–30%, а для обычной, тепловой или газотурбинной, электростанции — в среднем 50-60%.

Ветроэлектростанции работают даже при слабом ветре (2-3 м/с) и в дождь, а небольшой объем производимой в таких условиях энергии уравновешивается запасами энергии, произведенными при более благоприятных погодных условиях. Кроме того, ветряные электростанции могут распределять электроэнергию между сетями — в зависимости от того, где ветер дует сильнее, и работать в связке с солнечными, биоэнергетическими и газовыми электростанциями.

Все формы производства энергии оказывают влияние на окружающую среду, на живущих рядом с электростанциями людей и животных. Но влияние ветряной энергетики — одно из самых низких из существующих. Некоторые из описанных выше опасений содержат долю правды, однако ветроэнергетика — молодая технология, которая развивается быстрыми темпами и постоянно становится эффективнее и безопаснее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *