Эксплуатация аккумуляторов литий ионных: зарядка и советы по эксплуатации – 4PDA .:. Всё в порядке, но…

Содержание

маркетинговые уловки и распространенные ошибки / Habr

Неоднократно сталкиваюсь в статьях и комментариях (в статьях все же гораздо реже) с использованием неправильных данных или названий, которые впоследствии приводятся, как аргументы, хотя на самом деле они ошибочны изначально. И эти ошибки распространяются по всем ресурсам, включая Гиктаймс.

Этой статьей я бы хотел разъяснить некоторые моменты и провести своеобразный ликбез.

Литий-полимерные аккумуляторы


Сразу с главного — в свободном доступе на рынке не существует литий-полимерных аккумуляторов в техническом смысле этого слова. В англоязычном мире с этим уже разобрались, а вот на постсоветском пространстве существуют некоторые издержки в терминологии, которыми пользуются маркетологи. Маленькое отступление — не то, чтобы этим не пользовались в других регионах, но там хотя бы есть возможность проверки этой информации на родном языке.
Немного истории

Любой литий-ионный аккумулятор имеет 4 основных составляющих — два электрода (анод и катод), электролит и сепаратор. Все 4 элемента развивались и развиваются дальше. Для электролита на начало исследований (1970-ые) было предложено два варианта — жидкий или твердый электролит. В то время твердый электролит обещал больше перспектив в эксплуатации — электролит не вытекает при повреждении корпуса, сам элемент более прочный. Главным недостатком было и остается высокое сопротивление твердого электролита, оно сводит на нет физические характеристики.

Фактически снижение количества ресурсов, выделяемых компаниями на разработку твердых электролитов, произошло в начале 1990-х, когда Sony вывела на рынок аккумулятор с жидким электролитом. Сама компания Sony еще в 1988 году была уверена в будущем успехе твердого электролита.

Не смотря на ориентацию на жидкий электролит компании не перестали искать альтернативы. Одним из вариантов стали так называемые гибридные электролиты. Фактически для них используется сепаратор с мелкими отверстиями и тем же жидки электролитом. Хотя он на ощупь кажется сухим, на самом деле количество электролита в нем не отличается от подобного в обычном аккумуляторе. Как в принципе и конструкция:


Схематическая модель литий-ионного аккумулятора с катодом LiCoO

2 и графитовым анодом из Википедии на немецком языке.

Подобные аккумуляторы довольно распространены, их коммерческое распространение началось еще в начале 2000-х, но физически и химически это те же самые литий-ионные аккумуляторы с жидким электролитом и их в общем не очень много.

Что же представлено на рынке?

Одним из способов классификации аккумуляторов является его корпус. На сегодня существуют три популярных способа упаковки:
  • Цилиндрические ячейки
  • Призматические ячейки
  • «Мешочек» или pouch-bag ячейки

Первый тип аккумуляторов известен своим использованием в ноутбуках и автомобилях Тесла (там используется его самый распространенный размер 18650).

Второй тип является измененной формой цилиндрических. Алюминиевый корпус, прямоугольник или квадрат в поперечном сечении. Популярен для стационарного применения и в транспорте.

Третий тип имеет мягкий корпус и не всегда оснащается встроенной системой защиты. Фактически удешевленный вариант призматической ячейки. Этот тип аккумуляторов используется, в частности, в мобильных телефонах.

Последние в списке и есть те самые «полимерные». Они так называются по нескольким причинам. Самый наглый способ маркетологов — корпус из полимеров, потому и «полимерные».

Второй вариант — использование полимерного мелкопористого сепаратора. Фактически ничем не отличается от обычного литий-ионного аккумулятора.

Третий вариант, который я не встречал — давать название «полимерный» на основании использования полимерных элементов в качестве основ катодов, анодов и прочих элементов. Как правило попадает в множество аккумуляторов в пластиковом корпусе.

Проблемы терминологии

При разработке концепции идея была такова, что под понятием «жидкий электролит» понимались жидкий или гелеобразный раствор соли лития, в то время как под понятием «твердый электролит» (solid electrolyte) — твердое состояние вещества. Так как возникло желание продать то, что обещалось но чего нет, то сегодня даже в среде исследователей гелевый электролит вносят в перечень «твердых» электролитов, хотя его характеристики все же скорее гибридные. Потому можно встретить описание в научных работах «твердый гелевый электролит», которое некоторыми учеными считается вводящим в заблуждение.
Будущее полимерных электролитов

Разработки ведутся и в перспективе возможно появление аккумуляторов с настоящим полимерным электролитом. Однако по состоянию на 2015 год лабораторные образцы полимерных электролитов на основе органической химии не показывали ощутимого прогресса, потому на дату публикации статьи в обозримом будущем не предвидится массового ухода от жидкого электролита.

Проблемы с наименованием типов аккумуляторов


На рынке представлено несколько различных типов литий-ионных аккумуляторов. Они имеют различные наименования, которые позволяют описывать их характеристики в плане емкости или безопасности. В целом можно встретить следующие типы:
  • Литий-кобальтовые с катодом LiCoO2 — самые емкие модели имеют графитовый анод.
  • Литий-марганцево-оксидные с катодом LiMn2O4, Li2MnO3 или LMnO, последние могут выступать как просто литий-марганцовые
  • Литий-никель-марганец-кобальт-оксидные или NMC с катодом LiNiMnCoO2
  • Литий-железо-фосфатные с катодом LiFePO4 (LFP)
  • Литий-никель-кобальт-алюминий-оксидные (NCA) с катодом LiNiCoAlO2
  • Литий-титанат-оксидные (LTO) с анодом Li4Ti5O12

Сразу можно заметить неравномерность наименований. Некоторые названы в честь катода, некоторые — в честь анода. И если в первом случае еще можно попытаться угадать с высокой степенью вероятности, что анод будет графитовый, то в случае названия по аноду остается только гадать. Также на сегодня ведутся разработки и в принципе можно найти на рынке аккумулятор с катодом LiFePO
4
и анодом Li4Ti5O12, т.е. литий-железо-фосфатные литий-титанатовые, которые в этой системе не имеют простого маркетингового наименования По ссылке — научная статья 2013 года с испытаниями такого аккумулятора.

Причина существования такого большого числа катодов и анодов аккумуляторов в различных требованиях к аккумуляторам. Где-то нужна бóльшая безопасность, а где-то емкость или мощность. Получить представление о запасаемой энергии можно исходя из того, что каждый тип катода и анода имеет разный потенциал, как видно из изображений ниже (в качестве потенциала в 0 В выбирается потенциал металлического лития, больше разница напряжений — больше мощность, энергетическая плотность зависит от количества атомов лития):


Общая схема с потенциалами от университета г. Киль. Источник


Материал из статьи 2013 года авторов Jiantie Xu, Shixue Dou и др. Источник


Еще одна картинка от Purdue School of Engineering and Technology. Источник

Общее представление о причинах может давать следующее грубое изображение связи потенциалов элементов и возможности металлизация лития при очень низком разряде или термической нестабильности при перезаряде:


Изображения взято из курса лекций

Самые небезопасные в эксплуатации из представленных на рынке — литий-кобальтовые с графитовый анодом, самые безопасные — с катодом LiFePO4 и анодом Li4Ti5O12. Естественно, наличие BMS (Battery Management System) уменьшает риски, но пренебрегать ими не стоит, тот же слишком сильный разряд эта система предотвратить не сможет, что критично для аккумуляторов с графитовым анодом.

Распространенные ошибки


Общие ошибки

Самая главная и часто встречаемая ошибка — противопоставление «обычному литий-ионному аккумулятору». Как видно выше, такого понятия, как «обычный» просто нет. И разница в напряжениях может быть самой разной для вроде бы одинаковых катодов и одинаковой для разных наборов катодов и анодов.

Вторая ошибка, не столь существенная, связанная с предыдущим пунктом, написание материала катода LiFePO4 следующим образом — LiFePo4. Здесь путаница довольно распространенная и сразу показывает, насколько можно доверять такому источнику.

Еще одна крупная ошибка — противопоставление LiPo-аккумулятора литий-ионному. Здесь несколько вариантов сравнения. Первое — это общее, связанное с заблуждением о существовании на рынке аккумуляторов с полимерным электролитом. Второе, имеющее более узкое применение, которое обычно озвучивается в следующем виде «литий-полимерный аккумулятор [речь о корпусе] лучше/хуже LFP/LTO/NCA (подставить нужное)».

Здесь идет смешение типа корпуса и начинки.

Например, по этой ссылке можно прочитать о LFP аккумуляторе в формате литий-полимерного (призматический корпус в данном случае).

Аккумулятор А долговечнее аккумулятора Б

Это еще одно своеобразное перекручивание фактов для аргументации при продаже. Такой метод применяется для разных типов аккумуляторов, но чаще всего сравнивается LFP вариант аккумулятора и литий-кобальтовый или NMC с графитовым катодом. В статьях в интернете, как рекламных так и просто популярных, можно найти соотношение полных эквивалентных циклов в 2000 к 500 в пользу LFP и как результат — рассказ о значительном превосходстве первого.

Здесь есть несколько неточностей. Во-первых, бóльшее число статей по литий-кобальтовым датировано 2005-2006 годами, в то время как для LFP — с 2012-2013. Данные по циклам основаны на этих статьях. Тем не менее разработки на останавливались и были одинаково активными для всех типов аккумуляторов и разрыв не настолько большой в один и тот же временной интервал. Во-вторых, не уточняется объем энергии, который передаст за свою жизнь аккумулятор, а ведь при равных размерах LFP имеет меньшую емкость.
Что же касается главного преимущества — бóльшего числа циклов, то если брать новые исследования и сравнивать в равных условиях серийные образцы, то разница не такая и драматическая. В общей сложности она составляет 20-30% (800 циклов против 1000 для 40°C, например), что не всегда оправдывает покупку того же LFP, так как будет передано меньше энергии за счет меньшей разницы напряжений за весь срок эксплуатации.

Источников с непосредственным сравнением нет, поскольку сам процесс тестирования длительный и дорогостоящий, осложненный договорами про не раскрывание названий участников, но сравнивая по ряду данных можно сделать вывод об аналогичных характеристиках на сегодня для всех литий-ионных аккумуляторов в плане срока эксплуатации во всех возможных сценариях, в т.ч. и простого хранения. Эти данные приведены, например, в источниках 1, 2, 3, 4, 5, 6, 7.

Прочие источники


BU-206: Lithium-polymer: Substance or Hype?

Kazuo Murata, Shuichi Izuchi, Youetsu Yoshihisa «An overview of the research and development of solid polymer electrolyte batteries»

A. Manuel Stephan, K.S. Nahm «Review on composite polymer electrolytes for lithium batteries. Polymer»

D. Golodnitskya, E. Straussc, E. Peleda and S. Greenbaum «Review — On Order and Disorder in Polymer Electrolytes»

Моя предыдущая статья про литий-ионные аккумуляторы — Эксплуатация литий-ионных аккумуляторов

Правила эксплуатации литий-ионных аккумуляторов | Сайт об электромобилях

При существующем темпе роста смышлености (SMART) контроллеров устройств, мы скоро будем нижайше кланяться своему аккумулятору с просьбой отдать толику его энергии для работы так нужного нам устройства. А также заключать договор о своевременной кормежке аккумулятора электроэнергией и вносить взносы в фонд социального страхования аккумуляторов. Кроме того, придется оплачивать аккумулятору медицинскую страховку и пай в пенсионном фонде:).

Правильная эксплуатация аккумуляторов сотовых телефонов

Электроды литий-ионных аккумуляторов, из-за процесса производства уже наполовину заряжены, однако свежий аккумулятор нежелательно сразу же проверять под нагрузкой. Первоначально литий-ионный аккумулятор требуется полностью зарядить. Использование аккумулятора без первоначальной подзарядки может резко сократить доступную пользователю емкость.

После первоначальной зарядки аккумулятора желательно его полностью разрядить для калибровки системы управления аккумулятором. Сразу же после разрядки подзарядите аккумулятор. Циклы калибровки для сотовых телефонов с литий-ионными аккумуляторами не следует производить часто (обычно хватает одного цикла полного заряда-разряда в 3 месяца). Сами циклы калибровки нужны только для правильного отображения прогноза оставшейся емкости аккумулятора. Рекомендуемые же некоторыми пользователями и продавцами трех-четырех кратные глубокие циклы заряда-разряда могут оказаться фатальными для не нового литий-ионного аккумулятора.

Желательно использовать оригинальные аккумуляторы от производителя мобильного телефона. Так как функции системы управления аккумуляторной батареей для мобильных сильно урезаны, а зарядом руководит система подзарядки сотового телефона, то аккумулятор от стороннего производителя проживет меньше, поскольку система подзарядки не знает особенностей не оригинальных аккумуляторов.

В связи с тем, что эффект «старения» литий-ионных аккумуляторов резко усиливается при высокой температуре, сотовый телефон желательно держать подальше от источников тепла (тело человека, прямые солнечные лучи, радиатор отопления).

Желательно часто не заряжать аккумулятор сотового телефона полностью, а также ставить аккумулятор на подзарядку раньше, чем уровень заряда достигнет красного значения индикатора заряда (примерно 20% остаточной емкости).

Старение литий-кобальтовых аккумуляторов (наиболее распространенных аккумуляторов для сотовых напрямую зависит от уровня нагрузки). Говорите по мобильному меньше и реже — это позволит сохранить здоровье не только вашему аккумулятору, но и вам самим.

Не заряжайте аккумулятор, побывавший на морозе до тех пор, пока он не прогреется до положительной (по Цельсию) температуры — это важное требование безопасности эксплуатации литий-ионных аккумуляторов.

Правильная эксплуатация аккумуляторных батарей ноутбуков

Аккумуляторная батарея ноутбука содержит полноценную систему управления, что часто позволяет пользователю забыть о том, правильно ли он эксплуатирует батарею. Однако, при работе с ноутбуком следует помнить о некоторых вещах.

При первом подключении аккумуляторную батарею ноутбука следует полностью зарядить, после чего произвести калибровку системы управления. Калибровка осуществляется полным разрядом батареи при постоянной нагрузке (необходимо войти в настройки BIOS, и оставить ноутбук работать при отключении от сети до выключения, во многих настройщиках BIOS есть специальный пункт Calibration, предназначенный для выполнения данной задачи). Не забудьте сразу же зарядить батарею своего ноутбука после полной разрядки.

Калибровка аккумуляторной батареи ноутбука обычно осуществляется раз в 1-3 месяца, для исключения эффекта «цифровой памяти» — в процессе работы от аккумулятора постепенно накапливаются ошибки определения остаточной емкости, из-за чего снижается время автономной работы ноутбука.

Для некоторых моделей ноутбуков существуют утилиты производителя для задания уровня разряда батареи, при котором начинает производится заряд. Если аккумулятор ноутбука служит как источник бесперебойного питания (работа осуществляется стационарно с питанием от сети), то установка уровня допустимого разряда в 40% и поддержание аккумуляторной батареи в полуразряженном состоянии позволит продлить жизнь батареи в два раза.

Часть ноутбуков поставляются с дополнительной батареей. Если вы долго не пользуетесь ей, имеет смысл разрядить дополнительную батарею до 40%, упаковать в полиэтиленовый пакет с вакуум-замком и оставить пакет в холодильной камере холодильника при температуре 3-4°C.

Правильная эксплуатация батарей Power Tools и видеокамер

Правила эксплуатации батарей Power Tools (в основном, батарей шуруповертов) и видеокамер мало отличаются от правил эксплуатации аккумуляторов сотовых телефонов.

Отличием является то, что использование этих устройств в быту осуществляется довольно редко, а стоимость аккумуляторов высока и эти аккумуляторы со временем становятся мало доступны. Для обеспечения длительной жизни таких аккумуляторов следует хранить их в полуразряженном состоянии в холодильнике при температуре 3-4°C, предварительно упаковав в полиэтиленовый пакет с вакуум-замком. Перед использованием аккумулятор необходимо полностью зарядить с помощью штатного зарядного устройства, и при работе не допускать полного разряда аккумулятора (при первой же возможности подзаряжайте батарею в процессе работы).

В заключение статьи хочу сказать, что хоть правила эксплуатации и позволяют сохранить параметры аккумулятора длительное время, однако жизнь диктует свои условия работы, часто не совместимые с понятием правильной эксплуатации такой высокотехнологичной вещи, как литий-ионный аккумулятор.

Copyright © Дмитрий Спицын, 2008.

Эксплуатация литий ионных аккумуляторов ноутбуков

В данной статье я подробно распишу все нюансы использования литиевых аккумуляторов. Из материала вы узнаете об эффекте памяти, влияние перегрева, нюансы использования аккумулятора, как выполнять калибровку и о программе BatteryCare, позволяющая контролировать циклы разрядки батареи и оптимизировать её использование.

Теперь приступим к разбору темы «Эксплуатация литий ионных аккумуляторов ноутбуков». Кстати, совсем недавно я писал статью про то, почему батарея подключена и не заряжается у ноутбука. Там я тоже упоминал BatteryCare и из этого получилась данная статья.

Эффект памяти

Существует миф, что при неполной зарядке аккумулятора он отдаёт энергию только до момента (процента заряда), который он запомнил. На самом деле, это явление применимо только для более старых аккумуляторов на основе никеля, например, никель-кадмиевые или никель-металл-гидридные, для литиевых оно вообще не действует, к ним относят: литий-ионные и литий-полимерные. Таким образом, полная зарядка или разрядка батареи для литиевых аккумуляторов не будет особенно полезной, а об этом мы поговорим ниже.

Как избежать эффекта памяти аккумуляторов на основе никеля

Есть так называемая «тренировка» аккумуляторов, которая подразумевает заряд устройства до максимальной ёмкости, и наоборот, полной разрядки. Таким образом, прежняя ёмкость батареи может восстановиться.

Это интересно: Стоит ли вынимать батарею ноутбука при работе от сети

Про литиевые аккумуляторы

Здесь есть несколько нюансов, касающиеся конструкции батарей. Во-первых, в устройствах установлен контроллер, следящий за зарядом и разрядом батареи, а значит, он не даст ей перезарядиться или наоборот. Как показывает практика, даже наличие контроллера не всегда спасает, поэтому следует обратить внимание на следующие применимые действия:

  • Попробуйте не разряжать аккумулятор до минимума и не доводите устройство до состояния, когда ноутбук выключится.
  • Независимо от контроллера сильный перезаряд может навредить литиевым батареям.
  • Тренировка полного заряда/разряда для литиевых аккумуляторов бесполезна, поэтому оставьте эту затею. Почему? Смотрим пункты выше.
  • Есть мнение, что изменение атмосферного давления влияет на ёмкость батареи, то есть она уменьшается.
  • Использовать для зарядки аккумулятора только родной блок питания, так как, используя другой вы можете повредить батарею.
  • Стоит заметить, что у литиевых аккумуляторов есть так называемый «эффект старения», это значит, что срок работы его может закончиться через пару лет, независимо от использования.

Эксплуатация литий ионных аккумуляторов ноутбуков

Эксплуатация литий ионных аккумуляторов ноутбуков

Нагрев аккумулятора

К примеру, если зарядить аккумулятор на 100% и не отключать от зарядки, то батарея перестанет получать энергию от зарядки, поэтому нагрева не будет. Конечно, это нормально при выключенном ноутбуке, либо при легкой работе, когда он не нагревается.

Когда ноутбук перегревается, а блок питания подключен к розетке, то это не очень хорошо влияет на литиевые аккумуляторы.

Чтобы предостеречь батарею от перегрева, можно использовать ноутбук таким образом, чтобы он не нагревался свыше 40 или перегрев 50 градусов. При интенсивном использовании и нагреве свыше 60 градусов, аккумулятор следует вынуть из гнезда, а блок питания оставить подключенным.

Чтобы снизить нагрев батареи на основе лития, советую использовать охлаждающие подставки для ноутбуков.

Это интересно: Как проверить состояние аккумулятора на ноутбуке?

Как выполнить калибровку аккумулятора (полная разрядка)

Некоторые ноутбуки в BIOS имеют параметры, позволяющие повторно калибровать аккумулятор. Это действие означает полный разряд и последующий полный заряд батареи. Чтобы калибровать датчик, нужно выполнить 30 циклов разряда и заряда.

Иногда неправильная калибровка приводит к тому, что значения заряда оказываются ошибочными. Другими словами, если вы видите, что заряда осталось 20%, то на самом деле его может быть намного меньше и устройство просто выключится.

Что такое циклы разрядки и заряда аккумулятора? Это использование всего заряда батареи, иногда не полностью.

А теперь посмотрим, как выполнить калибровку аккумулятора. Для этого вам придётся установить утилиту BatteryCare. После установки следуйте таким вот действиям:

  • Зарядите устройство до максимальной ёмкости (100%).
  • Пусть батарея остынет от процесса зарядки, компьютер при этом использовать можно, шнур не выдергивайте пару часов.
  • Отключите шнур питания и установите компьютер в спящий режим автоматически на 5%, либо другое минимальное значение.

    Эксплуатация литий ионных аккумуляторов ноутбуковЭксплуатация литий ионных аккумуляторов ноутбуков
  • Постарайтесь не использовать тяжелые программы и игры, чтобы устройство не нагревалось.
  • После выключения компьютера, пусть он будет отключен около 5-ти часов и даже больше.
  • Подключаем источник питания и заряжаем устройство до 100%. Использовать ноутбук можно.

Теперь в программе вы можете видеть уровень износа, который будет, скорее всего, выше, чем был. Это потому, что после калибровки показываются истинные значения. Показатель износа не является намёком на то, что аккумулятору скоро придёт конец, на самом деле этот показатель призван показывать более точные значения процента заряда.

Эксплуатация литий ионных аккумуляторов ноутбуковЭксплуатация литий ионных аккумуляторов ноутбуков

Как долго хранить аккумулятор

Для хранения батареи в течение длительных периодов времени, её зарядная ёмкость должна составлять около 40%, а хранит надо в месте, где сухо и свежо. Можно хранить даже в холодильнике при температуре от 0 до 10 градусов, но сам аккумулятор должен быть изолирован от любой влажности.

Еще раз напомню, что тепло для литиевых батарей является злейшим врагом, а значит, нужно понизить влияние тепла на устройство, особенно в летние жаркие дни.

Нужно ли брать запасную батарею

Что касается литиевых аккумуляторов, то это разумно только при ухудшении состоянии текущей. Я уже выше сказал, что независимо от того, используют ли батарею или нет, есть определённой срок хранения, например, 3 года. Неиспользование купленной батареи приведёт к ее деградации, а для восстановления придётся использовать вышеуказанные методы. Если конечно, это поможет.

Кроме того, при покупке батареи вы должны обратить внимание на дату изготовления.

Выводы

Итак, эксплуатация литий ионных аккумуляторов ноутбуков очень важная вещь, на которую стоит обращать внимания. Мало пользователей знает, о правильной работе с аккумуляторами. Сегодня вы узнали о влиянии полно заряда и разряда, эффектов памяти и старения и калибровку с помощью BatteryCare.

Если вам понравилась эта статья или есть дополнительная информация, которой вы хотите поделиться, расскажите о ней в комментариях.

Это интересно: Как продлить работу аккумулятора ноутбука?

Литий-ионные аккумуляторы | Статья в журнале «Молодой ученый»



В этой статье представлена история появления и развития литий-ионных аккумуляторов. Детально рассмотрен данный тип аккумуляторов и технические аспекты их функционирования, а также конструкция и принцип работы, разработанных к настоящему времени литий-ионных аккумуляторов. В заключении рассмотрены тенденции развития указанного класса изделий, следуя которым, по мнению авторов статьи, можно улучшить и расширить применение литий-ионных аккумуляторов в различных областях техники.

Введение

В последние годы ученые и инженеры-разработчики электронной аппаратуры все большее внимание уделяют аккумуляторам, которые могут обеспечивать длительное автономное питание электронных устройств. Итак, литий-ионные аккумуляторы — тип химического источника тока, получивший широкое распространение в современной мобильной технике. В настоящий момент производители практически полностью отказались от использования прочих типов аккумуляторных батарей в мобильных телефонах, поэтому чрезвычайно важно знать, как правильно пользоваться литиевыми источниками питания. В данной статье будут озвучены основные особенности устройства и использования Li-ion батарей, а также некоторые практические советы по их эксплуатации.

Литий-ионные аккумуляторы

Первые эксперименты по созданию литиевых батарей начались в 1912 году. Но только спустя шесть десятилетий, в начале 70-х годов, они впервые появились в бытовых устройствах. Последовавшие вслед за этим попытки разработать литиевые аккумуляторы (рис. 1) оказались неудачными из-за возникших проблем в обеспечении безопасности их эксплуатации, так как литий является очень активным щелочным металлом [1].

Таким образом, исследователи повернули свой взор в сторону неметаллических литиевых аккумуляторов на основе ионов лития. Немного проиграв при этом в плотности энергии и приняв некоторые меры предосторожности при заряде и разряде, они получили более безопасные так называемые Li-ion аккумуляторы.

C:\Users\ilya\Desktop\универ\статья\Li_ion_Rechargeable_Batteries.jpg

Рис. 1. Литий-ионные аккумуляторы

Плотность энергии Li-ion аккумуляторов — обычно вдвое превышает плотность стандартных NiCd-аккумуляторов, а в перспективе, с применением новых активных материалов, предполагается ее увеличить и достигнуть трехкратного превосходства над NiCd-аккумуляторами.

На сегодняшний момент существует множество разновидностей Li-ion аккумуляторов. Рассмотрим достоинства и недостатки, свойственные всем их типам.

Достоинства инедостатки

Основными преимуществами Li-ion-аккумуляторов являются:

‒ большая емкость при тех же самых габаритах по сравнению с аккумуляторами на основе никеля.

‒ низкий саморазряд.

‒ высокое напряжение единичного элемента (3.6 В против 1.2 В у NiCd и NiMH) упрощает конструкцию. Многие изготовители сегодня ориентируются на применение для сотовых телефонов именно такого одноэлементного аккумулятора. Однако, чтобы обеспечить ту же самую мощность, необходимо чтобы он мог отдавать более высокий ток. А это возможно только при низком внутреннем сопротивлении аккумулятора.

‒ низкая стоимость обслуживания (эксплуатационных расходов), поскольку отсутствует эффект памяти и не требуются периодические циклы разряда для восстановления емкости.

Основными недостатками Li-ion-аккумуляторов являются:

‒ необходимость встроенной схемы защиты (что ведет к дополнительному повышению его стоимости), которая ограничивает максимальное напряжение на каждом элементе аккумулятора во время заряда и предохраняет его от слишком низкого напряжения на элементе при разряде. Кроме того, она должна ограничивать максимальные токи заряда и разряда и контролировать температуру элемента.

‒ аккумулятор подвержен старению, даже если не используется и просто лежит на полке. Процесс старения характерен для большинства Li-ion-аккумуляторов. Небольшое уменьшение емкости заметно после одного года, вне зависимости от того, используется аккумулятор или нет. Через два или три года он часто становится непригодным к эксплуатации. Для уменьшения процесса старения необходимо хранить заряженный примерно до 40 % от номинальной емкости аккумулятор в прохладном месте отдельно от телефона.

‒ более высокая стоимость по сравнению с NiCd-аккумуляторами.

По удельным характеристикам Li-ion аккумуляторы лидируют среди массово выпускаемых и занимают одно из первых мест среди применяемых электрохимических систем. Li-ion аккумуляторы обладают высокой удельной энергией (до 190 Вт•ч/кг), высоким разрядным напряжением (3,4–4 В и более, в зависимости от используемых электродных материалов), очень низким саморазрядом (менее 3 % в месяц) и длительным сроком службы (более 1000 циклов заряда/разряда, до снижения емкости на 20 % от номинальной к тысячному циклу). В зависимости от материалов и конструкции эти аккумуляторы могут работать в интервале температур от –40 до +80°C. При этом их стоимость постоянно снижается, а область применения расширяется. На рис. 2 показаны возможные сочетания удельной энергии и удельной мощности у аккумуляторов различных типов.

C:\Users\ilya\Desktop\универ\статья\Современные Li-ion аккумуляторы. Типы и конструкция_files\111_pic_2.jpg

Рис. 2. Удельные характеристики различных типов аккумуляторов

Строение иклассификация литий-ионных аккумуляторов

Деление Li+ аккумуляторов на высокомощные, высокоемкие и промежуточные, занимающие место между двумя приведенными классами, носит условный характер (синие области на рис.2). Суть этого разделения в следующем. Даже с учетом одного и того же электрохимического процесса сам аккумулятор, как конечное изделие, можно изготовить по-разному (рис. 3). Например, токопроводящую основу электрода (алюминиевая фольга на положительном электроде, медная — на отрицательном) в одном случае можно сделать тоньше и электродной массы нанести больше, а в другом — наоборот. Чем больше соотношение активных электродных масс, участвующих в электрохимических реакциях, к пассивным, не участвующим в них, тем выше удельные характеристики конечного изделия. Однако, чем меньше толщина медной фольги, тем меньший ток она может пропустить без перегрева. И наоборот, чем больше толщина слоя электродной массы, тем больше его сопротивление. То есть аккумулятор с более тонкой токопроводящей основой и более толстым слоем электродной массы будет иметь высокие показатели по запасаемой энергии, но низкую мощность, и наоборот. Поэтому для еще большего снижения сопротивления применяют активные материалы с меньшим размером частиц.

Варьируя толщину электродов, фольги, сепаратора и материалы положительного и отрицательного электрода, размеры частиц, производители могут изготовить аккумулятор с различными максимальными токами разряда и/или различной емкости в одном и том же типоразмере конечного изделия. Высокомощные аккумуляторы (с высокими токами разряда) должны иметь и более массивные токовыводы, что предохраняет аккумулятор от перегрева при больших значениях тока. К тому же для увеличения тока разряда в состав электролита и активных масс можно вносить всевозможные добавки, увеличивающие проводимость [2].

C:\Users\ilya\Desktop\универ\статья\Современные Li-ion аккумуляторы. Типы и конструкция_files\111_pic_3.jpg

Рис. 3. Строение Li-ion аккумулятора

Высокоемкие аккумуляторы обычно имеют небольшие размеры борнов (токосъемников) в сравнении с объемом корпуса аккумулятора. Такие борны рассчитаны на относительно малые токи разряда. Например, если аккумулятор имеет емкость 10 А/ч, то максимальный ток разряда составит 20 А (получасовой режим).

Высокоемкие и высокомощные аккумуляторы предназначены для разных задач и имеют различное назначение, хотя иногда их совместно эксплуатируют в одном изделии: одни для стартерных режимов, другие — для питания слаботочной аппаратуры.

Принцип заряда

Метод заряда Li-ion аккумуляторов можно условно разделить на четыре этапа, это показано на рис. 4.

C:\Users\ilya\Desktop\универ\статья\Современные Li-ion аккумуляторы. Типы и конструкция_files\111_pic_3.jpg

Рис. 4. Этапы зарядки Li-ion аккумуляторов

1) Подготовительный этап

Подготовительный этап необходим, когда напряжение на аккумуляторе ниже некоторого установленного значения. При долгом хранении аккумулятора вследствие саморазряда и/или потребления системы обеспечения функционирования(СОФ) его напряжение может упасть. Малый ток заряда обеспечивает постепенный выход активных электродных материалов на заданные уровни напряжения, при которых они штатно функционируют, после чего включается основной ток заряда. Данный режим призван обеспечить более долгую жизнь аккумулятора при выходе его из заданного диапазона напряжений. Подготовительный этап применяется и в случае заряда аккумулятора при низких температурах, например ниже +5°C — для «разогрева» электродных масс.

Первоначальный заряд малым током используется и для обеспечения безопасности аккумулятора при заряде. Если внутри аккумулятора произошло микрокороткое замыкание (или просто КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Хотя СОФ имеет температурный датчик, при быстром заряде и относительно большой теплоемкости аккумулятора и высоком конечном значении теплопроводности разгерметизация может произойти немного раньше, чем СОФ отключит аккумуляторы от заряда. Функция заряда малым током часто возлагается не на зарядное устройство, а на СОФ батареи. В схеме СОФ это может быть дополнительный MOSFET транзистор, управляющий зарядом, включенный через последовательный резистор, ограничивающий ток, подключенный к аккумуляторной батарее.

2) 1этап

На этом этапе заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости аккумулятора (Сн). Например, емкость аккумулятора 10 А·ч, номинальный ток заряда 0,2Сн, то есть 2 А — пятичасовой режим заряда. Понятно, что потребитель хочет, чтобы заряд осуществлялся как можно быстрее — в течение 1–2 ч, что соответствует 0,5–1Сн. Такой режим заряда обычно называют ускоренным. Для нормальной работы аккумулятора номинальный ток заряда лежит в пределах 0,2–0,5Сн, а ускоренный, как уже говорилось, — в диапазоне 0,5–1Сн. Каким максимальным током можно заряжать тот или иной аккумулятор, можно узнать в документации на конкретный тип устройства.

Чем выше ток заряда, тем меньше аккумулятор «наберет» емкости и тем пристальней необходимо следить за разогревом, чтобы его температура не вышла за установленный предел. При большом токе заряда существенно продлевается время 2-го этапа (рис. 4), когда ток постепенно падает до определенного предела. Так, например, при токе заряда 1Сн и отводимом на заряд времени в 1 ч аккумулятор достигнет своего конечного напряжения за 45–50 мин. Любой аккумулятор имеет внутреннее сопротивление. Падение напряжения на внутреннем сопротивлении при большом токе заряда приведет к более быстрому достижению конечного зарядного напряжения. При достижении конечного напряжения заряд перейдет ко второму этапу — падающему току при постоянном напряжении. За оставшееся время 10–15 мин. аккумулятор «наберет» еще 0,1–0,15Сн, что в сумме составит не более 0,85–0,95Сн. При более коротком режиме заряда и лимите времени зарядная емкость будет еще меньше.

Ускоренный и номинальный режим заряда необходимо чередовать, особенно при заряде батарей, состоящих из нескольких последовательно соединенных аккумуляторов. При номинальном токе заряда возрастает его продолжительность. Увеличение времени заряда способствует лучшей балансировке аккумуляторов в батарее [3]. Чем больше время такой балансировки, тем лучше будут сбалансированы аккумуляторы по емкости и, в конечном итоге, батарея отдаст емкость, близкую к номинальной при разряде.

3) 2 этап

Второй этап — это заряд при постоянном напряжении и падающем до определенного значения токе. Например, процесс считается завершенным при установлении тока заряда менее 0,1–0,05Сн (в нашем примере 100 мА). Время заряда падающим током также зависит от срока службы и количества циклов заряд/разряд

После окончания заряда напряжение на аккумуляторе падает на 0,05–0,1 В (рис. 4), приходя к своему равновесному состоянию. Держать аккумулятор продолжительное время (десятки часов) при конечном напряжении (например, 4,2–4,3 В) не рекомендуется, поэтому после фазы падающего тока желательно прекратить заряд [4].

Производители электроники предоставляют уже готовые схемотехнические решения, реализующие описанный выше алгоритм заряда, выполненные в одном корпусе микросхемы — например МАХ1551, МАХ745 и т. д. Одна из популярных микросхем, применяемых для заряда Li-ion аккумуляторов мобильных телефонов, фототехники и т. д. от сети постоянного тока 12–24 В — MC34063.

4) Stand by этап

Если Li-ion аккумуляторная батарея должна быть в зарядном устройстве для эксплуатационной готовности, то некоторые зарядные устройства применяют кратковременный подзаряд аккумулятора, чтобы компенсировать его небольшой саморазряд. Зарядное устройство срабатывает, когда напряжение в цепи падает до 4.05 В/батарею и выключить при достижении 4.20 В/батарею. Зарядные устройства, сделанные для работы в режиме эксплуатационной готовности, или режиме ожидания, часто дают упасть напряжению до 4.00 В/батарею и зарядиться только до 4.05 В/батарею вместо 4.20 В/батарею. Это приводит к продлению срока службы батареи [5].

Применение итенденции развития

Литий-ионные технологии находятся лишь на старте реализации потенциала и повсеместного промышленного внедрения. В частности Li-ion аккумуляторы применяются в авиалайнерах, автомобилях, суднах. Например, компания Boeing улучшила саму технологию производства аккумуляторов так, чтобы предотвращать прорыв элементов при повышении температуры, и изменила их конструкцию с уменьшением тепловыделения. Кроме того, была усовершенствована система зарядки. И наконец, специалисты Boeing разработали новую конструкцию батарейного отсека, которая могла бы защитить самолет в случае, если отказ аккумуляторов все-таки произойдет. Еще одна сфера, где применение литий-ионных технологий дало качественный скачок в развитии целой индустрии — это электромобили. Одним из лидеров по разработке, производству и продвижению электромобилей на литий-ионных аккумуляторах является американская компания “Tesla Motors”. Для обеспечения своих автомобилей источниками питания компания даже планирует построить завод по производству литий-ионных аккумуляторов полного цикла. Помимо этого, в 2016 году в Норвегии планируют спустить на воду электропаром. Судно, разработанное специалистами немецкой компании “Siemens” и норвежской судоверфи “Fjellstrand”, будет оборудовано двумя электродвигателями, работающими от литий-ионных аккумуляторов, и сможет перевозить на борту 120 автомобилей и 360 пассажиров. Еще одним примером является японская компания “Hirobo” из Хиросимы, инженеры которой сконструировали одноместный электрический вертолет “Hirobo Bit”, развивающий скорость до 100 км/ч. Электрический двигатель, в отличие от обычных, работает практически бесшумно, а одного заряда аккумуляторов хватает на 30 минут непрерывного полета.

Таким образом дальнейшее развитие Li-ion аккумуляторов направлено на увеличение мощности и емкости при минимизации размеров. В частности, применение кремниевых нанопроводов вместо графитовых анодов позволит втрое увеличить емкость аккумуляторных батарей и до 10 минут сократить время их зарядки. Использование Li-ion аккумуляторов большой емкости приведет к повышению экологичности за счет снижения выбросов углекислого газа у транспортных средств более, чем на 25 %.

Выводы

Сегодня Li-ion аккумуляторы по праву считаются лучшими электрохимическим источниками электропитания различных устройств. Благодаря относительно малому весу и большой удельной емкости они наиболее часто применяются в мобильных устройствах. За счет развития науки и техники Li-ion аккумуляторы преодолели свои главные недостатки: стабильность работы и большие токи разряда, чем потеснили никель-металлгидридные (Ni-MH) и никель-кадмиевые (Ni-Cd) аккумуляторы. В дальнейшем планируется увеличить эффективность Li-ion аккумуляторов еще в два раза, что позволит полностью заменить аккумуляторы указанных выше типов. Кроме того, были специально разработаны Li-polymer аккумуляторы, которые обладают еще большей емкостью и надежностью по сравнению с Li-ion аккумуляторами.

В 2014 году французскими учеными были разработаны Na-ion аккумуляторы, которые в настоящее время являются наиболее эффективными из всех известных типов аккумуляторов, которые сейчас проходят завершающую стадию доработки и тестирования, что позволит в перспективе заменить ими Li-ion и Li-polymer аккумуляторы.

Литература:

  1. Таганова А. А., Бубнов Ю. И., Орлов С. Б. Герметичные химические источники тока: элементы и аккумуляторы. Оборудование для испытаний и эксплуатации: Справочник СПб.: Химиздат, 2005., 52 стр.
  2. Современные Li-ion аккумуляторы. Типы и конструкция. Журнал «Компоненты и технологии» № 11 за 2013 год., стр. 67–74
  3. Рыкованов А. С. Системы баланса Li-ion аккумуляторных батарей// Силовая электроника. № 1 за 2009., стр. 52–55
  4. Способы заряда Li-ion аккумуляторов и батарей на их основе. Журнал «Компоненты и технологии» № 11 за 2012 год., стр. 48–53
  5. Электронный ресурс BU-409: ChargingLithium-ion., http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries

Основные термины (генерируются автоматически): аккумулятор, батарея, заряд, ток заряда, подготовительный этап, номинальный ток заряда, конечное напряжение, конечное изделие, зарядное устройство, электродная масса.

Ввод в эксплуатацию новых литий-ионных (Li-ion) аккумуляторов

Литий-ионные аккумуляторы в виду свойств щелочных металлов, окисляющихся от взаимодействия с кислородом, и особенностей производства уже имеют в себе определённый заряд. Однако следует помнить, что первоначальной ёмкости аккумулятора не достаточно для нормальной эксплуатации. 

Новый аккумулятор нежелательно сразу же эксплуатировать в обычном режиме.  Следует произвести так называемую раскачку аккумуляторной батареи аппарата, т.е. дать возможность аккумулятору набрать максимальную ёмкость для дальнейшей надлежащей эксплуатации. Первоначально литий-ионный аккумулятор требуется полностью разрядить. После полной разрядки аккумулятора его следует полностью зарядить для увеличения рабочей ёмкости и правильной калибровки системы управления аккумулятором. Сразу после разрядки надо обязательно подзарядить аккумуляторную батарею. Для достижения максимальной рабочей ёмкости аккумулятора требуется произвести 3-4 полных цикла зарядки-разрядки батареи. 

Циклы калибровки литий-ионных аккумуляторов можно производить и в последующем при  его эксплуатации. Достаточно одного цикла полного заряда-разряда в 3-4 месяца. Циклы калибровки нужны для корректного отображения рабочей емкости аккумулятора. 

В связи с тем, что эффект «старения» литий-ионных аккумуляторов резко усиливается при высокой температуре, сотовый телефон желательно держать подальше от источников тепла (тело человека, прямые солнечные лучи, радиатор отопления).

Не стоит без особой нужды подзаряжать аккумулятор, т.к. в литий-ионных батареях хоть и в небольшой степени, но всё-таки присутствует так называемый «эффект памяти». Так что если Вы будете реже заряжать аккумулятор, тем самым продлите его срок эксплуатации. Также не надо забывать, что эксплуатация при слишком низкой или слишком высокой температуре также негативно влияет на рабочие свойства и срок службы аккумуляторной батареи. 

Не стоит заряжать аккумулятор, сразу после использования при отрицательной температуре. При температуре ниже 0 градусов по Цельсию, свойства аккумулятора резко ухудшаются. Поэтому зарядку аккумуляторной батареи стоит осуществлять только после того, как она сама достигнет положительной температуры.

Хранение аккумуляторных литий-ионных батарей осуществляется при температуре 15-25 градусов Цельсия.

Долговременное хранение литий-ионных аккумуляторов

Электроинструмент на литий-ионных аккумуляторах уже относительно давно и плотно вошел в нашу жизнь. Постепенно и электротранспорт становится обычным средством передвижения. По городам удобно перемещаться на электросамокате и моноколесе, за городом на электровелосипеде и электроскутере.

А поскольку значительный процент цены всех этих чудесных и полезных транспортных средств составляют литий-ионные аккумуляторы, нужно заботиться о том, что бы они прослужили как можно дольше.

Литий-ионные аккумуляторы начинают деградировать сразу же после того, как сделаны. Долговременное хранение без ухудшения характеристик литий-ионных аккумуляторов невозможно. В отличие от свинцово-кислотных аккумуляторов, литий-ионные быстрее деградируют при полном заряде. Хранить их нужно при 40-50% заряда. Хранение литий-ионных элементов со 100% -ным зарядом продолжительное время ускоряет процесс их деградации. Также немаловажным моментом является то, что наполовину разряженные батареи не взрываются.

Хранить батареи желательно при температурах +5…+8 градусов. Относительная влажность не особо важна, рекомендуется около 50%. Если возможна конденсация влаги, аккумуляторы рекомендуется хранить в пластиковом пакете.
Саморазряд — это не большая проблема, если литий-ионная батарея не остается без присмотра так долго, что разряжается полностью. В этом случае ее можно просто выбросить.
Каждые 6 месяцев или около того вы должны проверять свои аккумуляторы и заряжать их до 40-50%. При зарядке до этого уровня проще всего использовать таймер. Если у вас есть батарея 10 Ач, и ее нужно зарядить примерно на 20% при помощи зарядного устройства на 2 ампера, это означает, что вы должны заряжать ее в течение часа (зарядное устройство 2 Ач / 2 ампера = 1 час).

Примерные потери емкости в зависимости от уровня заряда и температурного режима при хранении АКБ приведены ниже:

0 °С — потеря емкости при хранении АКБ с 40% уровнем заряда — 2% / год
25 °С — потеря емкости при хранении АКБ с 40% уровнем заряда — 4% / год
40 °С — потеря емкости при хранении АКБ с 40% уровнем заряда — 15% / год
60 °С — потеря емкости при хранении АКБ с 40% уровнем заряда — 25% / год

0 °С — потеря емкости при хранении АКБ с полным зарядом — 6% / год
25 °С — потеря емкости при хранении АКБ  с полным зарядом — 25% / год
40 °С — потеря емкости при хранении АКБ  с полным зарядом — 35% / год
60 °С — потеря емкости при хранении АКБ  с полным зарядом — 40% / год

Выше описаны «усредненные» рекомендации. Производители литий-ионных аккумуляторов дают более точную информацию о хранении. Так LG Electronics о хранении аккумуляторов 18650 2500 mAh пишет следующее:

Если вам нужно разрядить батарею на электровелосипеде, это лучше делать под нагрузкой. Поставить велосипед на подставку и крутить колесо в холостую рискованно, поскольку это приведет к перегреву электромотора (не рассчитаны они на работу без нагрузки).

Заряжать объемные батареи для электротранспорта лучше всего в дровяной печи, камине или в модифицированной коробке для боеприпасов (стоит 20 долларов). Но можно и в гараже, если у вас нет загородного дома. Дым от литиевого огня невероятно токсичен, и он может повредить все в вашем доме.

Аккумуляторы используемые в квадрокоптерах тоже «хороши». Спалить квартиру можно запросто.

С каждым годом литий-ионные аккумуляторы становятся все безопаснее, но лучше не подставляться под игры с теорией вероятностей.

Хотя некоторые люди хранят свои литий-ионные батареи в холодильнике, этого делать не рекомендуется, потому что влажность внутри холодильника довольно высока, что может вызвать проблемы с коррозией на соединениях и BMS. Лучшее место для их хранения – прохладное, сухое и недоступное для грызущих животных. Крыса может запросто прогрызть оболочку и закончится это точно также, как при повреждении батареи от удара.

Никогда не храните литий-ионные аккумуляторы в вашем автомобиле, где в летние дни температура может сильно повышаться.

Больше ничего на тему «долговременное хранение литий-ионных аккумуляторов» обычному потребителю знать не нужно. Дополнительно можно почитать статьи:
Как продлить срок службы литий-ионных батарей?
Купить аккумуляторную батарею для электровелосипеда
Емкость батареи и максимальный пробег электровелосипеда

Желающим потреблять информацию в аудио и видео форматах следует посмотреть ролик:

Дмитрий Константинов
март 2019

Поделиться ссылкой:

Узнайте, как правильно хранить Li-Ion (литий ионные) аккумуляторы, чтобы продлить им жизнь. — Об электровелосипедах подробно — Блог — Статьи

Чтобы продлить срок службы аккумуляторной батареи, эффективно использовать ее возможности и минимизировать потери емкости, необходимо обеспечить ей правильное хранение. В данной статье пойдет речь о том, как правильно хранить литий ионные аккумуляторы. Такие накопители чувствительны к высоким температурам и чрезмерному уровню заряда. Если же поддерживать оптимальные условия их хранения, можно ощутимо продлить срок службы батареи и снизить потери ее емкости.

Следует понимать, что хранение АКБ неизбежно приводит к их старению, но выполнения ряда рекомендаций позволяет замедлить этот процесс. Чтобы снизить потери емкости в процессе хранения, сохранить Li-Ion батарею в рабочем состоянии и не позволить ей самостоятельно разряжаться, хранить ее нужно заряженной примерно до 40%. Некоторые производители рекомендуют хранить литий ионные аккумуляторы заряженными до 70–90% емкости.

Установить степень заряда в 40% не сложно, необходимо измерить напряжение аккумулятора литий-ионного. Именно по напряжению можно определить уровень заряда:

  • Li-ion элемент разряжен при напряжении 2,8 Вольта, а заряжен при 4,2 Вольт, соответственно напряжение между ними приблизительно равно 50% заряду. 3,5 Вольта – средняя точка;
  • При напряжении 3,4 Вольта на элемент уровень заряда Li-Ion батареи приблизительно равен 40%;
  • Таким образом при номинальном напряжении АКБ 48 Вольт (13 элементов) 40% уровень заряда будет при общем напряжении аккумулятора 44,2 Вольта;
  • А при номинальном напряжении АКБ 36 Вольт (10 элементов) 40% уровень заряда будет при общем напряжении аккумулятора 34 Вольта;
  • Перед измерением напряжения Li-Ion батареи после ее зарядки или разрядки рекомендуется подождать 1,5 часа.

Как хранить литиевые аккумуляторы?

В вопросе, как хранить Li-Ion аккумуляторы, основными факторами выступают температурный режим и степень заряда. В нижеприведенной таблице представлены сведения о восстанавливаемой емкости литиевых АКБ при их хранении на протяжении 12 месяцев при разных температурах и уровнях заряда. Восстанавливаемой емкостью называют доступную емкость аккумулятора после его хранения.

Температура, °С

Восстанавливаемая емкость

при хранении с 40% зарядом

при хранении со 100% зарядом

0

98%

94%

25

96%

80%

40

85%

65%

60

75%

60% (через 3 месяца)

Также при хранении литий ионных аккумуляторов необходимо выполнять следующие рекомендации:

  • Хранить Li-Ion батареи нужно в сухом и прохладном месте, извлеченными из оборудования.
  • Оптимальной температурой для хранения таких АКБ является +1 – +25°С, а допустимые значения варьируются в диапазоне 0 – +40°С.
  • Нельзя допускать их замораживания – можно хранить литиевый аккумулятор в холодильнике, предварительно поместив его в пакет (для предотвращения конденсации влаги), но не в морозилке!
  • Хранить АКБ необходимо в заряженном состоянии (идеальное значение степени заряда – 40%), чтобы избежать падения напряжения при саморазрядке ниже значения 2,5 В/элемент. Если оставить такой накопитель храниться с напряжением ниже граничного значения 2,5 В на период времени 3 месяца и дольше, произойдет невосстанавливаемое падение его емкости, а также не исключена коррозия элементов.
  •  Если напряжение литий ионной батареи на протяжении недели и более не превышает 2,0 В/элемент, такая АКБ подлежит утилизации. Кстати, некоторые Li-Ion батареи не допускают подзарядки при снижении напряжения на выводах ниже граничного значения. Это связано с изменением химической структуры сильно разряженного элемента и повышенной опасности его подзарядки.

Предлагаем вам также ознакомиться с рекомендациями, как правильно заряжать аккумулятор Li-ion.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *