Электричество из атмосферы – ЗАПРЕТНЫЕ ЗНАНИЯ и ТЕХНОЛОГИИ. Использование атмосферного электричества в прошлом: geogen_mir — LiveJournal

Как я добывал электричество из АТМОСФЕРЫ

kreosan Как я добывал электричество из АТМОСФЕРЫ Автор:
05 июля 2015 21:41

Реально рабочий способ!
Для этого мне понадобились:
–Проволока 2 мм диаметром и длинной 180 метров.
–Пару проводов разного сечения, 5 метров должно хватить.

–Самодельный разрядник.
–Строчный трансформатор ТВС 110 ЛЦ (с лампового телевизора)
–Диодный мост с конденсаторами.

Источник:

Как я добывал электричество из АТМОСФЕРЫ

Авторский пост

Ссылки по теме:

Как я добывал электричество из АТМОСФЕРЫ

Понравился пост? Поддержи Фишки, нажми:

Новости партнёров

Использование атмосферного электричества в прошлом: sibved — LiveJournal

В архитектуре прошлого очень часто применялись конструкции в виде шпилей. Шпили широко распространились в архитектуре готических соборов. Официальное объяснение: отражая общее стремление того времени к увеличению высоты храмов. С одной стороны, высокие шпили делали собор более заметным издалека, с другой — символизировали устремлённость вверх, к Богу. Шпилями чаще всего завершали колокольни соборов.

Но каждый ли представляет, насколько сложна конструкция шпиля, изготовленная (а прежде спроектированная, рассчитанная) в прошлом? Это Вам не использование современных материалов с армированием… Т.е. чисто практично – это абсолютный абсурд. Сложно, дорого и непонятно зачем!

После просмотра вот этого ролика:


Ссылка
появились мысли, которые я постараюсь изложить. Не знаю, работающая ли предающая антенна на видео. Скорее всего, нет, и мы видим в действии атмосферное электричество с наложением модулированного сигнала от радиостанций. Кто помнит принципиальную схему детекторного радиоприемника (без батареек)?

Ведь он работает только на энергии радиоволн (так утверждает учебник по радиоэлектронике). Но для него нужна большая внешняя и высокая антенна и хорошее заземление. В детстве собирал подобное. Но так как вблизи не было мощных радиостанций, то прослушать удавалось лишь радиоточку соседнего леспромхоза.

Может быть, сигнал радиостанции – это лишь наложение на получаемую энергию с помощью этой нехитрой схемы?

Пойдем дальше. Может ли такое быть, что в совсем недалеком прошлом активно использовали физические принципы получения электричества и даже некие принципы радиосвязи? Фантастично? А давайте по-рассуждаем…


Собор Парижской Богоматери

Вот ответьте, зачем чисто практически здесь шпиль? Здание может выглядеть не хуже эстетически и без него? Думаю, может.
Что, если по аналогии с видео, шпили – это устройство получения электричества? На освещение, для отопления. Для связи.

Возможно, этими шпилями получали электричество, используя разность потенциалов на разных высотах. Говорят, что разность потенциалов между землей и нашим носом примерно 200 вольт, но из-за постоянной разрядки и ионизации воздуха вокруг, нас не бьет током.
Подробнее об этом:
Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли.
Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.
А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.
Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей.
Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.
Читать далее

Как видно, идея получения эл.энергии с разности потенциалов на разных высотах существует. Сама природа нам это регулярно подсказывает, когда мы видим молнии и слышим гром. Это происходит пробой диэлектрика (атмосферного воздуха). Тем более, мы мало знаем об атмосферном электричестве:


Спрайты. Их открыли всего несколько десятков лет назад.

Вот одна из попыток получения атмосферного электричества:


Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля. Для этой схемы нужен трансформатор – проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.
Совсем упрощенно – коронным разрядом на верхушке этого столба соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.
Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Ссылка

Так такое же уже было в прошлом! Это мы можем увидеть в кострукциях шпилей:

Сейчас мы лишь играем в это, до конца не понимая как это работает и как это по-настоящему можно использовать:

По поводу использования всего этого в храмах и церквях:


Вы видите вертикальные железные шины, уходящие к куполу? Заземление, защита от попадания молнии? Зачем несколько шин и почему они идут внутри стен?


Это же явно не армирование и не стягивание стен храма!


Неубедительные стяжки купола или армирование


Здесь шины идут и вертикально по стенам


«Сетка Фарадея» для прихожан. Экранирование?


Автор фотографий pavleg

Огромное количество примеров, фото, мыслей и комментариев можно прочесть в цикле статей Стальные связи и решетки храмов у pro_vladimir

Подобные «шины» есть не только в христианских храмах. Они встречаются даже в храмах в Бирме:


Это крепления для какого-то контура по периметру внутри храма в долине Боган, Бирма. Весь альбом


Более подробно про это удивительное место я расскажу в следующих постах.

Могут ли эти «шины» быть частью устройства, которое вырабатывало электричество и была еще функция для связи? Если да, то связи с кем? Может быть, Боги или Творец вещают на определенных частотах. Но мы не слышим их голоса, т.к. не умеем модулировать сигнал? Может быть, он не амплитудной модуляции, не фазовой, и даже не фазово-амплитудной? А древние хранители храмов знали принцип и, возможно, имели это устройство: алтарь, ковчег и т.д.? Просто догадки. Но символизм и культ – он остался только сейчас. Ранее все это было наделено смыслом и функционалом!

Еще одна мысль по поводу использования атмосферного электричества. Что, если храмы несли в себе функцию «лекаря». Известно, что если мембраны клеток будут иметь мощный отрицательных заряд, то внутрь не сможет проникнуть (даже присоединиться к клетке) ни один вирус. Внутри храмов шла «подпитка», поляризация организма. Человек состоит практически полностью из воды — его вода превращалась в живую, получая отрицательный ОВП (окислительно-восстановительный потенциал). Эритроциты разлеплялись, улучшался обмен веществ и т.д. А это сейчасть называется благостью… Физика и биохимия и никакой мистики и религиозного фанатизма!

Столпы


Может ли быть, что столпы на площадях – работали так же по принципу шпилей?


А сейчас это символизм и дань моде?


Смотря на это, сознание пытается ухватить незримый смысл во всем этом. Здания с колоннами полукругом, в центре – стела (электрод).

Вспоминается информация про Н.Тесла, про имена сотен ученых XIX-XXвв., которые занимались изучением эфира. Может быть, способы дарового получения электроэнергии они лишь пытались переоткрыть? Все было известно задолго до поворота науки на рельсы теорий относительности, современных электродинамики и электростатики.
Еще один пример из современности. Знаете, что на электрических подстанциях с помощью различных эл.устройств борются с резонансом, который возникает в ЛЭП? Эта область работы электрических схем в режимах резонанса вообще не изучается (может быть, только энтузиастами). Читал, что на этом основана идея Н.Теслы по извлечению электроэнергии «из воздуха». Энергии вокруг нас безгранично, нужно только найти способ взять себе необходимую часть простыми устройствами. Но наш мир погружается в энергетические монополии, строя АЭС, ГЭС, ТЭЦ. И жителям внушаются идеи, что энергетика может быть только такая. А предки, наверное, над нами смеются…

Атмосферное электричество — Википедия

Материал из Википедии — свободной энциклопедии

Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое

[что?]. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином[1], экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.

Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Атмосферное электричество своими руками: схема, видео, как получить

Многие ученые интересуются атмосферным электричеством. Историки находят на дошедших до нас картинах, гравюрах, а также архитектурных сооружениях следы того, что в не таком далеком прошлом люди им пользовались. Представители технических профессий пытаются объяснить, как и на каком принципе работали эти установки по добыче электричества из атмосферы. Но дальше настольных установок с минимальной мощностью разработки не пошли, а по их убеждениям, этого атмосферного электричества должно с избытком хватать на все нужды всего человечества.

Ответ на эту проблему кроется как раз в концентрации самого этого электричества в атмосфере. Атмосферное электричество прошлого было другим. Примерно за 450 лет наша Земля не только изменила наклон своей оси и приобрела огромный объем соленой воды, но также и потеряла концентрацию атмосферного давления. А так как все взаимозависимо, концентрация атмосферного электричества напрямую зависит от концентрации атмосферы, и сегодня его едва хватает на периодические пробои.

Атмосферное электричество в 18 веке

Первым ученым, который решил серьезно изучать молнию, а заодно и защиту от нее, стал выдающийся американский ученый-дипломат Бенджамин Франклин. В 1750 Франклин опубликовал работу, в которой предложил провести эксперимент – запустить воздушного змея во время грозы. В распоряжении Франклина были довольно простые средства:

  1. Обычный воздушный змей, на крестовине которого был прикреплен железный провод.
  2. Бечевка, с привязанной к ней шелковой лентой и железным ключом.

Он запускал его во время грозы и получил два удивительных результата:

  • Доказал электрическую природу молнии, потому что шелковые края ленты начали топорщиться, из ключа вылетали искры и электризовался железный провод.
  • Впервые открыл громоотвод.

В 1753 году аналогичный эксперимент с молнией проводил Георг Рихман в Санкт-Петербурге. Он стоял на расстоянии всего 30 см от своего прибора, который назывался электрическим указателем и был прототипом электроскопа. Во время грозы возле прибора возник бледно-голубой шар и направился к голове ученого. Прозвучал громкий хлопок, и Рихман упал замертво. Ассистентом ученого в тот день был Соколов, который впоследствии изобразил схему, представленную ниже.

Опыт Рихмана с атмосферным электричеством

Со времен Франклина и Рихмана приборы для опытов стали более серьезными, но молния продолжает вызывать много вопросов.

Бесплатная энергия из атмосферного электричества

Сейчас существует всего два способа, с помощью которых можно добыть электричество из воздуха – с помощью ветрогенераторов и с помощью полей, которые пронизывают атмосферу. И если ветряные мельницы видели уже многие и примерно представляют, как они работают, и откуда берется энергия, то второй тип приборов вызывает множество вопросов.

Интересные открытия и машины принадлежат двум изобретателям – Джону Серлу и Сергею Годину. И большая часть экспериментов, которые проводят любители у себя дома, основывается на одной из двух схем. Как же этим двум людям удалось получить энергию из воздуха?

Джон Серл утверждает, что ему удалось создать вечный двигатель. В центр своей конструкции он поместил мощный многополюсный магнит, а вокруг него намагниченные ролики. Под действием электромагнитных сил ролики катятся, стараясь обрести стабильное положение, однако центральный магнит устроен так, что ролики никогда этого положения не достигают. Конечно, рано или поздно такая конструкция все равно должна остановиться, если не придумать способ подпитывать ее энергией извне. Во время одного из испытаний машина Серла проработала без остановки два месяца. Учёный утверждал, что ему удалось запатентовать способ подпитки своего прибора прямо от энергии вселенной, которая, как он считал, содержится в каждом кубическом сантиметре пространства. В это трудно поверить, но первую версию своего двигателя Джон Серл запатентовал еще в 1946 году.

Генератор Серла

Будучи собранным, это устройство приходило в самовращение и вырабатывало электрическую мощность. На Серла мгновенно посыпались заказы от желающих приобрести такую машину, способную черпать энергию из воздуха, однако разбогатеть на своем изобретении ученый не успел. Оборудование из лаборатории вывезли в неизвестном направлении, а его самого посадили в тюрьму по обвинению в краже электричества. Независимый британский суд просто не смог поверить, что всю электроэнергию для освещения своего дома Джон Серл производил сам.

Другой аппарат, внешне похожий на летающую тарелку, был обнаружен в подмосковном дачном поселке, и это первый в мире генератор электричества, которому не требуется топливо. Его изобретатель Сергей Годин уверен, что такого агрегата вполне хватит, чтобы обеспечить электричеством всех своих соседей по даче. Такое устройство, будучи установлено в подвале дома, полностью бы обеспечило большой современный жилой дом электричеством. Физик уверен, что на земле существует субстанция, до сих пор неизвестная современным учёным. Сергей Годин называет это явление эфиром.

Атмосферное электричество своими руками

По схеме, расположенной ниже, можно провести опыт посерьезней, и повторить эксперимент самого Теслы, собрав миниатюрную катушку.

Саму катушку можно намотать корпус от маркера (диаметр маркера около 25 мм), количество витков должно быть в диапазоне от 700 до 1000, провод с сечением 0,14 мм. Вторичная обмотка должна состоять из 5 витков провода диаметром 1,5 мм. Для первичной обмотки потребуется около 50 м провода. Активный компонент в этом устройстве – это транзистор 2n2222, также имеется резистор и, в общем-то,  это все компоненты, которые входят в эту катушку.

Трансформатор Теслы

Несмотря на то, что катушка получится маленькой, она все равно сможет выдавать небольшую искру, если вы дотронетесь до нее пальцем, зажечь спичку или заставить лампочку гореть. Наматывать проволоку можно на любой корпус, главное, чтобы в нем не было металлических частей. Не повторяйте ошибку, которую совершают многие. Если хотите сделать ее автономно не засовывайте батарею внутрь корпуса, если внутри находится транзистор, катушка работает нормально и почти не греется, но если бы там была батарея, то магнитное поле, которое создает сам трансформатор Теслы, будет влиять на батарею, и вы выведете из строя транзистор. Чем аккуратнее получится у вас наматывать витки, тем лучше будет результат, а для того, чтобы катушка сохранилась у вас подольше, можно покрыть ее бесцветным лаком для ногтей.

Более серьезные эксперименты требуют больших денежных, временных и силовых затрат, но даже на схеме выглядят впечатляюще.

Наверняка у вас на кухне есть вентиляционный канал, который иногда работает даже в выключенном состоянии, от сквозняка. Его можно использовать для того, чтобы бесплатно осветить комнату. Сделать это можно из подручных материалов, все подробно рассказано в видео:

Схема простой электростанции:

Схема атмосферной электростанции

Читайте также:

Добываем электричество из воздуха в промышленных масштабах

Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.

В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы. 

Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».

Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме), то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.

Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии. 

Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.

Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы. 

Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля. 

Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.

Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

<

p align=»center»>

Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.

Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.

Бесплатное электричество из воздуха своими руками: работающие схемы и проекты

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Статическое электричество из воздуха на службе вашего быта

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.

Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

  • Доступность реализации в домашних условиях;
  • Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Электричество из воздуха: схемы, прошедшие проверку качества

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.

Схема получения электричества из воздуха выглядит следующим образом:

  • Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Схема получения электричества из воздуха по проекту Стивена Марка

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

Использование атмосферного электричества в прошлом. Часть 3: sibved — LiveJournal

Предыдущие части:
Часть 1
Часть 2

Продолжим рассматривать примеры странных конструкций на куполах и скорее лишних, чем естественных металлических связей в строениях. А так же, на основе современной информации о достижениях кулибиных в наше время, попытаемся все это связать в единую картину.


В начале предлагаю запомнить, как выглядит странная конструкция на крыше башни. Журнал «Всемирная иллюстрация» конца 19в.


Упоминание про использование электричества из атмосферы в конце 19в.


Тоже непонятные современному человеку конструкции на крыше здания


Может быть, здесь не снимали конструкцию с времен постройки и это еще рабочая установка?


Храмы без крестов

А сейчас, чтобы обосновать свои предположения. Предлагаю просмотреть вот этот патент:

УСТРОЙСТВО ДЛЯ ИСПОЛЬЗОВАНИЯ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА, включающее приемный блок с антенным элементом, соединенным токопроводом с разрядным элементом, отличающееся тем, что приемный блок содержит выполненную ниже антенного элемента систему ориентированных вертикально и сообщающихся друг с другом проводящих куполообразных трибоэлементов, к кромке нижнего из которых присоединен игольчатый электрод разрядного элемента, а другой его электрод выполнен в виде заземленного металлического диска.

Камера конденсатора 1 ограничена корпусом 2, по конфигурации выполненным в виде тела вращения с конической верхней частью. Корпус изготовлен из диэлектрика (бетон, известняк). На вершине корпуса 2 размещен нижний металлический куполообразный трибоэлемент 3, имеющий длинный металлический «нос» 4, на котором жестко закреплены последовательно (посредством металлического «носа») соединенные между собой куполообразные трибоэлементы, полости которых и камеры сообщены. На верхнем куполообразном трибоэлементе закреплена крестообразная антенна 6, от кромки нижнего куполообразного трибоэлемента вертикально опускается игла 10. На основании камеры 7 расположен нижний дискообразный металлический электрод 8, имеющий заземление 9.

Устройство работает следующим образом.
Куполообразные трибоэлементы, расположенные вертикально и соединенные с антенной крестообразной формы, позволяют при минимальном объеме создать максимальную поверхность для осуществления трибоэлектризации различными атмосферными факторами аналогично электризации корпусов летательных аппаратов. В результате возникает разница потенциалов между верхним электрически заряженным игольчатым электродом и нижним электродом.
В период метелей, дождя, гроз этот процесс (накопление электрических зарядов) значительно усиливается за счет использования развитой поверхности куполов.
Нарастание напряжения между электродами также зависит и от высоты подъема верхнего электрода (с антенной и куполообразным трибоэлементами), так как Ez вертикальная составляющая электрического поля Земли составляет до 200 В/м от поверхности Земли, увеличиваясь в период возмущений (дождь, метель, гроза). Игла позволяет максимально сконцентрировать напряженность поля для пробоя разрядного промежутка.

Источник и полное описание

Вы не находите, что схема к патенту очень напоминает купола в христианских храмах, кресты в виде антенны. А так же есть аналогия с металлическими полами в них:


Пример полов в храме из металлических плит. Это же огромные затраты по тем временам? Значит был смысл!


Источник фотографий


Вот свисающие из под купола металлические связи в храме в Екатеринбурге, токопроводы – все как по вышепоказанному патенту. Но скорее всего, древние строители сотни лет владели этой технологией. А почему молчат священнослужители? Неужели, никто из них не в курсе, для чего все эти металлические токопроводящие элементы?


Еще пример свисающего токопровода. Церковь Знамения Пресвятой Богородицы в Усадьбе Дубровице (Подольск)


Церковь эта не похожа на христианские и построена из белого камня, а не из кирпича


Тоже из под купола свисает металлическая «цепь». А люстру можно расценить как «Люстра Чижевского» — ионизатор. О благотворном воздействии на организм ионов из атмосферы существует множество научных работ. Все дело в отрицательных зарядах, которые с вдыхаемым воздухом передастся клеткам. А клеткам просто необходим отрицательный заряд их мембранам. Тогда и обменные процессы идут хорошо и вирусы не могут проникнуть внутрь клетки и разрушить ее.


Андреевская церковь на Украине. Эти примеры можно продолжать

Мне попадались старые фотографии из других храмов, где этих токопроводов свисает из под купола десятки. Но понять что это тогда я не мог и не сохранил ссылки на фотографии.


Одна из старых фотографий. Больше похоже на шинопроводы, чем на армирование и стягивание стен.


Шинопроводы в стенах разрушенной церкви.


Источник


Почему купола христианских церквей имеют шарообразную форму и покрыты золотом? Не с точки зрения символизма, а с точки зрения физики?


Каркас у куполов каменных церквей тоже металлический

Что бы арматура выполняла свои функции – она не должна быть гладкой. Максимум – это стяжка периметра стен, но не армирование. Но я склоняюсь к мысли (как и pro_vladimir и dmitrijan), что это шинопроводы.

Источник

Вся эта конструкция храмов напоминает Лейденскую банку, первый простой конденсатор:


Чем не купола храмов?


Может быть, не зря храмы ставили на источниках, родниках или рядом?

Все больше склоняюсь к мысли, что эти сооружения, храмы, ранее к религии не имели отношения. Это был оздоровительный комплекс, работающий на получение статического электричества из атмосферы. В таком электростатическом поле человек за несколько сеансов мог хорошо поправить здоровье, излечиться. Это отдельная тема, имеющая мощную базу по физиологии клетки. Без отрицательного потенциала на мембране клетка не может нормально обмениваться с межклеточной жидкостью веществами. И вирусы легко проникают в нее при слабом потенциале. Еще эритроциты слипаются от недостатка заряда, гроздья эритроцитов не доносят кислород до клеток по капиллярам. На этом основан процесс опьянения при попадании в кровь этилового спирта. Можно выпить живой воды с сильным отрицательным окислительно-восстановительным потенциалом (ОВП). А можно было прийти в такой храм. Цилиндры фараона – тоже из этой же темы.

Есть современные кулибины, кто что-то понял и начинает конструировать приборы, основанные больше на статике, чем на силовых токах. Одним из таких ученых-самоучек, является Александр Мишин:

Продолжение в этом веб-семинаре А.Мишина: Вихревая медицина — использование статического электричества при лечении многих заболеваний:

Продолжим: вот изобретение школьника из Украины


Видео с юным изобретателем (на украинском).

Принцип работы, скорее всего, как и у капельницы Кельвина:

Хороший разбор этой технологии

Иллюминация Кремля:


Коронационные торжества в Кремле по случаю коронации Александра I в 1801 г. Может быть, в начале 19в. использовали эти принципы получения электричества а не гальванические элементы?


В августе 1856 г. в Москве торжественно проходила коронация императора Александра II. Густав Шварц. Иллюминация Воскресенских ворот и Кремля в 1856 г.


Константин Маковский. Иллюминация Москвы в 1883 г. по случаю коронации Александра III

Источник


Санкт-Петербург «Иллюминация на набережной Мойки». Акварель В.С. Садовникова. 1856 г. Электрическая подсветка Юсуповского Дворца.

Вся эта иллюминация смотрит на нас с картин до официального изобретения Лодыгиным лампы накаливания, а тем более до промышленного производства их на основе вольфрамовой нагревательной спирали в конце 19в.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *