Постоянный ток Основные формулы:
Сила тока: .
Плотность тока: ,j=qnV.
Закон Ома для однородного участка цепи:
Сопротивление проводника:
Зависимость удельного сопротивления от температуры:
Закон Ома для неоднородного участка цепи:
Сила тока короткого замыкания:
Закон Ома для замкнутой цепи: .
Работа электрического поля на участке цепи:
Закон Джоуля-Ленца:
Мощность тока: P=I . U .
Полная мощность, выделяемая в цепи: P=I . .
Первый закон Кирхгофа:
Второй закон Кирхгофа:
Примеры решения задач
Задача 12. Амперметр, накоротко присоединенный к источнику тока с ЭДС 1,5 В и внутренним сопротивлением 0,2 Ом, показывает силу тока 5 А. Какую силу тока показывает этот амперметр, если его зашунтировать сопротивлением 0,1 Ом?
Дано: = 1,5 В r= 0,2 Ом Rш = 0,1 Ом | Решение. Ток в цепи без шунта был равен Отсюда . Ток в цепи с зашунтированным амперметром равен | |
I2 — ? | , |
Ответ: I2 = 10 A.
Задача 13. Даны 12 элементов с ЭДС =1,5В и внутренним сопротивлением r=0,4Ом. При последовательном или параллельном соединении этих элементов в батарею ток внешней цепи, имеющей сопротивление R=0,3 Ом, будет максимальным?
Дано: n = 12 = 1,5 В r= 0,4 Ом R= 0,3 Ом | Решение. При
последовательном соединении источников
тока суммарная ЭДС равна Таким образом, ток в цепи при последовательном соединении источников тока равен |
Imax — ? |
|
При параллельном соединении одинаковых источников тока суммарная ЭДС будет равна , а результирующее внутреннее сопротивление батареи равно
Ответ: I2 > I1 при параллельном соединении.
Задача 14. Электрическая плитка мощностью 1 кВт и нихромовой спиралью предназначена для включения в сеть с напряжением 220 Вт. Сколько метров проволоки диаметром 0,5 мм надо взять для изготовления спирали, если температура нити равна 900оС. Удельное сопротивление нихрома при 0о С — 1мк Ом.м, а температурный коэффициент сопротивления — 4.10—4
Дано: Р = 1 кВт = 103 Вт U = 220 В d = 0,5 мм = 0,5.10—3 t = 900о С po=1мк Ом . м =10—6 Ом . м = 4 . 10—4 К—1 | Решение. Мощность плитки равна где |
—? | где — удельное сопротивление проволоки приt=900oC. |
Таким образом, длина нихромовой проволоки, необходимой для изготовления спирали, равна
Ответ: =7м.
Задача 15. Сила тока в проводнике равномерно нарастает от Io= 0 до I = 3A в течение времени t = 10с. Определить заряд q, прошедший в проводнике.
Дано: Io= 0 I = 3 A t=10 с | Решение. Элементарный заряд dq, прошедший в проводнике за время |
q— ? | где — коэффициент пропорциональности. |
Полный заряд, прошедший в проводнике за время t, равен
Ответ: q=15 Кл.
Задача 16. Сила тока в проводнике равномерно нарастает от Io = 0 до некоторого максимального значения в течение времени
Дано: Io= 0 t = 10с Q = 1кДж R = 3 Ом. | Решение. Количество теплоты, выделившееся в проводнике за время t, равно ,I=k·t, где |
q— ? |
Отсюда
Ответ: k = 1 A / c.
Задача 17. Три источника тока с ЭДС 1 = 11 B, 2 =4 B и 3 = 6 B и три реостата с сопротивлениями R1=5 Ом, R2=10 Ом и R3=2 Ом соединены, как показано на рисунке. Определить силы токов
Дано: 1 = 11 B 2 =4 B 3 = 6 B R1=5 Ом R2=10 Ом R3=2 Ом | Решение. | |
I 1 , I 2 , I 3 — ? |
Силы токов в разветвленной цепи определяются с помощью законов Кирхгофа. Поскольку в задаче три неизвестных, необходимо составить три уравнения. Перед составлением уравнений следует, во-первых, выбрать произвольно направления токов, текущих через сопротивления, указав их стрелками на чертеже, и, во-вторых, выбрать направление обхода контуров (только для составления уравнений по второму закону Кирхгофа).
При решении данной задачи направления токов выбраны, как показано на рисунке.
Одно из трех необходимых для решения задачи уравнений составляется, исходя из первого, два других — из второго закона Кирхгофа.
По первому закону Кирхгофа для узла В имеем
I 1 + I 2 — I 3 = 0.
При составлении уравнений по первому закону Кирхгофа необходимо соблюдать правило знаков: ток, подходящий к узлу, входит в уравнение со знаком плюс; ток, отходящий от узла — со знаком минус.
При составлении уравнений по второму закону необходимо соблюдать следующее правило знаков: а) если ток по направлению совпадает с выбранным направлением обхода контуров, то соответствующее произведение IR входит в уравнение со знаком плюс, в противном случае произведение IR входит в уравнение со знаком минус; б) если ЭДС повышает потенциал в направлении обхода контура, то есть, если при обходе контура приходится идти от минуса к плюсу внутри источника, то соответствующая ЭДС входит в уравнение со знаком плюс, в противном случае — со знаком минус.
По второму закону Кирхгофа имеем соответственно для контуров AR1 BR2 и AR2 BR3 :
I 1 R1 — I 2 R2 = 1 — 2,
I 2 R2 + I 3 R3 = 2 — 3.
Подставив в уравнения значения сопротивлений и ЭДС, получим систему уравнений:
I 1 + I 2 I 3 = 0 ;
5 I 1 10 I 2 = 7 ;
10 I 2 + 2 I 3 = 2 .
Решив эту систему уравнений, получаем что I1 = 0,8 А, I2 = 0,3 А, I3= 0,5 А.
Знак минус у значения тока I2 свидетельствует о том, что при произвольном выборе направлений токов, указанных на рисунке, направление тока I 2 было указано противоположно истинному.
Ответ: I 1 = 0,8 А, I 2= 0,3 А, I 3 = 0,5А.
Колебания — Физика — Теория, тесты, формулы и задачи
Оглавление:
Основные теоретические сведения
Гармонические колебания
К оглавлению…
В технике и окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебаниями называют изменения физической величины, происходящие по определенному закону во времени. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.
Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник. Для существования в системе гармонических колебаний необходимо, чтобы у нее было положение устойчивого равновесия, то есть такое положение, при выведении из которого на систему начала бы действовать возвращающая сила.
Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.
Простейшим видом колебательного процесса являются колебания, происходящие по закону синуса или косинуса, называемые гармоническими колебаниями. Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω0 задаётся следующим образом:
Решение предыдущего уравнения является уравнением движения для гармонических колебаний, которое имеет вид:
где: x – смещение тела от положение равновесия, A – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний (ω = 2Π/T), t – время. Величина, стоящая под знаком косинуса: φ = ωt + φ0, называется фазой гармонического процесса. Смысл фазы колебаний: стадия, в которой колебание находится в данный момент времени. При t = 0 получаем, что φ = φ0, поэтому φ0 называют начальной фазой (то есть той стадией, из которой начиналось колебание).
Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Если же количество колебаний N, а их время t, то период находится как:
Физическая величина, обратная периоду колебаний, называется частотой колебаний:
Частота колебаний ν показывает, сколько колебаний совершается за 1 с. Единица частоты – Герц (Гц). Частота колебаний связана с циклической частотой ω и периодом колебаний T соотношениями:
Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:
Максимальное значение скорости при гармонических механических колебаниях:
Максимальные по модулю значения скорости υm = ωA достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях. Зависимость ускорения от времени при гармонических механических колебаниях:
Максимальное значение ускорения при механических гармонических колебаниях:
Знак минус в предыдущем выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, возвращает тело в начальное положение (x = 0), т.е. заставляет тело совершать гармонические колебания.
Следует обратить внимание на то, что:
- физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T.
- Такие параметры процесса колебаний, как амплитуда A = xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени, т.е. начальными условиями.
- При колебательном движении тело за время, равное периоду, проходит путь, равный 4 амплитудам. При этом тело возвращается в исходную точку, то есть перемещение тела будет равно нулю. Следовательно, путь равный амплитуде тело пройдет за время равное четверти периода.
Чтобы определить, когда в уравнение колебаний подставлять синус, а когда косинус, нужно обратить внимание на следующие факторы:
- Проще всего, если в условии задачи колебания названы синусоидальными или косинусоидальными.
- Если сказано, что тело толкнули из положения равновесия – берем синус с начальной фазой, равной нулю.
- Если сказано, что тело отклонили и отпустили – косинус с начальной фазой, равной нулю.
- Если тело толкнули из отклоненного от положения равновесия состояния, то начальная фаза не равна нолю, а брать можно и синус и косинус.
Математический маятник
К оглавлению…
Математическим маятником называют тело небольших размеров, подвешенное на тонкой, длинной и нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Только в случае малых колебаний математический маятник является гармоническим осциллятором, то есть системой, способной совершать гармонические (по закону sin или cos) колебания. Практически такое приближение справедливо для углов порядка 5–10°. Колебания маятника при больших амплитудах не являются гармоническими.
Циклическая частота колебаний математического маятника рассчитывается по формуле:
Период колебаний математического маятника:
Полученная формула называется формулой Гюйгенса и выполняется, когда точка подвеса маятника неподвижна. Важно запомнить, что период малых колебаний математического маятника не зависит от амплитуды колебаний. Такое свойство маятника называется изохронностью. Как и для любой другой системы, совершающей механические гармонические колебания, для математического маятника выполняются следующие соотношения:
- Путь от положения равновесия до крайней точки (или обратно) проходится за четверть периода.
- Путь от крайней точки до половины амплитуды (или обратно) проходится за одну шестую периода.
- Путь от положения равновесия до половины амплитуды (или обратно) проходится за одну двенадцатую долю периода.
Пружинный маятник
К оглавлению…
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению. Таким свойством обладает сила упругости.
Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно, составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют пружинным маятником.
Циклическая частота колебаний пружинного маятника рассчитывается по формуле:
Период колебаний пружинного маятника:
При малых амплитудах период колебаний пружинного маятника не зависит от амплитуды (как и у математического маятника). При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную:
А колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае. Таким образом, полученная формула для периода колебаний груза на пружине остается справедливой во всех случаях, независимо от направления колебаний, движения опоры, действия внешних постоянных сил.
При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а, следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругой деформации пружины. Для математического маятника – это энергия в поле тяготения Земли.
Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией (как правило, потенциальную энергию в положении равновесия полагают равной нулю). Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и так далее.
Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. При этом, максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:
Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:
Взаимосвязь энергетических характеристик механического колебательного процесса (полная механическая энергия равна максимальным значениям кинетической и потенциальной энергий, а также сумме кинетической и потенциальной энергий в произвольный момент времени):
Механические волны
К оглавлению…
Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.
Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной. Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной.
Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.
Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют немеханические волны, которые способны распространяться и в пустоте (например, световые, т.е. электромагнитные волны могут распространяться в вакууме).
- Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.
- Поперечные волны не могут существовать в жидкой или газообразной средах.
Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой ν и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.
Длиной волны λ называют расстояние между двумя соседними точками, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за время равное периоду T, следовательно, длина волны может быть рассчитана по формуле:
где: υ – скорость распространения волны. При переходе волны из одной среды в другую длина волны и скорость ее распространения меняются. Неизменными остаются только частота и период волны.
Разность фаз колебаний двух точек волны, расстояние между которыми l рассчитывается по формуле:
Электрический контур
К оглавлению…
В электрических цепях, так же, как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный LC-контур. В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими. Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:
Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:
Циклическая частота колебаний в электрическом колебательном контуре:
Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:
Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:
Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:
Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:
Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:
Все реальные контура содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в теплоту, выделяющуюся на резисторе, и колебания становятся затухающими.
Переменный ток. Трансформатор
К оглавлению…
Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими синусоидальное напряжение. Они позволяют наиболее просто и экономно осуществлять передачу, распределение и использование электрической энергии.
Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока. Он характеризуется переменным напряжением U(t) (индуцированной ЭДС) на его клеммах. В основу работы генератора переменного тока положено явление электромагнитной индукции.
Переменным током называется электрический ток, который изменяется с течением времени по гармоническому закону. Величины U0, I0 = U0/R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.
Переменный ток характеризуется действующими значениями силы тока и напряжения. Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы в единицу времени такое же количество теплоты, что и данный переменный ток. Для переменного тока действующее значение силы тока может быть рассчитано по формуле:
Аналогично можно ввести действующее (эффективное) значение и для напряжения, рассчитываемое по формуле:
Таким образом, выражения для мощности постоянного тока остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Обратите внимание, что если идет речь о напряжении или силе переменного тока, то (если не сказано иного) имеется в виду именно действующее значение. Так, 220В – это действующее напряжение в домашней электросети.
Конденсатор в цепи переменного тока
Строго говоря, конденсатор ток не проводит (в том смысле, что носители заряда через него не протекают). Поэтому, если конденсатор подключен в цепь постоянного тока, то сила тока в любой момент времени в любой точке цепи равна нулю. При подключении в цепь переменного тока из-за постоянного изменения ЭДС конденсатор перезаряжается. Ток через него по-прежнему не течет, но ток в цепи существует. Поэтому условно говорят, что конденсатор проводит переменный ток. В этом случае вводится понятие сопротивления конденсатора в цепи переменного тока (или емкостного сопротивления). Это сопротивление определяется выражением:
Обратите внимание, что емкостное сопротивление зависит от частоты переменного тока. Оно в корне отличается от привычного нам сопротивления R. Так, на сопротивлении R выделяется теплота (поэтому его часто называют активным), а на емкостном сопротивлении теплота не выделяется. Активное сопротивление связано со взаимодействием носителей заряда при протекании тока, а емкостное – с процессами перезарядки конденсатора.
Катушка индуктивности в цепи переменного тока
При протекании переменного тока в катушке возникает явление самоиндукции, и, следовательно, ЭДС. Из-за этого напряжение и сила тока в катушке не совпадают по фазе (когда сила тока равна нулю, напряжение имеет максимальное значение и наоборот). Из-за такого несовпадения средняя тепловая мощность, выделяющаяся в катушке, равна нулю. В этом случае вводится понятие сопротивления катушки в цепи переменного тока (или индуктивного сопротивления). Это сопротивление определяется выражением:
Обратите внимание, что индуктивное сопротивление зависит от частоты переменного тока. Как и емкостное сопротивление, оно отличается от сопротивления R. Как и на емкостном сопротивлении, на индуктивном сопротивлении теплота не выделяется. Индуктивное сопротивление связано с явлением самоиндукции в катушке.
Трансформаторы
Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная. Первичная обмотка подсоединяется к источнику переменного тока с некоторым напряжением U1, а вторичная обмотка подключается к нагрузке, на которой появляется напряжение U2. При этом, если число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:
Коэффициент трансформации вычисляется по формуле:
Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):
В неидеальном трансформаторе вводится понятие КПД:
Электромагнитные волны
К оглавлению…
Электромагнитные волны – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Электромагнитные волны распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:
где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м. Скорость электромагнитных волн в вакууме (где ε = μ = 1) постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:
Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Если электромагнитная волна распространяется в какой-либо среде, то скорость ее распространения также выражается следующим соотношением:
где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:
- Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.
- Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. А вот цепи, в которых протекает переменный ток, т.е. такие цепи в которых носители заряда постоянно меняют направление своего движения, т.е. двигаются с ускорением – являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.
ТЕПЛОВЫЕ ЯВЛЕНИЯ | |||
Закон сохранения энергии | Qотд = Qприн | Количество теплоты, отданное одним телом другому, равно количеству теплоты, принятому вторым телом. | Q – количество теплоты, [Дж] |
Формула вычисления количества теплоты | Q = cmΔt | Количество теплоты – физическая величина, показывающая, какая энергия передана телу в результате теплообмена. | Q – количество теплоты, [Дж] c – удельная теплоемкость – физическая величина, численно равная количеству теплоты, которое необходимо сообщить телу массой 1 кг для того, чтобы изменить его температуру на 1 °С, [Дж/кг°С] m – масса тела, [кг] Δt = t2 – ¬t1 – разность температур, [°С] |
Формула вычисления количества теплоты при сгорании топлива | Q = qm | Топливо – вещество, которое в некоторых процессах выделяет тепло. | Q – количество теплоты, [Дж] q – удельная теплота сгорания топлива – физическая величина, численно равная количеству теплоты, которое выделяется при полном сгорании 1 кг топлива, [Дж/кг] m – масса топлива, [кг] |
Формула вычисления количества теплоты, необходимого для плавления вещества | Q = λm | Плавление – процесс перехода вещества из твердого состояния в жидкое. | Q – количество теплоты, [Дж] λ – удельная теплота плавления – количество теплоты, которое необходимо сообщить 1 кг вещества, нагретому до температуры плавления, чтобы перевести его из твёрдого состояния в жидкое, [Дж/кг] m – масса вещества, [кг] |
Формула вычисления количества теплоты при парообразовании и конденсации | Q = Lm | Парообразование – процесс превращения жидкости в пар. Конденсация – переход вещества в жидкое или твёрдое состояние из газообразного. | Q – количество теплоты, [Дж] L – удельная теплота парообразования и конденсации, [Дж/кг] m – масса вещества, [кг] |
Формула вычисления абсолютной влажности | ρ=mпара/Vвоздуха | Абсолютная влажность воздуха – количество влаги, содержащейся в одном кубическом метре воздуха. | ρ – абсолютная влажность, [кг/м3] m – масса пара, [кг] V – объем воздуха, [м3] |
Формула вычисления относительной влажности воздуха | φ=ρ/ρн∙100% | Относительная влажность воздуха – величина, показывающая насколько далек пар от насыщения. | φ – относительная влажность ρ – абсолютная влажность (плотность водяного пара), [кг/м3] ρн – плотность насыщенного пара при данной температуре, [кг/м3] |
Формула для вычисления КПД тепловой машины | Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. | А – полезная работа, которую совершает рабочее тело, [Дж] Qн – количество теплоты, которое передал рабочему телу нагреватель, [Дж] Qх – количество теплоты, которое рабочее тело передало холодильнику, [Дж] | |
ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ | |||
Закон Ома для участка цепи | I=U/R | Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Формула для вычисления удельного сопротивления проводника | R=ρ*L/S ρ=R*S/L | Удельное сопротивление – величина, характеризующая электрические свойства вещества, из которого изготовлен проводник. | ρ – удельное сопротивление вещества, [Ом·мм2/м] R – сопротивление, [Ом] S – площадь поперечного сечения проводника, [мм2] L – длина проводника, [м] |
Законы последовательного соединения проводников | I = I1 = I2 | Последовательным соединением называется соединение, когда элементы идут друг за другом. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Законы параллельного соединения проводников | U = U1 = U2 I = I1 + I2 1/Rобщ=1/R1+1/R2 | Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Формула для вычисления величины заряда. | q = It | Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. | q – заряд, [Кл] I – сила тока, [А] t – время, [c] |
Формула для нахождения работы электрического тока. | A = Uq A = UIt | Работа – это величина, которая характеризует превращение энергии из одного вида в другой, т.е. показывает, как энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д. Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику. Работа, совершаемая для перемещения электрического заряда в электрическом поле. | A – работа электрического тока, [Дж] U – напряжение на концах участка, [В] q – заряд, [Кл] I – сила тока, [А] t – время, [c] |
Формула электрической мощности | P = A/t P = UI P = U2/R | Мощность – работа, выполненная в единицу времени. | P – электрическая мощность, [Вт] A – работа электрического тока, [Дж] t – время, [c] U – напряжение на концах участка, [В] I – сила тока, [А] R – сопротивление, [Ом] |
Формула закона Джоуля-Ленца | Q=I2Rt | Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. | Q – количество теплоты, [Дж] I – сила тока, [А]; t – время, [с]. R – сопротивление, [Ом]. |
ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ | |||
Правило правой руки | Расположим правую руку так, чтобы четыре согнутых пальца совпадали с направлением магнитных линий, тогда большой палец укажет направление тока в проводнике. Или Если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока. | ||
Правило буравчика | Если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока. | ||
СВЕТОВЫЕ ЯВЛЕНИЯ | |||
Закон отражения света | Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, при этом угол падения луча равен углу отражения луча. | ||
Закон преломления | При увеличении угла падения увеличивается и угол преломления, то есть при угле падения, близком к 90°, преломлённый луч практически исчезает, а вся энергия падающего луча переходит в энергию отражённого. | n – показатель преломления одного вещества относительно другого | |
Формула вычисления абсолютного показателя преломления вещества | n=c/v | Абсолютный показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде. | n – абсолютный показатель преломления вещества c – скорость света в вакууме, [м/с] v – скорость света в данной среде, [м/с] |
Закон Снеллиуса | sinα/sinγ=v1/v2=n | Закон Снеллиуса (закон преломления света): отношение синуса угла падения к синусу угла преломления есть величина постоянная. | n – показатель преломления одного вещества относительно другого v – скорость света в данной среде, [м/с] |
Показатель преломления среды | sinα/sinγ=n | Отношение синуса угла падения к синусу угла преломления есть величина постоянная. | n – показатель преломления среды |
Формула оптической силы линзы | D=1/F | Оптическая сила линзы – способность линзы преломлять лучи. | D – оптическая сила линзы, [дптр] F – фокусное расстояние линзы, [м] |
ЭЛЕКТРИЧЕСТВО | ||
Наименование параметра | Формула | Обозначения |
Закон Кулона | Q1 и Q2 ― точечные заряды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, ε ― диэлектрическая проницаемость среды, r ― расстояние между зарядами | |
Емкость плоского конденсатора | ε ― диэлектрическая проницаемость среды между пластинами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, S ― площадь пластины, d ― расстояние между пластинами | |
Емкость сферического конденсатора | ε ― диэлектрическая проницаемость среды между сферами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, R1 и R2 ― радиусы внутренней и внешней сфер соответственно | |
Потенциал электрического поля, созданного точечным зарядом | q ― заряд сферы, R ― радиус сферы, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от центра сферы | |
Потенциал электрического поля, созданного металлической сферой на расстоянии r от центра сферы: внутри сферы и на поверхности (r ≤ R) вне сферы (r > R) | q ― заряд сферы, R ― радиус сферы, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от центра сферы | |
Теорема Гаусса-Остроградского | S ― площадь гауссовой поверхности, Еn ― нормальная к поверхности составляющая вектора напряженности электростатического поля, Q ― заряд, охваченный поверхностью интегрирования, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная | |
Напряженность поля, создаваемого зарядом бесконечной пластины | σ ― поверхностная плотность заряда, ε ― диэлектрическая проницаемость среды, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от пластины | |
Напряженность электрического поля, создаваемого металлической заряженной сферой: внутри сферы (r < R) на поверхности сферы (r = R) вне сферы (r > R) | τ ― линейная плотность заряда; ε ― диэлектрическая проницаемость среды между пластинами, ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, r ― расстояние от оси нити | |
Энергия конденсатора | С ― емкость конденсатора; U ― напряжение на пластинах | |
Сопротивление провода | ρ0 ― удельное сопротивление материала провода, S ― площадь сечения провода; для меди ρ0 = 0,0175∙10−6 Ом∙м; для алюминия ρ0 = 0,028∙10−6 Ом∙м; для вольфрама ρ0 = 0,055∙10−6 Ом∙м; для железа ρ0 = 0,1∙10−6 Ом∙м | |
Работа, совершаемая электрическим полем при перемещении точечного заряда q из точки 1 поля в точку 2 | φ1 и φ2 ― потенциалы точек 1 и 2 соответственно | |
Период колебаний колебательного контура | L ― индуктивность катушки, C ― емкость конденсатора | |
Индукция магнитного поля, создаваемого бесконечно длинным прямым проводником с током Напряженность магнитного поля | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, a ― расстояние до проводника | |
Индукция магнитного поля в центре кругового проводника с током Напряженность магнитного поля | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника | |
Индукция магнитного поля на оси кругового проводника с током Напряженность магнитного поля | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника, a ― расстояние до плоскости проводника | |
Индукция магнитного поля внутри длинного соленоида | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, N ― количество витков, l ― длина соленоида | |
Магнитная индукция поля, создаваемая отрезком проводника | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, a ― расстояние до оси проводника, α1 и α2 ― углы между направлением тока и направлением на точку, в которой создано магнитное поле, вершинами которых являются соответственно начало и конец прямого участка проводника | |
Связь между напряженностью H и индукцией B магнитного поля | μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная | |
Индуктивность катушки равна | μ0 = 4π∙10−7 Гн/м ― магнитная постоянная; N ― количество витков; N = l/d, d ― диаметр проводника катушки; l ― длина катушки; V ― объем катушки; S ― площадь витка катушки | |
Средняя объемная плотность энергии | ε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, ε ― диэлектрическая проницаемость среды, E ― действующее значение напряженности электрического поля | |
Сила , действующая на заряд Q, движущийся со скоростью в магнитном поле с индукцией (сила Лоренца | α ― угол, образованный вектором скорости движения частицы и вектором индукции магнитного поля | |
Cила Ампера (сила, действующая на проводник с током в магнитном поле) | I ― сила тока, l ― длина проводника, В ― индукция магнитного поля, α ― угол между векторами | |
Циклическая частота колебаний в контуре | L ― индуктивность контура; C ― емкость контура | |
Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после размыкания цепи | I0 ― значение силы тока в цепи при t = 0; t ― время, прошедшее с момента размыкания цепи | |
Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после замыкания цепи | ε ― э.д.с. источника тока; t ― время, прошедшее с момента замыкания цепи | |
Основной закон электромагнитной индукции | εi ― электродвижущая сила индукции; N ― число витков контура; Ψ ― потокосцепление | |
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I: | L ― индуктивность контура или катушки | |
Работа по перемещению проводника или по повороту контура в магнитном поле | I ― сила тока в проводнике, контуре; dФ ― пересекаемый проводником магнитный поток либо изменение магнитного потока через замкнутый контур | |
Вращающий момент, действующий на контур с током, помещенный в магнитное поле Значение вращающего момента | индукция магнитного поля; ― магнитный момент контура, = IS, где I ― ток, протекающий по контуру, S ― площадь контура; α ― угол между векторами и |