Электрическая цепь простейшая: определение, элементы, схемы. Топология и методы расчета

Электрическая цепь что такое и из каких элементов состоит

Электрическая цепь – это соединение различных электрических или электронных деталей в одно. Для объединения используются проводники, которые пропускают через себя ток. Сами элементы могут самыми разнообразными – линейными, нелинейными, пассивными или активными. Любая электрическая цепь имеет в себе питание, включатель, провода, потребители тока. Она также должна быть замкнутой, иначе ток не сможет по ней протекать. Не являются электрической цепью заземляющие и зануляющие контуры.

В статье будет описано строение как сложных, так и простейших электрических цепей, как их грамотно создать, а главное обеспечить ее безопасность. В качестве дополнения, статья имеет в себе несколько видеороликов и интересный научный материал по теме.

Простейшая электрическая цепь

Простейшая электрическая цепь

Содержание

Основы электрических цепей

Как вода течет по водопроводу (по трубам, через краны, фильтры, счетчики и т.д.), так же электричество течет по цепи (проводам, электрическим и  электронным компонентам, через штекера и гнезда и т.д.). Электричество является одной из нескольких видов энергии, которая при своем течении может высвобождать свет, тепло, звук, радиоволны, механические движения, электромагнитные поля и т.д. Взять любую электротехнику (компьютер, мобильный телефон, электропечь, телевизор и т.д.), вся она содержит в себе электрические схемы, состоящие из различных электрических цепей, по которым течет ток, и на которых присутствует напряжение определенной величины и полярности.

Давайте более подробно разберем, что же собой представляет электрическая цепь, как именно по ней бежит ток. Итак, электрический ток — это упорядоченное движение электрических заряженных частиц. Напомню, что в твердых телах носителями электрического заряда являются электроны (частицы имеющие отрицательный заряд, он же минус). В жидкостях и газах носителями электрического заряда являются ионы (атомы и молекулы, у которых имеется недостаток электронов на своих орбитах, и имеющие положительный заряд, он же плюс). Чаще всего приходится иметь дело именно с движением электронов по электрической цепи именно в твердотельных проводниках (это металлы, кристаллы).

Сложная электрическая цепь

Сложная электрическая цепь

Электрическая цепь это некий замкнутый путь, по которому течет ток, бегут электрически заряженные частицы. Само перемещение этих частиц можно представить следующим образом. Как вам должно быть известно из уроков по физике все вещества состоят из атомов и молекул (мельчайшая частица самого вещества, его структурная составляющая). В твердых состояниях вещества атомы выстроены в определенном порядке, имеют так называемую кристаллическую решетку. У некоторых веществ электроны, что наиболее удалены от центра атома, могут легко отрываться от своего атома и переходить к соседнему. Так получается движение заряженных частиц внутри самого вещества.

Такие вещества являются проводниками электрического тока. Одни это делают хорошо, другие хуже (проводят ток). Если же взять такое вещество как медь (металл), который достаточно хорошо проводит через себя электричество и сделать из нее проволоку, то в итоге мы получим проводник электрического тока определенной длины.

Электрическая цепь и ее элементы

Еще нужен источник тока, который в зависимости от своего принципа действия может на одном своем полюсе создавать переизбыток отрицательного заряда, а на другом — положительного (он же недостаток отрицательного).

Чтобы пошел ток нужен как бы мостик, соединяющий эти самые противоположные полюса. В роли этого моста, для перехода электрического заряда с одного полюса на другой, и будет выступать замкнутая электрическая цепь, состоящая из различных проводников.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

К примеру, мы просто обычной медной проволокой соединим полюса источника питания. В итоге через проволоку потечет ток (тот самый переизбыток электрических зарядов). Это будет, пожалуй, самой простой электрической цепью, которая может только создавать короткое замыкание этого самого источника питания. Но все же это электрическая цепь. Более полезной электроцепью будет такая схема — источник питания (обычная батарейка), провода, переключатель и лампочка (рассчитанная на напряжение источника питания). Когда мы все это соединим друг за другом (последовательно) мы уже получим электрическую цепь, где течение тока будет приносить пользу в виде излучения света электрической лампочкой.

Естественно, подобными простыми электрическими цепями электротехника не ограничивается. Если правильно подключать различные электрические и электронные компоненты между собой, подсоединяя к ним источник питания, создавая различные функциональные схемы, можно в итоге получать все то разнообразие электроустройств, которое мы сейчас имеем. И все они имеют различные по сложности электрические цепи.

Интересно по теме: Как проверить стабилитрон.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону. Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы.

Основные элементы электрической цепи

Первую группу составляют элементы, предназначенные для выработки электроэнергии. Они называются источниками питания.

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками).

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Материал по теме: Как подключить конденсатор

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность.

Электрическая цепь и ее элементы

Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

Электрическая цепь и ее элементы.

Электрическая цепь и ее элементы.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи. Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах.

Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства.

Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением.

Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению.

В этом случае ток в цепи в 2 раза меньше тока короткого замыкания. Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Электроцепь

Последовательное соединение элементов цепи

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

I = I1 = I2

А вот напряжение на их концах суммируется:

U = U1 + U2

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

R = R1 + R2

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

U1/U2 = R1/R2

Размыкание трехфазного тока.

Размыкание трехфазного тока.

Параллельное соединение проводников

Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:

I = I1 + I2

где I — сила тока в неразветвленной цепи.

При параллельном соединении проводников напряжение на них будет одно и то же. Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:

1/R = 1/R1 + 1/R2

Из этого вытекает:

R = R1R2/(R1 + R2)

Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:

I1/I2 = R2/R1

Соединения конденсаторов

У конденсаторов существует также два вида соединения: последовательное и параллельное.

Последовательное соединение. В этом случае обкладка одного конденсатора, заряженная отрицательно, соединена с обкладкой другого конденсатора, заряженного положительно. На рис. 3 показан пример последовательного соединения конденсаторов.

При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:

1/С = 1/С1 + 1/С2 + 1/С3 + …

При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.

Параллельное соединение. При параллельном соединении конденсаторов положительно заряженные обкладки соединены с положительно заряженными, а отрицательно заряженные — с отрицательными (рис. 4).

В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:

С = С1 + С2 + С3 + …

Электрическая цепь и ее элементы

Соединения источников тока

При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.

При последовательном соединении источников тока два соседних источника соединяются между собой противоположными полюсами. Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника.

Электрическая цепь и ее элементы

Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.

Расчет электрических цепей

Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников. Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 … R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается). Следует вычислить силу токов I1, I2, … I6.

В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R”. А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:

R = R1 + R’ + R”

где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R” — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R”:

1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R” = 1/R5 + 1/R6

Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:

I = U/R

Из всего вышеизложенного можно вывести, что I = I1.

Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:

U1 = IR1; U2 = IR’; U3 = IR”

Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.

Электроцепь

Электроцепь

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Устройство электрической цепи

Устройство электрической цепи

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами. Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток.

Задачу решает электронный блок на основе инвертора. Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Электрическая цепь и ее элементы

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Электрическая цепь представляет собой группу заранее изготовленных элементов, соединенных определенным образом и предназначенных для протекания по ним электрического тока. Разница между активными и пассивными элементами электрической цепи заключается в следующем – активные элементы способны самостоятельно создавать в цепи ток, а пассивные могут только потреблять или накапливать электрическую энергию. Более подробно о создании, строении электроцепей можно узнать из материала Учебное пособие по электротехнике.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrohobby.ru

www.mukhin.ru

www.websor.rul

www.vashtehnik.ru

Предыдущая

ТеорияЧему равна электроемкость конденсатора?

Следующая

ТеорияЧто такое короткое замыкание

Электрическая цепь и её схема. Что такое электрическая схема?

Ассоциативное представление

Какие ассоциации возникают при словосочетании электрическая цепь? Должно быть сразу возникает картина в виде источника питания, простой батарейки, потом от неё идут провода, которые подсоединены к лампочке, а её нить накала светится ярким светом. Это простейшая схема электрического фонарика с лампой накаливания, только вот ещё тумблер подключить и всё готово. Это бытовая, обыденная ассоциация, которая скорее всего возникнет у не специалиста в электротехнике.

Какая ассоциация возникает с электрической цепью у специалиста электротехника? Пожалуй, в первую очередь, это будет осветительная сеть, ну или электрическая цепь, где подключается асинхронный двигатель через магнитный пускатель. Это уже профессиональная ассоциация.

У физика, который занимается наукой и исследованиями в области электродинамики электрическая цепь будет ассоциирована с электромагнитными полями, источниками полей, с приборами и научной аппаратурой.

Занимающийся практической электроникой скорее всего представить печатную плату со множеством контактных дорожек на ней и впаянных в неё элементов. Специалист разработчик микроэлектронных схем, который создаёт новые микросхемы, чипы, драйвера устройств, будет ассоциировать электрическую цепь с топологией микросхем (микрочип).

Все эти ассоциации будут верными, но они не являются определениями электрической цепи. Понимание и знание того, что такое электрическая цепь и в чём её отличие от электрической схемы — это ключ ко всей теории электрических цепей.

Определение электрической цепи

Одно из самых лучших определений электрической цепи имеет следующее содержание.

Совокупность устройств и объектов, образующих пути для электрического тока, электромагнитные процессы в которой могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении, называют электрической цепью

Это полное определение, но возможен его сокращённый минимизированный вариант, который может быть вот таким:

Электрическая цепь — это соединение элементов образующих контур, в котором возможно существование электрического тока

Следует разобрать логически эти определения, чтобы получить тот самый ключ, о котором сказано выше. Давайте попробуем по порядку сделать такой разбор.

Логический разбор определений электрической цепи

В определениях, и в полном и кратком, речь идёт о совокупности и соединении элементов (устройств и объектов). Это означает, что не разрозненно, что имеется какое-то сочетание, объединение тех самых элементов. Это говорит нам также о том, что элементы способны к такому соединению. Далее можно сделать вывод, что должны существовать способы и виды таких соединений. Назовём это первым условием определяющим электрическую цепь.

Слова о том, что такое соединение образует пути (контур), в котором может существовать электрический ток — это второе условие определяющее электрическую цепь. Отсюда следует, что возможны такие сочетания элементов, в которых тока быть не может в принципе. Самое важное здесь — это электрический ток, который хотя бы потенциально может осуществится в путях и контуре. Дело в том, что путь тока всегда замкнут, такова его природа. Поэтому путь всегда замкнут и он именуется контуром. Из этого второго условия следует, что существуют пути, которые можно назвать ветвями, и контуры, без которых ток не может образовать замкнутый путь. Отсюда возникает топология электрических цепей. Ток обязательно имеет источник, поэтому как минимум один элемент будет являться источником тока (ЭДС).

Остаётся только уточнение из полного определения, где говорится о свойстве совокупности устройств и объектов (элементов). В ней могут происходить электромагнитные процессы, что вполне объяснимо самой природой электрического тока. Там где не может быть потока электричества (ток), не может быть и электромагнитных явлений. Отсюда следует, что наличие электромагнитных процессов говорит нам о существовании тока. Зачем же нужно такое уточнение? Есть такое явление, как электромагнитная волна, которое для краткости можно объяснить как возмущение в электромагнитном поле. Для того, чтобы отмежеваться от волновых явлений, дальше по тексту сказано, что электромагнитные процессы ограничиваются лишь теми, которые описываются с помощью понятий об ЭДС, токе и напряжении. Это фактически третье условие, которое не заметно до тех пор, пока ничего не известно об электромагнитных волнах и излучении.

Чем глубже будут проанализированы логически определения, чем лучше знания слов, образующих определение, тем лучше (глубже) будут поняты эти определения. Такую процедуру можно провести с любыми грамматически верными выражениями, не только с вышеприведёнными.

Электрическая схема

Почти каждому человеку приходилось пользоваться хоть раз в жизни географической картой. Во всяком случае, ещё со школы с тем, что такое глобус и географические карты, знаком каждый. Географический глобус или карта не являются Землёй или частью её поверхности. Точно в таком же соотношении находятся электрическая схема и электрическая цепь. Схема метрополитена указывает где какие пути и станции, где узловые развязки, где с одной линии (кольца) можно перейти на другую. Схема всегда является символическим изображением чего-либо, но она никак не может заменить собой оригинал.

Достаточно кратко можно определить так:

Электрическая схема — это символическая запись электрической цепи

Точно также, как был сделан логический разбор определения цепи, можно сделать разбор определения схемы. Самое важное всего в двух словах. Это символ и запись. Способы и виды соединений в электрической цепи, а также элементы цепи, все они имеют свою символическую запись. Из многих символов, точно также как и из алфавита языка, собираются слоги, слова, фразы, простые и сложные предложения, и даже целые сочинения. Электрическая схема больше похожа на иероглифическую запись, потому как состоит из графических символов. Для того, чтобы уметь читать электрические схемы, нужно начинать с алфавита базовых символов, а затем надо научится правильно сочетать эти элементы, чтобы затем уметь составлять по ним реальные электрические цепи.

Электрические схемы бывают разными, в зависимости от своего функционального назначения. Есть схемы, где в первую очередь показаны функциональные узлы и их назначение. Это похоже на оглавление в книге, сразу виден план повествования, а в схеме ясно представляется, что именно каждая часть схемы делает. Есть схемы монтажные, где символически показано какие элементы цепи и где они расположены, как смонтированы на плате, в щите, в панели и т. д. Из монтажной схемы трудно сделать выводы о работе электрооборудования, но легко выполнять монтаж и демонтаж, замену и профилактику. Есть ещё принципиальные схемы, где символы элементов расположены так, что читая схему можно понять и описать всю работу электрической цепи.

Для расчётов и анализа электрических цепей, используют в первую очередь принципиальные схемы, а при разработке и модернизации цепи нужны в том числе и функциональные схемы и монтажные (установочные). Когда приходится иметь дело со сложным электрооборудованием, например, конвейерная линия или автоматический комплекс, то все схемы собираются в альбомы, которые могут иметь более 100 листов различных форматов.

Освоив алфавит электрических схем, или как иначе говорят — язык схемотехники, вы сможете научится не только читать схемы, но и самостоятельно проектировать новые электрические цепи.

Самая простая электрическая цепь и её схема

Пользуясь определением электрической цепи и схемы, можно изобразить схему простейшей электрической цепи. Такая комбинация элементов была представлена ещё в самом начале статьи. Это цепь состоящая минимум из одного источника тока (ЭДС) и одного нагрузочного элемента, которым для наглядности может служить электрическая лампа накаливания.

Дата: 20.06.2015

© Valentin Grigoryev (Валентин Григорьев)

схема, ее элементы и их обозначения элементов

Во время изучения теории электрических цепей прежде всего необходимо начать с ознакомления с основными понятиями. Электрическая цепь представляет собой устройство, по которому течёт ток. Имея представление об основных терминах, необходимо рассмотреть, из чего состоит ЭЦ, а также как она устроена.

Что называется электрической цепью

ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия. Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.

Как по другому называется электрическая цепь

Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.

Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника.

Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.

Виды электрический цепи

Существует 3 основных вида соединения потребителей энергии:

  • Последовательное соединение

Общий показатель сопротивления замкнутой ЭЦ неизменно повышается при увеличении количества потребителей. Исходя из этого правила можно сделать вывод, что показатель полного сопротивления будет являться суммой индивидуальных значений каждого включённого в цепь прибора. Любой прибор, включенный в сеть, получает лишь долю напряжения, так как суммарный показатель энергетической цепи распадается на количество потребителей.

Соединение элементов ЭЦ – основные виды
  • Параллельное соединение

Подобная схема даёт полное представление о принципе работы электрической цепи. Если этот процесс происходит непосредственно у места разветвления, то ток проходит дальше по двум нагруженным участкам, что порождает определённое сопротивление. В результате этого его значение приравнивается сумме токов, расходящихся от данной точки. Что касается сопротивления, то оно значительно снижается по мере возрастания общей проходимости ЭЦ. Параллельное соединение позволяет всем устройствам функционировать независимо друг от друга.

Важно! Если один из элементов цепи выйдет из строя или произойдет замыкание, то остальные потребители продолжат свою работу со сбоями, но полного разрыва цепи не произойдёт.

  • Комбинированное соединение

Включить электроприборы можно обоими способами – параллельным и последовательным, и такой тип соединения будет называться комбинированным. К примеру, можно рассмотреть защитную аппаратуру. Для ее подключения можно применить последовательный вариант, но этот способ может вызвать непредвиденный разрыв цепи.

Обратите внимание! Комбинированное соединение позволяет распределить нагрузку на линиях с целью предотвращения перегрузки.

Нелинейные и линейные

Нелинейные элементы придают ЭЦ свойства, которые не могут быть достигнуты в линейных цепях (стабилизация напряжения, усиление постоянного тока). Их, как правило, делят на неуправляемые и управляемые. К первому варианту можно отнести двухполюсные устройства. Их основное предназначение – полноценная работа без воздействия управляющего фактора (полупроводниковые терморезисторы или диоды). Ко вторму варианту относятся многополюсники, используемые при воздействии на них управляющего фактора (транзисторы и тиристоры).

Свойства нелинейных элементов выражаются в вольтамперных характеристиках. Они отображают зависимость тока от напряжения, для чего составляется конкретная эмпирическая формула, удобная для расчетов.

Метод пересечения показателей

Неуправляемые нелинейные элементы имеют одну вольтамперную характеристику. Их основным паратмером является управляющий фактор.

Цепи, включающие в себя только одиночные элементы, называют линейными. Основное свойство таких цепей — применимость принципа наложения. Это характеризуется тем, что результирующая реакция линейной цепи на несколько приложенных одновременно потребителей, равна сумме реакций на каждом участке.

Обратите внимание! У линейных элементов наблюдается постоянное сопротивление, в связи с чем график их вольтамперной характеристики представляет собой прямую линию, проходящую через начало координат.

Разветвленные и неразветвленные

ЭЦ может быть представлена в виде единого прямого элемента или иметь разветвления. На каждом участке неразветвленной цепи проходит ток с одинаковыми характеристиками. Простейшая разветвленная цепь состоит из трёх ветвей и двух узлов, в каждой из которых течет свой электрический ток. Любой участок можно идентифицировать, как отдельную составляющую цепи, образованную отдельными элементами, соединёнными последовательно в единое целое.

Узел – это точка, состоящая не менее, чем из трех ветвей. Узел, состоящий из двух ветвей, каждая из которых представляет собой продолжение другой, называют вырожденным узлом.

Неразветвленная и разветвленная

Внутренние и внешние

Для создания упорядоченного движения электронов, необходимо определить разность потенциалов между какими-либо отдельно взятыми участками цепи. Это обеспечивается при подключении напряжения в виде источника питания, называемым внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля, требуется приложить сторонние силы, в частности:

  • Выход вторичной обмотки трансформатора.
  • Батарея (гальванический источник).
  • Обмотка генератора.

Внешние силы, создающие движение электронов, называются электродвижущими, и они характеризуются работой, затраченной источником на перемещение единицы заряда.

Внешняя и внутренняя часть цепи

Активные и пассивные

Элементы в составе электрических цепей существуют в формате активности и пассивности. В качестве активных считаются источники электроэнергии.

Базовым параметром активных участков цепи выступает их способность отдавать энергию. Источники тока вместе с ЭДС называют идеальными для электрической энергии, что обусловлено отсутствием потери энергии, поскольку их проводимость и сопротивление считаются бесконечными:

I2 х 0 = 0

Активные элементы ЭЦ

Элементами, называемыми пассивными, считают разновидности потребителей и накопителей электроэнергии. На практике специалисты применяют многополюсный прибор, функционирующий на базе двухполюсных элементов.

Все активные элементы можно определить как в независимом, так и в зависимом порядке. Первый вариант является определением источника тока и напряжения. Вторая категория рассматривается при условии зависимости указанных величин от параметров напряжения и тока. Типичными представителями выступают электролампы и транзисторы. Их функционирование происходит в режиме линейности.

Пассивные элементы ЭЦ

Главные пассивные участки электроцепи представляют резисторы, индуктивные катушки и конденсаторы, с помощью которых осуществляется регулирование параметров силы тока и величины напряжения на отдельно взятых элементах. Резистивный показатель сопротивления относят к особым свойствам элементам. Его базовым критерием служит необратимое энергетическое рассеивание. Значение электротехники определяется по следующей формуле:

u = iR

i = Gu

При этом R представляет собой сопротивление (измеряется в Омах), а выступает проводимостью (единица измерения – сименсы). Данные величины можно вычислить по формуле:

R = 1:G

Индуктивность – это коэффициент пропорциональности. Конденсатор имеет свойство накопления энергии электрического поля. Линейная ёмкость определяет прямопропорциональную зависимость на основе заряда и напряжения. В таком случае, формула выглядит следующим образом:

q = Cu

Из каких элементов состоит электрическая цепь

Новички нередко задаются вопросом, из каких важных элементов состоит электрическая цепь. Такими составляющими являются:

  • Источник тока,
  • Нагрузка,
  • Проводник.

В состав могут в том числе входить такие элементы, как устройства коммутации, а также приборы защиты.

Условные обозначения электроустройств

Для возникновения тока, необходимо соединить две точки, одна из которых имеет избыток электронов по сравнению с другой. Другими словами, необходимо создать разность потенциалов между этими двумя точками. Как раз для получения разности потенциалов в цепи применяется источник тока.

Важно! Нагрузкой считается любой потребитель электрической энергии. Этот фактор оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника энергии к нагрузке течёт по проводникам. В качестве кабеля можно использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Схема электрической цепи

Электрическая цепь, её графическое изображение, условные обозначения составляющих её элементов, а также символы представляют собой классическую схему расчетной модели. Подобный тип по-другому принимают, как эквивалентную схему замещения. По возможности, изображённая электротехника на схеме электрических цепей показывает весь процесс. Каждый реальный элемент цепи при проведении расчета заменяется элементами схемы.

Схема ЭЦ

В заключении следует отметить, что каждый элемент цепи, в зависимости от характера подключения и электротехнических свойств, может быть идентифицирован как источник энергии, либо как потребитель. Каждому участку на схеме ЭЦ соответствует проводник, либо конкретный прибор (трансформатор, выпрямитель, инвертор и другое электрооборудование). Только после правильного прочтения электрической схемы специалист может обеспечить её работоспособность.

основные элементы, пример простейшей схемы

Автор Маргарита Малиновская На чтение 7 мин. Опубликовано

Для того чтобы электроток мог протекать длительное время, необходимо выполнение нескольких условий. Одним из них является замкнутость электрической цепи. Её составные части обеспечивают создание контура, позволяющего протекать носителям зарядов. Минимальное количество необходимых для этого элементов равняется трём. Но реальная цепочка может быть сколь угодно большой, хотя некоторые части должны в ней быть обязательно.

Общие сведения

Под электрической цепью понимают объединение различных радиоэлектронных устройств, соединённых между собой проводниками. Задача такой совокупности заключается в обеспечении протекания электрического тока заданных характеристик. Параметры такой системы описывают с помощью трёх основных величин:

Электрическая цепь закрытая

  • тока — упорядоченного движения носителей заряда, вызванного под действием внешних сил, например, электромагнитным полем;
  • напряжения — работой, выполняемой для перемещения заряженной частицы из одной точки тела в другую;
  • сопротивления — величины, зависящей от импеданса каждого элемента цепи.

Существует два способа анализа электроцепи — энергетический и информационный. Под первым понимается изучение процессов, связанных с преобразованием и передачей энергии. Нахождением токов и напряжений в различных местах схемы. Второй же предполагает выяснение реакции при изменении внешнего воздействия.

Существует два состояния электрической схемы — замкнутая и разомкнутая. Если имеется разрыв в каком-то месте, через него ток течь не будет. Значит, между двумя точками разомкнутого участка не появится разность потенциалов (напряжение). Замкнутый же контур обеспечивает возможность циркулирования электрических зарядов. Связь между элементами цепи выполняется с помощью проводников. То есть тел, обладающих незначительным сопротивлением.

Открытая электрическая цепь

Для того чтобы возникло движение электронов необходим источник силы — энергии. Это генератор вырабатывающий ток или напряжение. Называют его источником. Различие между генераторами в том, что токовый умеет поддерживать постоянную силу тока на своём выходе, вне зависимости от остальной части схемы. Источник же напряжения выдаёт постоянную электродвижущую силу (ЭДС), на величину которой не влияет ток в цепи.

Вырабатываемая энергия должна куда-то направляться, то есть где-то использоваться. Устройство, забирающее себе электроэнергию, называют потребителем. В качестве его может быть любой элемент схемы, не являющийся генератором и обладающий сопротивлением.

Таким образом, простейшая электрическая цепь состоит из трёх элементов — источника энергии, проводников, потребителя. Реальная электроцепь может содержать сколь угодное количество потребителей. Одни из них могут накапливать энергию, а после отдавать, другие же только потребляют, преобразовывая её в другой вид.

Элементы электрической цепи

Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.

В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.

Электрическая цепь элементы

Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:

  • качественной — зависит от физических параметров, определяет назначение и функцию элемента;
  • количественной — характеризует величину прибора.

Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.

Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.

Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.

Электрическая цепь это

Подключение элементов в цепи может быть реализована тремя способами:

  • параллельным — начало различных устройств соединены в одной точке, а концы в другой;
  • последовательным — все части цепи подключаются поочерёдно друг к другу;
  • смешанным — комбинация двух предыдущих видов.

Перечислить все радиоэлементы довольно сложно, так как их много. Но из основных можно выделить: резистор, индуктивность, конденсатор, транзистор, диод, интегральную микросхему, светоизлучатели и фотоприемники.

Графическое изображение

Реальную или виртуальную электрическую цепь можно изобразить на рисунке. Называется она принципиальной или электрической схемой. Различие между ними в том, что на первой чертят основные блоки и их соединение, а на второй — указывают расположение и подключение.

По сути, схема является графическим изображение электрической цепи. Для обозначения тех или иных элементов используют специальные условные символы. Их рисунок имеет свой стандарт, так что любой разбирающийся в электронике или электрике сможет понять для чего предназначена та или иная схема.

Электрическая цепь

В России черчение всех типов электронных узлов выполняют согласно ГОСТ 2 .702−2011.

Например, простейшее обозначение имеют проводники — прямая линия. С их помощью показывают, как соединяются элементы. Они являются основой для любой электрической схемы. Кроме проводников и непосредственно самих элементов, в схеме всегда есть ещё два условных параметра:

  • ветвь — участок по которому протекает одинаковый ток;
  • узел — точка в которой присоединяются более двух ветвей.

Исходя из этой терминологии, можно сказать, что ветви, подключаемые к одной паре точек, будут параллельными, а замкнутый путь, проходящий по ним, образует контур. Простейшая электрическая цепь состоит из одноконтурной схемы, сложные же включают несколько контуров.

Электрическая цепь и ее составные части

Часто в условно-графическом обозначении общий провод, то есть проводник, по которому ток возвращается к генератору, обозначают специальным символом. Называют его «минус». Рисуют такое соединение с помощью двух перпендикулярных линий, подключённых к выводу блока. Направление тока на схемах не указывают, но возле некоторых элементов ставят знак плюс или используют другое обозначение положительного вывода.

Отдельно следует отметить схемы замещения. Их используют для удобства, заменяя реальное устройство эквивалентными пассивными радиоэлементами. Такой подход применяют, когда нужно выполнить расчёт параметров полной электросхемы или какой-то её части. Отдельные блоки на схемах очерчивают пунктирными линиями. С их помощью объединяют части цепи по функциональному признаку. Например, разделяют силовую часть от вторичной, логическую от преобразовательной.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Электрическая цепь пример

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

  1. Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
  2. Лампочка. Подойдёт накаливания. Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
  3. Ключ. Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
  4. Провода. В сборке можно использовать любые медные проводники сечением от 0,25 мм2.

Сборка конструкции выполняют следующим образом. К плюсу батарейки подсоединяют провод, подключённый другим концом к выключателю. Затем свободный конец ключа подпаивают к любому из выводов лампы. Другой электрод осветительного устройства подсоединяют к минусу источника. Схема готова. Если теперь перевести ключ в положение «вкл» появится свет.

Презентация к уроку: Простейшая электрическая цепь

Слайд 1

Электрическая цепь

Слайд 2

БЫТОВАЯ ТЕХНИКА Бытовая техника —техника, используемая в быту. Предназначается для облегчения домашних работ, для создания комфорта в повседневной жизни человека. Бытовая техника — электрические механические приборы, которые выполняют некоторые бытовые функции, такие как приготовление пищи или чистка

Слайд 4

Электрическая цепь — соединенные между собой электрическими проводами источники тока, потребители приборы управления. ТЕРМИН «ЭЛЕКТРИЧЕСТВО» ПРОИЗОЩЛО ОТ СЛОВА «ЭЛЕКТРОН »

Слайд 5

Источник тока техническое устройство вырабатывающее электрическую энергию (гальванический элемент, аккумулятор, электрический генератор и др.)

Слайд 6

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Слайд 7

Потребитель электроэнергии — устройство, работающее от электрической энергии ( осветительные и электронагревательные приборы, электрические двигатели, холодильники, телевизоры и др.)

Слайд 8

Прибор управления — устройство, предназначенное для включения и выключения потребителей электроэнергии ( электрический выключатель, электромагнитное реле и др.)

Слайд 9

Электрические провода – для передачи электроэнергии от источника тока к потребителю ( монтажные провода, соединительные шнуры бытовых приборов) ПРОВОДА И ШНУРЫ СОСТОЯТ ИЗ ТОКОПРОВОДЯЩЕЙ ЖИЛЫ И ИЗОЛЯЦИИ ТЕРМИН «МОНТАЖ» , В ПЕРЕВОДЕ С ФРАНЦУЗКОГО ОЗНАЧАЕТ «СОБИРАТЬ», «УСТАНАВЛИВАТЬ»

Слайд 10

ПРОСТЕЙШАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ВЫКЛЮЧАТЕЛЬ ИСТОЧНИК ТОКА ПОТРЕБИТЕЛЬ

Слайд 11

ЭЛЕКТРОМОНТАЖНЫЕ ИНСТРУМЕНТЫ «КУСАЧКИ» перекусить провод «МОНТАЖНЫЙ НОЖ» зачистить провод «ГРУГЛОГУБЦЫ» сделать контактное кольц о «ПЛОСКОГУБЦЫ» обжать соединённые провода «НОЖНИЦЫ» отрезать изоляционную ленту

Слайд 12

Плоскогубцы ( англ . Pliers ) — шарнирно- губцевый инструмент предназначенный для захвата, манипулирования и перекусывания проволоки.

Слайд 13

Пассати́жи ( от фр. pince — зажим и фр. tige — стержень) — многофункциональный ручной слесарно-монтажный инструмент, предназначенный для зажима и захвата труб и деталей разных форм [1] . Пассатижи , в отличие от плоскогубцев, имеют одну или две пары зубчатых выемок для захвата и поворота цилиндрических деталей, а также насечку — как на плоской части, так и на выемках.

Слайд 14

Круглогубцы — ручной слесарно-монтажный (если ручки изолированы — то электромонтажный) инструмент. Щипцы с круглыми в сечении концами (губками). Предназначены для точечного захвата проволоки, металлической жилы, прутка, и выполнения равномерного изгиба. Основное предназначение круглогубцев – сгибание проволоки и узких тонких пластин.

Слайд 15

МОНТАЖНЫЙ НОЖ для зачистки провода

Слайд 16

Электроизоляционная лента ( изолента ) —материал , предназначенный для обмотки проводов и кабелей с целью их электроизоляции .

Слайд 17

Провод — электротехническое изделие, служащее для соединения источника электрического тока с потребителем электрической схемы. Электрический провод ( провод ) — кабельное изделие, содержащее одну или несколько скрученных проволок или одну или более изолированных жил, поверх которых лёгкая неметаллическая оболочка

Слайд 18

СОЕДИНИТЕЛЬНЫЕ ШНУРЫ

Слайд 19

ПРАВИЛА БЕЗОПАСНОСТИ Не пользуйтесь светильником, если имеются оголённые провода Во избежании поражения током включайте и выключайте светильник сухими руками Заменяйте электрические лампы и протирайте светорассеиватели только при отключенных светильниках

Слайд 20

Электриком является специалист, обладающий знаниями в области электричества, электрического снабжения и электрической безопасности. Для этого требуется много знаний.

Простейшая электрическая цепь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Простейшая электрическая цепь

Cтраница 1

Простейшая электрическая цепь ( рис. 1.1, а) состоит из источника И и приемника Я электрической энергии, соединенных проводами. Цепь может содержать переключатель К для замыкания и размыкания цепи и измерительные приборы: амперметр А и вольтметр V, измеряющие ток и напряжение. Сопротивление амперметра мало и приближенно принимается равным нулю, сопротивление вольтметра велико и может быть принято равным бесконечности.  [1]

Простейшая электрическая цепь показана на рис. 1.2, где источник питания с внутренним сопротивлением гс образует так называемый внутренний участок цепи, а соединительные провода с приемником ( сопротивление г) — внешнюю часть цепи. Таким образом, в электрической цепи можно выделить участки, содержащие как активные, так и пассивные элементы.  [2]

Простейшая электрическая цепь, состоящая из последовательно соединенных емкости С и индуктивности L, при пренебрежении активным сопротивлением r — представляет идеальный колебательный контур, в котором роль инерции играет индуктивность, а упругости — емкость.  [3]

Простейшая электрическая цепь ( рис. 12) содержит источник электрической энергии Г, приемник энергии / 7 и два линейных провода Л и Л2, соединяющих источник с приемником энергии. Линейные провода присоединяются к источнику электрической энергии при помощи двух зажимов, называемых положительным () и отрицательным ( -) полюсами.  [5]

Простейшая электрическая цепь состоит из источника напряжения, потребителей электрической энергии и проводов, которые соединяют зажимы источника напряжения и потребителя. Источник напряжения дает электрическую энергию, а потребитель преобразует ее в другие виды энергии. Совокупность связанных между собой источника электрической энергии, потребителя, соединительных проводов и рубильника называется электрической цепью. Электрический ток может протекать только по замкнутой цепи.  [6]

Простейшая электрическая цепь, показанная на рис. 71, состоит из трех основных элементов: источника тока, потребителя тока — нагрузки и проводников, соединяющих нагрузку с источником тока. Здесь резистор R — нагрузка, которой может быть, например, нить накала электрической или электронной лампы.  [8]

Простейшая электрическая цепь ( рис. 4) состоит из источника питания ЯД, вольтметра V для измерения эдс, амперметра А для измерения тока, выключателя В и переменного резистора R — прибора, сопротивление которого можно изменять в определенных пределах.  [10]

Простейшей электрической цепью, в которой может наблюдаться резонанс токов, является цепь с параллельным соединением катушки индуктивности и конденсатора.  [11]

Примером простейшей электрической цепи является цепь, состоящая из индуктивности L и активного сопротивления R. Такая цепь часто встречается в практике. Если подключить эту цепь к источнику постоянного напряжения U, то установившийся ток будет равен U / R; при коротком замыкании такой цепи ток равен нулю.  [12]

Для простейшей электрической цепи ( рис. 8, а) заданы напряжение холостого

Замкнутая электрическая цепь — Основы электроники

  

Простейшая электрическая цепь состоит из источника электрической энергии, ее потребителя и соединительных проводов (см. рис. 1).

Рисунок 1. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).

Кроме того, в электрическую цепь обычно включаются электроизмерительные приборы и приборы для замыкания и размыкания цепи (рис. 2).

Рисунок 2. Замкнутая электрическая цепь

 

Любая замкнутая электрическая цепь делится на две части: внешнюю, называемую внешним участком цепи, и внутреннюю, называемую внутренним участком цепи.

Внешний участок (внешняя цепь) состоит из одного или нескольких потребителей электрической энергии, соединительных проводов и различных приборов, включенных в эту цепь. Внутренний участок (внутренняя цепь) представляет собой сам источник электрической энергии.

Соберем замкнутую электрическую цепь, взяв, например, в качестве источника электрической энергии аккумуляторную батарею (рис. 2,3), а в качестве потребителя электрической энергии — электрическую лампочку накаливания. Включим в цепь амперметр и выключатель, при помощи которого можно замыкать и размыкать цепь.

Рисунок 3. Электрическая схема простейшей цепи

 

Когда выключатель разомкнут, т. е. когда электрическая цепь разорвана, лампочка не горит, а стрелка амперметра стоит на нуле, т. е. электрического тока в цепи нет. Замкнув цепь, нетрудно убедиться, что лампочка загорится, а стрелка амперметра отклонится на какой-то угол, что свидетельствует о наличии в цепи электрического тока.

Из этого опыта можно сделать вывод, что электрический ток проходит только по замкнутой цепи. Следовательно, непременным условием наличия электрического тока в цепи является надежное соединение проводниками источника электрической энергии с ее потребителями.

Источниками электрической энергии для питания радиотехнической аппаратуры служат гальванические элементы, аккумуляторы, генераторы и т. д.

Потребителями электрической энергии в электро- и радиотехнических устройствах являются электродвигатели, сельсины, реле, электронно-лучевые трубки, дискретные элементы (резисторы, диоды, транзисторы …), интегральные схемы и т.п. Для соединения источников и потребителей электрической энергии применяются металлические проводники различной формы, длины и толщины, изолированные один от другого.

Вернемся вновь к простейшей замкнутой цепи. Соберем схему, показанную на рис. 4, и будем поочередно включать амперметр в разные точки цепи, заметим, что куда бы прибор ни был включен, он покажет одну и ту же величину тока.

Рисунок 4. В любой из точек такой цепи амперметр покажет одну и ту же величину тока

 

Исходя из этого можно сделать такой вывод: в замкнутой электрической цепи, не имеющей ответвлений, величина тока на всех участках цепи одинакова.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий
Электрическая схема — Простая английская Википедия, свободная энциклопедия

Электрическая цепь — это путь, по которому протекают электроны от источника напряжения или тока.

Точка, в которой эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «обратной» или «заземлением». Точка выхода называется «возврат», потому что электроны всегда оказываются у источника, когда они завершают путь электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, в которой они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка на электрическую цепь может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, такой как нагрузка на выходе гидроэлектростанции.

Цепи используют две формы электропитания: переменный ток (переменный ток) и постоянный ток (постоянный ток).AC часто питает большие приборы и двигатели и генерируется электростанциями. Постоянный ток питает аккумуляторные транспортные средства и другие машины и электронику. Преобразователи могут изменять переменный ток в постоянный и наоборот. Высоковольтная передача постоянного тока использует большие преобразователи.

Экспериментальная электронная схема

Электронные схемы обычно используют источники постоянного тока. Нагрузка на электронную схему может быть такой простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы могут быть подключены последовательно или параллельно. Сопротивление в последовательных цепях является суммой сопротивления.

Схема или схема соединений — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Создание чертежей соединений ко всем компонентам в нагрузке схемы облегчает понимание того, как соединяются компоненты схемы.Чертежи для электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие диаграммы, эти диаграммы обычно рисуются чертежниками, а затем печатаются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема представляет собой схему электрической цепи. Схемы представляют собой графическое представление основных соединений в цепи, но они не являются реалистичными изображениями цепи. Схемы используют символы для представления компонентов в цепи.Условные обозначения используются в схемах для представления потоков электроэнергии. Общее соглашение, которое мы используем, — от положительного до отрицательного конца. Реалистичный путь прохождения электричества — от отрицательного к положительному полюсу.

На принципиальных схемах

используются специальные символы, распознаваемые всеми, кто использует чертежи. Символы на чертежах показывают, как такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты, соединяются вместе.Диаграммы очень помогают, когда работники пытаются выяснить, почему схема не работает правильно.

Ток, протекающий в электрической или электронной цепи, может внезапно увеличиться при отказе детали. Это может привести к серьезному повреждению других компонентов в цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить плавкий предохранитель или устройство, называемое «выключателем». Автоматический выключатель разомкнет или «разорвет» цепь, когда ток в этой цепи станет слишком высоким, или предохранитель «перегорит».Это дает защиту.

Устройства защиты от замыкания на землю (G.F.I.) [изменить | изменить источник]

Стандартный возврат для электрических и электронных цепей — заземление. Если электрическое или электронное устройство выходит из строя, оно может разомкнуть цепь возврата на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит током.

Во избежание поражения электрическим током и поражения электрическим током, замыкание на землю прерывает устройства, обнаруживая обрыв цепи на массу в подключенных электрических или электронных устройствах. При обнаружении разомкнутой цепи на массу, G.F.I. Устройство немедленно открывает источник напряжения для устройства. G.F.I. Устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепи.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и подаваемые.Их использование обычно перегорает, но иногда нет. Выполнение этого с аккумулятором может привести к возгоранию.

,

Как работают электрические цепи

Если вы не знаете, как работают электрические цепи или что люди имеют в виду, они говорят о вольтах и ​​усилителях, надеюсь, я смогу пролить немного света. Я намерен, чтобы этот пост был простым введением в электрические цепи для тех, кто не знает, но заинтересован.

Собираемся держать пост простым и покрыть следующее:

  • Основные части электрической цепи (напряжение, ток и сопротивление)
  • Как связаны основные части (знаменитый закон Ома)
  • Мощность в электрической цепи
  • Связывая все вместе с несколькими примерами

Работа со схемами

Говоря об электрических цепях, следует учитывать три основные величины — напряжение, ток и сопротивление.

Напряжение — это движущая сила, которая заставляет все работать. Для большинства людей это, вероятно, наиболее знакомая величина. Изображение ниже иллюстрирует различные напряжения.

Ток — это поток электричества вокруг цепи. Например, если вы подключите лампу к розетке, показанной выше, электричество будет течь по проводам и преобразуется в тепло и свет в лампе. Чтобы течь электричество, вам нужна движущая сила — обратно к напряжению, которое является движущей силой.

Часто при попытке объяснить напряжение и ток используется водная аналогия. Напряжение эквивалентно давлению воды и текущему потоку воды по трубам.

В любой электрической цепи есть сопротивление потоку тока. Величина сопротивления зависит от того, что подключено в цепи. Чем больше сопротивление в цепи, тем меньше протекает ток. В цепи лампы сопротивление — это правильная величина, чтобы обеспечить достаточный ток, чтобы лампа горела — если бы сопротивление было меньше, ток был бы больше, и лампа перегорела бы, если бы большего тока было недостаточно, чтобы лампа свечение.

Если вы можете определить напряжение, ток и сопротивление, тогда вы сможете понять, как работают электрические цепи.

На рисунке ниже показан нагреватель, подключенный к розетке. Также показано схематическое представление схемы, показывающей напряжение возбуждения, ток и сопротивление электрическому току, предлагаемые нагревателем.

Если вы знаете значение двух из этих параметров, вы всегда можете работать со значением третьего.Около 1825 года ученый по имени Георг Ом исследовал эти отношения и придумал то, что известно как закон Ома. В своих экспериментах он обнаружил, что в цепи напряжение, деленное на ток, всегда было равно константе — сопротивлению:

— закон Ома; R — сопротивление, V — напряжение и ток I —

Единицей, используемой для напряжения, является Вольт (В), для тока — Ампера (А), а для сопротивления — Ом (Ом), названный по имени Георг Ом.

В дополнение к форме уравнения, показанной выше, закон Ома также можно переставить, чтобы найти либо напряжение, либо ток с учетом других параметров:

Если вы до сих пор со мной, значит, у вас есть хорошее базовое понимание того, как работают электрические цепи. Чтобы привести вещи в перспективу, пара примеров поможет:

Рассмотрим схему нагревателя, показанную выше. Если напряжение розетки 230 В, а сопротивление нагревателя 53 Ом (что характерно для нагревателя 1 кВт).Тогда из приведенного выше ток будет 230/53 = 4,4 А (ампер)

В качестве второго примера, сопротивление человеческого тела составляет примерно 1000 Ом. Если вы случайно соприкоснетесь с проводником под напряжением 230 В, ток, протекающий через ваше тело, составит 230/1000 = 0,23 А

    • Безопасность: Любой ток в теле, превышающий 0,05 А, может привести к серьезным травмам или смертельному исходу. При типичном сопротивлении тела в 1000 Ом напряжение ниже 50 В может вызвать протекание этого тока.Когда напряжение превышает 50 В, вы должны принять как можно больше мер, чтобы не допустить контакта с проводниками под напряжением.

Кое-что о единицах

Приведенные выше примеры привели к токам 4,4 А и 0,23. При работе с электрическими цепями величины напряжения, тока и сопротивления могут варьироваться от миллионов до мелких фракций. Этот диапазон чисел от очень большого или очень маленького может затруднить чтение величин.Для облегчения чтения чисел используются префиксы — два наиболее распространенных: килограмм (к) и мили (м):

— килограмм (к) означает просто 1000 (тысяча). Чтобы преобразовать что-то в килограмм, просто разделите на 1000. Например, 132 000 В можно записать как 132 кВ (киловольт) или 43 000 А как 43 кА.

— мили (м) является своего рода противоположностью кило; это составляет 1/1000 (одну тысячную). Для преобразования в мили просто кратное 1000. Например, 0,23 А будет 230 мА (миль-ампер)

Немного по мощности

Прежде чем подвести итоги того, через что мы прошли, поговорим о силе.Причина, по которой у нас есть электрические цепи, состоит в том, чтобы сделать некоторую полезную работу для нас. В лампе это должно обеспечить свет, в нагревателе, чтобы дать нам тепло и в электрической машине, чтобы вести нас вокруг. Электрические цепи передают энергию от электростанции к подключенному оборудованию, чтобы мы могли извлечь из них полезную работу.

Мощность (P) измеряется в ваттах (Вт), и если вы знаете ток и сопротивление цепи, вы можете рассчитать это (вам нужно доверять мне по уравнению):

Таким образом, мощность в любом элементе оборудования равна текущему квадрату умноженного на его сопротивление — на самом деле довольно просто.Если вы хотите поиграть с математикой, вы можете объединить это с законом Ома, чтобы выразить по-разному:

Пример: рассмотрим пример нагревателя, приведенный выше — сопротивление составляет 53 Ом, и мы рассчитали ток как 4,4 А. Это дает мощность 4,4 2 x 53 = 1026 Вт (или приблизительно 1 кВт).

Резюме

Чтобы подвести итог, электрические цепи имеют три взаимосвязанные величины — напряжение, ток и сопротивление.Напряжение — это движущая сила, которая перемещает ток по цепи, обеспечивая подачу энергии на оборудование. Сопротивление обеспечивается любым элементом оборудования для ограничения протекания тока в цепи. Простая связь существует между этими тремя параметрами и называется законом Ома.

Надеемся, что этот пост помог лучше понять электричество и электрические цепи. Если у вас есть какие-либо комментарии, что-либо или предложения по улучшению поста, просто добавьте ниже.

,
электрических цепей? Все дело в узлах, ветвях и петлях

Узлы, ветвях и петлях

Поскольку элементы электрической цепи могут быть взаимосвязаны несколькими способами, нам необходимо понять некоторые основные понятия топологии сети. Чтобы провести различие между схемой и сетью, мы можем рассматривать сеть как взаимосвязь элементов или устройств, тогда как схема — это сеть, обеспечивающая один или несколько замкнутых путей.

Electric Circuits? It’s All About Nodes, Branches, and Loops Электрические цепи? Все дело в узлах, ветвях и петлях

При рассмотрении топологии сети принято использовать слово сеть вместо схемы .Мы делаем это, хотя слово «сеть» и «цепь» означают одно и то же при использовании в этом контексте.

В топологии сети мы изучаем свойства, относящиеся к размещению элементов в сети и геометрической конфигурации сети. Это все об элементах схемы, таких как ветви, узлы и петли.


Филиалы //

Ветвь представляет собой отдельный элемент, такой как источник напряжения или резистор. Другими словами, ветвь представляет собой любой двухтерминальный элемент.

Схема на рисунке 1 имеет пять ветвей, а именно: источник напряжения 10 В, источник тока 2 А и три резистора.

Nodes, branches, and loops Nodes, branches, and loops Рисунок 1 — Узлы, ветви и петли

Узлы //

Узел — это точка соединения между двумя или более ветвями .

Узел обычно обозначается точкой в ​​схеме . Если короткое замыкание (соединительный провод) соединяет два узла, эти два узла составляют один узел.Схема на рисунке 1 имеет три узла a , b и c .

Обратите внимание, что три точки, которые образуют узел b , соединены идеально проводящими проводами и поэтому составляют единую точку. То же самое верно для четырех точек, образующих узел с . Мы показываем, что схема на рис. 1 имеет только три узла, перерисовывая схему на рис. 2. Две схемы на рис. 1 и 2 идентичны.

Однако, для ясности, узлов b и c распределены с идеальными проводниками, как на рис.1.

The three-node circuit of Figure 1 is redrawn The three-node circuit of Figure 1 is redrawn Рисунок 2 — Трехузловая схема на рисунке 1 перерисована

Петли //

Контур — это любой замкнутый путь в цепи .

Цикл — это замкнутый путь , образованный путем запуска в узле , прохождения через набор узлов и возврата к начальному узлу без прохождения через какой-либо узел более одного раза. Цикл называется независимым, если он содержит хотя бы одну ветвь, которая не является частью какого-либо другого независимого цикла.Независимые циклы или пути приводят к независимым наборам уравнений.

Можно сформировать независимый набор циклов, где один из циклов не содержит такой ветви. На рис. 2 abca с резистором 2 Ом независимы. Второй контур с резистором 3 Ом и источником тока независим. Третьим контуром может быть тот, в котором резистор 2 Ом подключен параллельно резистору 3 Ом. Это формирует независимый набор циклов.

Сеть с b ветвями , n узлов и l независимых петель будет удовлетворять основной теореме топологии сети //

b = l + n — 1

Как показывают следующие два определения, топология цепи имеет большое значение для изучения напряжений и токов в электрической цепи.

Два или более элемента входят в серию , если они имеют общий общий узел и, следовательно, несут одинаковый ток.

Два или более элементов расположены параллельно , если они подключены к одним и тем же двум узлам и, следовательно, имеют одинаковое напряжение на них.

Элементы находятся в серии , когда они соединены цепью или соединены последовательно, конец в конец. Например, два элемента последовательно, если они совместно используют один общий узел, и никакой другой элемент не связан с этим общим узлом. Элементы параллельно подключены к одной и той же паре клемм.

Элементы также могут быть соединены так, чтобы они не были ни последовательно, ни параллельно .

В схеме, показанной на рис. 1, источник напряжения и резистор 5 Ом подключены последовательно, потому что через них будет проходить один и тот же ток. Резистор 2 Ом, резистор 3 Ом и источник тока расположены параллельно, потому что они подключены к одним и тем же двум узлам b и c и, следовательно, имеют одинаковое напряжение на них.Резисторы 5 Ом и 2 Ом не включены ни последовательно, ни параллельно.


Узел Проблемы с напряжением в схемотехническом анализе (ВИДЕО)

Ссылка // Основы электрических цепей Чарльза К. Александра и Мэтью Н. О. Садику (Покупка из Амазонки)

,
Что такое электрическая блокировка — схемы питания и управления

Электрическая блокировка

Что такое электрическая блокировка?

Соединить цепь двигателя таким образом, чтобы второй двигатель не запускался до тех пор, пока не будет запущен первый двигатель, а третий двигатель не будет работать, пока не будет запущен второй и так далее. Этот вид подключения цепи двигателя называется блокировкой.

Ниже приведена простая схема управления электрической блокировкой.

щелкните изображение, чтобы увеличить Electrical Interlocking system Electrical Interlocking system

Работа с электрической блокировкой

Когда мы нажимаем кнопку ON-1 для подачи питания на контактор M1 (или запускает двигатель M1), затем замыкаем цепь через предохранитель, расцепитель реле перегрузки , OFF Нажмите -1 и ON Нажмите 1. И двигатель M1 начинает работать.

При энергиях контактора M1 все нормально замкнутые (NC) звенья открыты, а другие нормально разомкнутые (NO) звенья, используемые в цепи, замкнуты.

При энергиях m1 нормально разомкнутая (NO) линия будет немедленно закрыта, что параллельно ON-Push 1.Это называется удерживающим звеном, то есть он удерживает двигатель в состоянии запуска. Теперь, двигатель все еще будет работать, даже если мы оставим (отключим, чтобы остановить) ON-Push 1.

Нормально разомкнутая (NO) линия связи также используется в линии 2. Когда M1 запитывается, эта линия (NO M1 в линии 2) будет также будет закрыт двигатель, поэтому двигатель M1 начнет работать, таким образом, питание также достигнет положения ON Push 2. Теперь, если мы нажмем кнопку ON-Push 2, тогда будет запущен и второй двигатель M2, кроме того, Нормально разомкнутые (НЕТ) звенья подключенного контактора М2 в цепи также будут немедленно закрыты.И удержание будет происходить через соединение M2, которое параллельно с ON-Push 2. Таким образом, двигатель 2 начнет работать.

Обратите внимание, что двигатель 2 не запустится до тех пор, пока не будет запущен двигатель 1, т. Е. Если не будет закрыта связь М1 двигателя 1 Аналогично, двигатель 3 не запустится, пока не будет запущен двигатель 2, т.е. двигатель 3 запустится (нажатием кнопки включения двигателя 3 = M3), чтобы запустить после запуска двигателя 2.

В каждой цепи управления, предохранитель управления и перегрузка реле подключены для защиты от короткого замыкания и перегрузки соответственно.

Вы также можете прочитать:

Модификация в электрической цепи управления блокировкой

Это простая электрическая схема блокировки. Множество цепей, аналогичных этой цепи блокировки, используются в промышленности. Блокировка цепи зависит от характера работы и задачи, которая должна выполняться двигателями. Таким образом, мы можем очень легко использовать и создавать любые виды цепей блокировки для любых целей.

Короче говоря, мы можем изменить работу и управление двигателями, внеся некоторые изменения в приведенную выше простую электрическую схему управления блокировкой.Например, если нам нужно, чтобы двигатель 1 остановился, когда двигатель 3 начнет работать, то мы можем использовать нормально закрытое (NC) соединение M3 в строке 1. Таким образом, когда контактор M3 запитывается, и двигатель 3 начинает работать, затем нормально замкнутый (NC) канал двигателя 1, подключенного к линии 1, сразу же откроется (после включения контактора M3), что приведет к обесточиванию контактора M1, следовательно, двигатель M1 остановится.

Мы также можем настроить вышеуказанную электрическую схему управления блокировкой с небольшими изменениями для звезды и запустить каждый двигатель в отдельности.

Трехфазные асинхронные двигатели работают с двумя скоростями в одном направлении и двумя скоростями в двух направлениях управления двигателем и асинхронных двигателей с обратным ходом — это типы электрической блокировки.

Ниже приведена другая электрическая схема управления блокировкой.

щелкните по изображению для его увеличения Electrical Interlocking control circuit diagram Electrical Interlocking control circuit diagram.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *