Электрическое сопротивление тела человека
Значение тока через тело человека сильно влияет на тяжесть электротравм. В свою очередь сам ток согласно закону Ома определяется сопротивлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.
Сопротивление тела человека является комплексной переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, окружающей среды, центральной нервной системы, физиологических факторов. Электрическое сопротивление различных тканей тела человека не одинаково: кожа, кости, сухожилия и хрящи имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа, пот и особенно нервные пути, спинной и головной мозг – малое сопротивление.
Электрическое сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определяется сопротивлением кожи. Кожа состоит из двух основных слоёв: наружного, называемого эпидермисом, и внутреннего, называемого дермой. Эпидермис можно условно представить состоящим из мёртвых ороговевших клеток, он лишён кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя колеблется в пределах 0,05 – 0,2 мм. В сухом и незагрязнённом состоянии его можно рассматривать как диэлектрик, обладающий большим удельным сопротивлением. Внутренний слой кожи содержит кровеносные и лимфатические сосуды, нервные окончания, корни волос, а также потовые и сальные железы. Дерма обладает малым сопротивлением току.
Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути протекания тока. Основным фактором, определяющим величину полного сопротивления тела человека, является состояние кожного покрова в цепи тока. При сухой, чистой и неповреждённой коже сопротивление тела человека, измеренное при напряжении до 15 В, составляет 3…100 кОм. Если на участке кожи, где прикладываются электроды, удалить эпидермис, сопротивление тела составит 500…700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составляет 300…500 Ом.
Электрическое сопротивление тела человека зависит от ряда факторов. Его могут снизить повреждения рогового слоя, увлажнение кожи, воздействие теплового облучения, повышенная температура окружающей среды.
Сопротивление наружного слоя кожи Rн уменьшается с увеличением площади электродов и зависит от места приложения электродов, что объясняется различной толщиной эпидермиса, неравномерным распределением потовых желёз на поверхности тела, неодинаковой степенью наполнения кровью сосудов кожи. Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления, которое при напряжениях 200 В и выше приближается к величине сопротивления внутренних тканей тела (Rвн).
При оценке опасности поражения электрическим током и расчёте защитных мер в электроустановках сопротивление тела человека (
Н
Рис. 4.1. Эквивалентная схема электрического
Сопротивления тела человека
а рис. 4.1 приведён упрощённый вариант эквивалентной схемы цепи протекания электрического тока через тело человека, где обозначено: 1 – электроды; 2 – эпидермис; 3 – внутренние ткани и органы тела человека, включая дерму; Íh – ток, протекающий через тело человека;Из схемы на рис. 4.1 следует, что комплексное сопротивление тела человека определяется соотношением:
где Xн = 1/ j Cн – величина ёмкостной составляющей сопротивления тела человека;
f , f – частота действующего тока.
Для практических применений используют модуль комплексного сопротивления тела человека:
Оглавление
Электрическое сопротивление тела человека.
Кожа состоит из двух основных слоёв: наружного, называемого эпидермисом, и внутреннего, являющегося собственно кожей и носящего название дермы. Наружный слой кожи – эпидермис, в своё очередь имеет несколько слоёв, из которых самый верхний называется роговым и состоит из многих рядов ороговевших клеток.
В сухом и незагрязнённом виде роговой слой можно рассматривать как диэлектрик. Другие слои эпидермиса (ростковый слой) в несколько раз тоньше рогового слоя и обладает значительно меньшим сопротивлением.
Внутренний слой кожи – дерма является живой тканью. Электрическое сопротивление дермы невелико.
Сопротивление тела человека при сухой, чистой и неповреждённой коже (измеренное при напряжении до 15-20 В) колеблется в пределах примерно от 3000 до 100 000 Ом, а иногда и более. Сопротивление тела человека, то есть сопротивление между двумя электродами, наложенными на поверхность тела, можно условно считать состоящим из трёх последовательно включённых сопротивлений: двух одинаковых наружных слоя кожи (эпидермиса), составляющих в совокупности так называемое наружное сопротивление тела человека, и одного, называемого внутренним сопротивлением тела, включающим в себя два сопротивления внутреннего слоя кожи (дермы) и сопротивление внутренних тканей тела.
Наружное сопротивление тела обладает не только активным сопротивлением, но и ёмкостным, так как в месте прикосновения электродов к телу человека образуются как бы конденсаторы, обкладками которых являются электроды и хорошо проводящие токи ткани тела человека, лежащие под наружным слоем кожи, а диэлектриком – наружный слой (эпидермис). Внутреннее сопротивление тела считается чисто активным.
Обычно при переменном токе промышленной частоты учитывают лишь активное сопротивление тела человека и принимают его равным 1000 Ом. В действительности это сопротивление – величина переменная, имеющая нелинейную зависимость от множества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды.
Состояние кожи– очень сильно сказывается на величине сопротивления тела человека. Так, повреждение рогового слоя, в том числе порезы, царапины, ссадины и другие микротравмы, могут снизить полное сопротивление тела до значения, близкого к величине внутреннего сопротивления, что безусловно увеличивает опасность поражения человека током. Такое же влияние оказывает и увлажнение кожи водой или за счёт пота, а также загрязнение кожи проводящей пылью или грязью.
Поскольку у одного итого же человека сопротивление кожи неодинаково на разных участках тела, то на сопротивление в целом сказывается место приложения контактов, а также их площадь. Величина тока и длительность его прохождения через тело оказывают непосредственное влияние на полное сопротивление: с ростом тока и времени его прохождения сопротивление падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению её сосудов, а следовательно к усилению снабжения этого участка кровью и увеличению потовыделения.
Повышение напряжения, приложенного к телу человека, вызывает уменьшение в десятки раз сопротивления кожи, а следовательно, и полного сопротивления тела человека, приближающегося в пределе к своему наименьшему значению – 300-500 Ом.
Наличие ёмкостной составляющей в сопротивлении тела человека обусловливает влияние рода и частоты тока на величину полного сопротивления. Так, при частоте 10-20 кГц и более можно считать, что наружный слой кожи практически утрачивает сопротивление электрическому току, и полное сопротивление кожи состоит только из внутреннего сопротивления тела человека (то есть из сопротивлений дермы и внутренних тканей тела).
Сопротивление тела человека | Режимщик
Сопротивление тела человека
Электрическое сопротивление различных тканей тела человека не одинаково. Например, при токе частотой 50 Гц удельное сопротивление равно: кости – 107 Ом∙м, кожа сухая – 105 Ом∙м, крови – 1,7 Ом∙м. При сухой, чистой и неповрежденной коже сопротивление тела, измеренное, при напряжении 15-20 В переменного тока (50 Гц), колеблется в пределах от 1 до 10 кОм, а иногда и в более широких пределах.
Сопротивление кожи, а следовательно сопротивление тела в целом резко уменьшается при повреждении ее рогового слоя, наличие влаги на ее поверхности, интенсивном потовыделении и загрязнении.
Электрическое сопротивление тела человека зависит так же от места приложения электродов к телу, значений тока, проходящего через человека, и приложенного к телу напряжения, рода и частоты тока, площади электродов, длительности прохождения тока через человека и некоторых других факторов. Увеличение тока приводит к снижению сопротивления соответствующих участков кожи, за счет местного нагрева кожи и действия на центральную нервную систему (усиливается приток крови, повышается потоотделение). С ростом напряжения сопротивление тела уменьшается в десятки раз. При больших напряжениях приближается к наименьшему пределу 300 Ом. В России в качестве расчетных значений сопротивление человека равно 1000 Ом при напряжении, приложенном к телу, равное 50 В и выше и сопротивление человека равное 6000 Ом при приложенном напряжении 36 В. Опыты показывают, что сопротивление тела человека постоянному току больше, чем переменному любой частоты. Разница в значениях сопротивлений постоянному и переменному (50 Гц) током особенно велико при малых напряжениях – до 10 В. С ростом приложенного напряжения эта разница уменьшается и начиная с 40-80 В сопротивление тела человека как постоянному, так и переменному току промышленной частоты становится практически одинаковым.
На значение сопротивления тела человека влияют и другие факторы, хотя в значительно меньшей степени. Пол и возраст. У женщин, как правило, сопротивление тела меньше, чем у мужчин, а у детей – меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Объясняется это, очевидно, тем, что у одних людей кожа тоньше и нежнее, у других — толще и грубее.
Физическое раздражение снижает сопротивление тела на 20-25%.
Повышенная температура окружающего воздуха (30-450 С) или тепловое облучение человека, вызывает некоторое понижение сопротивление тела.
Принцип работы трансформатора отбора напряжения в шкафу отбора напряжения
Обслуживание устройств АПВ
Назначение и область применения устройства автоматического повторного включения
Электрическое сопротивление тела человека
Электрическое сопротивление тела человека
Тело человека является проводником электрического тока, при этом разные ткани тела оказывают току разное сопротивление. Наибольшим сопротивлением обладает коже: её уникальное объемное сопротивление достигает 3*105…2*106 Ом*см. Другие ткани, в том числе мышечная ткань, кровь и особенно спинной и головной мозг имеют малое сопротивление. Следовательно, сопротивление тела человека определеятся главным образом сопротивлением кожи.
Кожа состоит из двух основных слоев: наружного – эпидермиса и внутреннего – дермы.
Наружный слой (эпидермис) имеет несколько слоев, из которых самый верхний называют роговым. Роговый слой состоит из многих рядов омертвевших ороговевших клеток; он лишен кровеносных сосудов и нервов и является слоем неживой ткани, покрывающей тело человека.
Роговый слой имеет толщину на разных участках тела от 0,05 до 0,2 мм; на ладонях и подошвах, утолщаясь, он может образовывать мозоли, т.е. иметь значительную толщину.
Роговый слой плохо проводит тепло и электричество. В сухом и незагрязненном состоянии роговый слой можно рассматривать как диэлектрик: его удельное объемное сопротивление составляет 107…108 Ом*см.
Другие слои эпидермиса, лежащие под роговым слоем и образованные в основном из живых клеток, можно условно объединить в один так называемый ростковый слой. Обычно он в несколько раз тоньше рогового слоя и обладает значительно меньшим сопротивлением.
Внутренний слой (дерма) является живой тканью. В нем находятся кровеносные сосуды, нервы, корни волос, потовый и сальные железы, выводные протоки которых выходят на поверхность кожи, пронизывая эпидермис. Электрическое сопротивление дермы не велико.
Сопротивление тела человека при сухой, чистой и неповрежденной коже, измеренное при напряжении 15…20В, колеблется в пределах от 3 до 100 кОм. Если на участках кожи, где прикладываются электроды, соскоблить роговый слой, сопротивление тела упадет до 1…5 кОм, а при удалении всего верхнего слоя (эпидермиса) – до 0,5…0,7 кОм. Если же под электродами полностью удалить кожу, то сопротивление составить 0,3…0,5 кОм. Рисунок 1. Схема измерения сопротивления тела человека
Сопротивление тела человека (рисунок 1.), т.е. сопротивление между электродами 1, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух одинаковых сопротивлений эпидермиса Rн (сопротивления между электродом 1, роговым слоем 2, ростковым слоем 3 и дермой 4) и внутреннего сопротивления Rв, которое включает в себя два сопротивления дермы 4 и сопротивление внутренних тканей тела 5.
Рисунок 2. Эквивалентная схема сопротивления тела человека
Наружное сопротивление тела обладает не только активной Rн, но и емкостной Сн составляющей (рисунок 2). Одной обкладкой конденсатора Сн являются токоведущие части 1, второй – дерма 4, а диэлектриком эпидермис 2.
Согласно приведенной эквивалентной схеме полное сопротивление тела человека будет равно
Так как значение емкости Сн мало, то для токов промышленной частоты сопротивление тела человека будет равно
Rz=Rв+2*Rн
Сопротивление тела человека зависит от приложенного напряжения, значения и частоты тока, времени прохождения и состояния кожи.
С увеличением приложенного напряжения сопротивление тела человека Rz уменьшается, что объясняется электрическим пробоем рогового слоя.
С увеличением тока и времени его прохождения через тело человека Rz уменьшается, так как усиливается местный нагрев кожи, что приводит к расширению ее сосудов и увеличению потовыделения.
Так как сопротивление кожи на различных участках тела неодинаково, то сопротивление зависит от площади и плотности контактов и места их приложения.
Переменный ток представляет большую опасность, чем постоянный ток такого же значения. С увеличением частоты тока сопротивление тела человека за счет емкостной составляющей уменьшается и при f=(10…20) кГц можно считать, что наружный слой кожи не имеет сопротивления электрическому току.
Сопротивление тела человека в сильной степени зависит от состояния кожи. Порезы, царапины, ссадины, увлажнения и потовыделение, загрязнение токопроводящими веществами могут уменьшать сопротивление кожи Rн.
Поэтому при расчетах сопротивление тела человека Rч току промышленной частоты считают неизменным и равным 1000 Ом.
Значение сопротивления человеческого тела как проводника электрического тока
Если человек по случайности притронется к проводам или другим элементам, по которым пропущен электрический ток, его организм тоже начинает проводить электричество, что приводит к различным электротравмам. Их тяжесть зависит от множества параметров, как электросети, так и самого человеческого тела. Наши внутренности большей частью состоят из влаги (около 70 % всей массы), поэтому перенос электрических заряженных частиц происходит не электронами (как в металлах), а ионами, поэтому наше тело считается особенным видом проводника, – оно обладает переменным сопротивлением и считается электролитом.
Человеческое тело является проводником электротока
Электрическое сопротивление тела человека
При прохождении электричества через органы пострадавшего по замкнутой цепи, по физическим законам, тело начинает оказывать сопротивление.
Поскольку электропроводимость человеческих тканей определяется очень сложными биохимическими и биофизическими составляющими, которые характерны только для живой материи, то сопротивление электрическому току становится величиной переменной. Оно зависит от разных причин и является неодинаковой величиной для разных частей тела.
Так как первым, с чем сталкивается разряд тока на теле человека, является его кожа, то общее сопротивление человека в большей степени зависит от ее сопротивляемости. Охватывающий все участки тела покров состоит из двух слоев: внешнего, расположенного на глубине 0,07-0,12 мм, – эпидермиса (представляет собой пять слоев эпителия), и внутреннего – дермы, толщина которого около 2 мм. Верхушечный ороговевший слой эпидермиса не содержит капилляров, отчего он показывает наивысшие показатели сопротивляемости. В то же время другие слои внешнего и внутреннего кожных прослоек имеют намного более скромное сопротивление, поэтому именно роговая прослойка определяет сопротивляемость всего кожного покрова.
Общее сопротивление, которое оказывает электрическому току наш организм, складывается из двух сопротивлений эпидермического слоя (с каждой из сторон тела) плюс сопротивления собственно дермы и внутренностей.
Общее сопротивление составляется из сопротивления эпидермиса (2) и внутреннего сопротивления (3)
При этом сопротивление эпидермиса, в свою очередь, состоит из активного сопротивления и емкостного (накопительного), накладывающихся друг на друга. Оно определяется площадью электродов, величиной напряжения и частоты тока и в некоторых случаях может превышать десятки тыс. Ом. Величина внутреннего сопротивления тела является активноц и зависит от длины и поперечного среза зоны, по которому проходит электричество, а также от удельного объемного сопротивления внутренних органов человека и составляет в среднем пятьсот- семьсот Ом.
Значение полного сопротивления тел людей
Когда ставится задача определить электрическое сопротивление человеческого тела при переменном токе с пятидесятигерцовой частотой для анализа опасности электротравмы, оно принимается равным 1 тыс. Ом. Физиками выявлена зависимость общего сопротивления от следующих факторов:
- состояние кожных покровов;
- места входа электротока в тело человека;
- значений тока и напряжения;
- длительности воздействия электричества на организм;
- параметров окружающей среды на момент прохождения электротока.
Состояние кожи
Очень резко падает электросопротивляемость верхнего слоя кожи при нарушении его целостности: наличие царапин, ссадин, ожогов, порезов, прыщей понижают сопротивление до внутреннего (которое максимально достигает всего семи сотен Ом).
Механические повреждения кожи уменьшают электросопротивляемость тела
Также повышает риск электротравмы и увеличивает степень ее тяжести влажная кожа, поскольку она имеет высокую удельную сопротивляемость току.
Обратите внимание! Соленая влага (как правило, пот) делает сухие ранее руки электропроводимыми на 50 процентов больше, пресная влага (дождь, другие жидкости) – на двадцать-тридцать процентов. Вода удаляет с верхнего слоя кожи жиры, минералы и кожное сало, что значительно снижает способность сопротивляться току.
Если происходит постоянное длительное по времени насыщение кожи влагой, роговой слой становится пористым и практически перестает показывать сопротивление.
Важно! При работе незащищенными от влаги руками с источниками электрического тока повышается опасность и тяжесть электротравмы при случайном попадании оператора под напряжение.
Пот, выделяемый потовыми железами дермического слоя кожи, очень хорошо проводит электричество, поэтому вспотевший работник становится открыт угрозе прохождения электротока при минимальном сопротивлении тела, что значительно отягощает последствия.
Грязная кожа (особенно металлические микрочастицы, угольные пылинки и т.д.) делает тело человека более электропроводимым.
Дополнительная информация. Работники, имеющие дело с загрязнением рук токопроводящими покрытиями (шахтеры, токари, сверлильщики металла), должны большое внимание уделять чистоте кожных покровов для защиты от поражения электрическим током.
Место приложения электротока
Зависимость сопротивления кожного покрова различается на разных зонах тела даже у одного индивида. Это происходит из-за неравномерной толщины верхнего слоя эпидермиса, различного количества потовых желез и разной интенсивности кровотока по венам и капиллярам у поверхности кожи. Самый низкий уровень электросопротивления наблюдается в районе лица, шеи, тыльной стороны предплечий и кистей, подмышек.
Значения показателей тока
При увеличении мощности тока кожа в месте входа сильнее нагревается, что вызывает рефлекторный приток крови к этому району и, как следствие, электросопротивление значительно падает.
Согласно проводимым опытам, постоянный ток, проходящий через человеческое тело, вызывает большее сопротивление, чем переменный, независимо от его частоты.
Переменный ток встречает наименьшее сопротивление тела человека
Чем длительнее воздействие электротока на кожу, тем быстрее падает ее сопротивление. Это объясняется также увеличением кровоснабжения, а также усиленным потоотделением в участке входа тока, и, как следствие, дополнительным увлажнением – в среднем за одну-две минуты сопротивляемость кожи падает на сорок процентов.
Физиологические факторы и показатели окружающей среды
Эта группа факторов не так существенна, как предыдущие, но и они оказывают влияние на величину сопротивления электроудару.
Так, женщины демонстрируют меньшее сопротивление, чем мужчины, а маленькие дети – меньше, чем возрастные люди, что объясняется различной толщиной кожи.
Высокая температура и влажность окружающей (и рабочей) среды значительно увеличивает тяжесть поражения током за счет снижения сопротивления тела.
Различные болезни (нервные, сердечные, бронхо-легочные), а также курение также ухудшают возможность человека сопротивляться воздействию электрического тока.
Любители подымить имеют гораздо меньшее электросопротивление
Тело человека хоть и является проводником электричества, но обладает определенной сопротивляемостью электротоку, зависящей от многих причин и факторов. Она изменяется в широких пределах, но в технике безопасности принимается среднее значение сопротивления в одну тыс. Ом.
Видео
Оцените статью:§ 38. Электрическое сопротивление тела человека
Прикосновение человека к токоведущим частям электроустановки вызывает протекание через него тока, сила которого и соответственно исход поражения зависят от напряжения электроустановки и электрического сопротивления тела человека.
Основным фактором, определяющим сопротивление тела человека, является кожа, ее роговой наружный слой, в котором нет кровеносных сосудов и который обладает очень большим удельным сопротивлением (около 10б Ом- см). Этот плохо проводящий ток наружный слой кожи, прилегающий к электроду, и внутренняя ткань, находящаяся под этим слоем, как бы образуют обкладки конденсатора емкостью С с сопротивлением изоляции г„. Сопротивление гн и емкость С зависят от площади электродов (площадь контакта), с ростом последней сопротивление гн уменьшается, а емкость С увеличивается. Поэтому увеличение площади контакта приводит к уменьшению полного сопротивления наружного слоя кожи.
На участке между двумя электродами общее электрическое сопротивление тела человека состоит из сопротивлений двух наружных слоев кожи, касающихся электродов, и внутреннего сопротивления гв остальной части тела. Опыты показали, что внутреннее сопротивление тела человека можно рассматривать как чисто активное. Таким образом, для пути тока «рука — рука» общее электрическое сопротивление тела может быть представлено схемой замещения, приведенной на рис. 19. Это сопротивление включает в себя последовательное соединение двух наружных сопротивлений кожи рук и внутреннего сопротивления тела. С увеличением частоты тока / из-за уменьшения реактивного сопротивления наружного слоя кожи хс=//соС, где ю = 2л/: — угловая частота, сопротивление человека уменьшается и при больших частотах (более 10 кГц) практически становится равным внутреннему сопротивлению гъ.
Между током, протекающим через тело человека, и вызвавшим его напряжением существует нелинейная зависимость: с увеличением напряжения ток растет быстрее. Это объясняется главным образом нелинейностью электрического сопротивления тела человека. Так, при напряжении на электродах 40—45 В в наружном слое кожи возникают значительные напряженности электрического поля, при которых полностью или частично происходит пробой наружного слоя, что снижает полное сопротивление тела человека. С увеличением электрического напряжения полное сопротивление тела человека уменьшается (рис. 20) и при напряжении 120—140 В падает до значения внутреннего сопротивления. В практических расчетах по
123
1,0 | 0,5 | 0,2 | 0,1 | 0,08…0,01 |
50 | 100 | 250 | 500 | 650 |
200 | 250 | 400 | 500 | 650 |
t, с
/~ , мА
/=, мА
Как показывает статистика электротравматизма, в исходе поражения током большое значение имеет его путь. Поражение будет более тяжелым, если на пути тока оказываются сердце, грудная клетка, головной и спинной мозг. В практике обслуживания электроустановок ток, протекающий через тело человека, попавшего под напряжение, идет, как правило, по пути «рука — рука» или «рука — ноги». Однако он может протекать и по другим путям, например, «голова — ноги», «спина — руки», «нога — нога» и др. Степень поражения в этих случаях зависит от того, какие органы человека попадут под воздействие тока, а также силы тока, проходящего непосредственно через сердце. Так, при протекании тока по пути «нога — нога» через сердце проходит 0,4% общего тока, а по пути «рука — рука» — 3,3%. Сила неотпускающего тока по пути «рука — рука» приблизительно в 2 раза меньше, чем по пути «рука — ноги».
Исследования по определению влияния рода тока на опасность поражения человека показали, что переменный ток частотой 50 Гц является самым неблагоприятным. При увеличении частоты (более 50 Гц) сила ощутимого и неотпускающего токов возрастает. Так же растет сила этих токов и при уменьшении частоты. Но заметное увеличение силы этих токов наблюдается только на частотах ниже 30 и выше 100 Гц. Так, значения силы фибрилляционного тока при 400 Гц примерно в 3,5 раза превышают таковой при частоте 50 Гц. Поэтому повышение частоты тока применяют как одну из мер повышения электробезопасности.
Условия электробезопасности зависят и от параметров окружающей среды производственных помещений (влажность, температура, наличие токопроводящей пыли, материала пола и др.). Тяжесть поражения электрическим током зависит от плотности и площади контакта человека с частями, находящимися под напряжением. Во влажных помещениях или наружных электроустановках складываются неблагоприятные условия, при которых улучшается контакт человека с токоведущими частями (увеличивается площадь контакта). Наличие заземленных металлических конструкций и полов приводит к тому, что человек практически постоянно связан с одним полюсом (землей) электроустановки. В этом случае любое прикосновение человека к токоведущим частям сразу приводит к двухполюсному включению его в электрическую цепь. Токопроводящая пыль также создает условия для хорошего электрического контакта как с токоведущими частями, так и с землей.
122
а) б)
Рис. 21. Схема двухполюсного прикосновения человека: а — в однофазной сети; б — в трехфазной сети
постоянного тока или однофазной сети /ч=£/ра6//?ч, где Upa6 — рабочее напряжение сети; /?ч — электрическое сопротивление тела человека; в трехфазной сети /Ч=УЗ U/R4, где U — фазное напряжение сети.
Как видно из приведенных формул, сила тока, протекающего через тело человека, зависит только от напряжения сети и сопротивления человека. В этом случае единственной мерой, повышающей безопасность обслуживающего персонала, может быть понижение рабочего напряжения сети. Однако по техническим условиям напряжение питания отдельных блоков ЭВМ устройств ВЦ составляет такие величины, при которых сила тока, протекающего через тело человека, превышает пороговое значение силы неотпускающего тока и достигает значений фибрилляционных токов.
Как показывает анализ случаев электротравматизма при эксплуатации промышленных установок, двухполюсное касание встречается относительно редко. Значительно чаще имеет место однополюсное (однофазное) прикосновение в изолированных и глухозаземленных сетях.
Рис. 22. Прикосновение человека к изолированной однофазной сети: а — схема прикосновения; б —.эквивалентная схема замещения
На рис. 22, а показана изолированная от земли однофазная сеть, провода / которой касается человек. Через г\ и г2 обозначены сопротивления изоляции проводов 1 и 2 сети относительно земли.
125
R4r к Ом
Рис. 19. Электрическая схема замещения сопротивления тела человека по пути тока «рука — рука»
80
160 U, В
Рис. 20. Зависимость сопротивления тела человека от напряжения
электробезопасности, с учетом наиболее неблагоприятных условий, сопротивление тела человека /?ч принимают равным 1000 Ом.
При известном допустимом значении силы /доп тока и сопротивлении тела человека R4 допустимое напряжение прикосновения составит
пр доп доп^ч’
ГОСТ 12.1.038—82* установлены предельно допустимые уровни напряжений прикосновения и силы токов, протекающих через тело человека и возникающих в электроустановках производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц.
1.4 Факторы, влияющие на изменение сопротивления тела человека
Сопротивление тела человека меняется в широких пределах в зависимости от многих факторов
1.4.1. Увеличение тока, проходящего через тело человека, сопровождается усилением местного нагрева кожи и раздражающего действия, что в свою очередь вызывает рефлекторную ответную реакцию организма в виде расширения сосудов кожи а, следовательно, усиление потоотделения, которое приводит к снижению электрического сопротивления кожи в этом месте.
Изменение сопротивления тела в зависимости от величины тока (до 6 мА) приближенно описывается следующими эмпирическими формулами:
,кОм (2)
–для переменного тока
,кОм (3)
где Iч – сила тока в мА, проходящего через тело человека;
K – поправочный коэффициент, учитывающий возраст испытуемого человека;
K = 6-8, при возрасте до 25 лет
K = 10-12 при возрасте 25 ÷35 лет
K = 15-20 при возрасте 35 ÷ 45 лет
K = 25-30 при возрасте более 45 лет
1.4.2. Увеличение напряжения, как при постоянном, так и переменном токе, приложенного к телу человека, вызывает уменьшение сопротивления тела, которое в пределе приближается к сопротивлению внутренних органов (тканей).
Такое явление объясняется пробоем рогового слоя кожи (эпидермиса), наличием в ней влаги и ростом тока. Пробой рогового слоя наступает, как правило при напряжении более 50 В.
1.4.3 Род тока (постоянный или переменный)
Экспериментально установлено, что при небольших напряжениях сопротивление тела человека постоянному току выше, чем переменному любой частоты.
Действительно, согласно формуле (1) сопротивление тела Zч будет максимальным при ω = 0 и равным 2Rн+ Rв.. С ростом приложенного напряжения разница в сопротивлении тела человека постоянному и переменному току уменьшается и начиная с 40-50 В практически исчезает, т.е. сопротивление тела человека становится одинаковым как постоянному, так и переменному току.
1.4.4 Частота тока.
С ростом частоты тока полное сопротивление тела человека уменьшается, приближаясь в пределе к значению его внутреннего сопротивления. Этот вывод следует из уравнения (1): с увеличением частоты ω, растет знаменатель дроби, что вызывает уменьшение сопротивленияZч. Когда ω → ∞, Zч = Rв.
Характер изменения сопротивления тела от частоты тока приближенно описывается эмпирической зависимостью:
,кОм (4)
где f — частота тока, Гц.
1.4.5. Влияние времени воздействия тока на сопротивление
С увеличением времени прохождения тока через тело человека, усиливается потовыделение через микрокапиляры живой ткани, повышается кровоснабжение участков кожи под электродами, расширяется зона пробоя рогового слоя кожи. Все это вызывает уменьшение сопротивления тела человека.
1.4.6. Влияние площади контакта проводника на сопротивление
Площадь контакта S оказывает непосредственное влияние на сопротивление тела человекаZч. Чем больше площадь, тем меньше сопротивление. С ростом частоты тока зависимость сопротивления от площади электродов уменьшается, а при 10-20 кГц когдаZч=Rв, исчезает полностью.
1.4.7. Влияние места приложения электродов на сопротивление
Место приложения электродов влияет на сопротивление тела, так как роговой слой кожи (эпидермис) имеет неодинаковую толщину на коже человека, неравномерно распределены потовые железы и кровеносные сосуды в теле человека. Например, наименьшим сопротивлением обладает кожа лица, шеи, рук выше ладони и т.д.
1.4.8 Состояние поверхности кожи и внутренних органов
влияют на сопротивление тела человека
Повреждение кожи, особенно ее рогового слоя, наличие влаги и грязи на ее поверхности резко уменьшается сопротивление тела человека. Сопротивление резко снижается также при заболеваниях внутренних органов особенно язвенных болезней органов дыхания, пищеварения и т.д.
1.4.9 Психофизиологические факторы оказывают влияние
на сопротивление тела.
У женщин сопротивление обычно меньше, чем у мужчин, а у детей — меньше чем у взрослых, причем сопротивление увеличивается с возрастом, достигая максимума к старости. Алкогольное и наркотическое опьянение. чувство неуверенности и страха снижает сопротивление
1.4.10. Условия окружающей средытакже влияет на сопротивление тела человека. Например, возникшие неожиданно внешние раздражители (усталость, болевые, звуковые, световые и т.п.) могут на некоторое время снизить сопротивление на 20-50%. Уменьшение кислорода в воздухе, увеличение температуры, атмосферного давления значительно снижают сопротивление тела человека.