Эффективно заземленная нейтраль это: Эффективно заземленная нейтраль | Режимщик – Эффективно-заземлённая нейтраль | Электротехнический журнал

Содержание

Эффективно-заземлённая нейтраль | Электротехнический журнал

Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.

Недостатки

  • Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Смотри также

Примечания

  1. ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
  2. ПТЭЭП — правила технической эксплуатации электроустановок потребителей.

Просмотров всего: 676, Просмотров за день: 1

Share

Эффективно заземлённая нейтраль — Википедия

Материал из Википедии — свободной энциклопедии

Эффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше

[1].

Недостатки

  • Возникновение больших токов короткого замыкания (к.з.) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Литература

  • Правила устройства электроустановок М., Энергоатомиздат, 1987 г.

Примечания

Эффективно заземленная нейтраль — это трехфазная электролиния

Эффективно заземленная нейтраль — электросеть трехфазного типа с отношением замыкания на землю, равноценный показателю менее или равному 1,4 в электросетях с напряжением более 110 кВ.

Для чего применяются различные виды заземления нейтрали

Разновидности нейтралей в многовольтных электросетях

Многовольтные линии электропередач применяют с целью транслировать электроэнергию на значительные расстояния. Чтобы деятельность системы была безопасной, подключают защитные средства. Одно из таких — различные виды заземления нейтрали (или шины).

В многовольтных схемах, где напряжение превышает 1 кВ, отличают следующие разновидности:

  1. Изолированная. Используется в схемах до 6-35 кВ. Призвана повысить надежность снабжения электричеством.
  2. Компенсированная. Изолированная шина с дополнительным подключением компенсации. Призвана снизить емкостные ОЗЗ-токи. Заземление происходит посредством катушки Петерсона (реактора с вариативной индуктивностью).
  3. Эффективно заземленная. Призвана увеличить ОЗЗ-токи, смягчив их фиксацию и приостановив релейное предохранение.
  4. Низкоомный резистивный тип. Применяется с целью уменьшить резисторное сопротивление, обеспечив быстрое отключение от ОЗЗ релейной защитой.
  5. Высокоомный резистивный подвид. В подобном случае резисторное сопротивление подбирается с целью обеспечить возможность долгую активность электросети с ОЗЗ.

Общие понятия нейтрали

Преимущество изолированной нейтрали — обеспечение малых ОЗЗ-токов (однофазного замыкания на землю), с которыми сеть взаимодействует в течение периода, нужного для поиска и ликвидации нарушений. Однако если электросеть довольно разветвленная, увеличивается объем подключенного к сети оборудования, что приводит к возрастанию емкостных токов. В конце концов наступает момент, когда сила электротока вызывает перерастание ОЗЗ в межфазное. По этой причине изолированную шину рационально применять слаборазветвленных электросетях небольшой протяженности.

Эффективно заземленная нейтраль это дополнительные расходы на контуры подсоединения. Особенно если сравнивать со схемой изолированной нейтрали. Кроме того, повреждения питаются от нескольких источников сразу, показатели ОЗЗ и КЗ-тока начинают превосходить их объемы в случае междуфазных КЗ. Чтобы избежать данного недочета, трансформаторные нейтрали не соединяют с землей единовременно — подсоединение происходит лишь на одной из сторон. За это ответственны работники сетевой эксплуатации.

Систему эффективного подключения изредка используют в схемах менее 1000 В, но только если в них нет пожароопасных приборов.

Использование высокоомного резистивного соединения увеличивает время на поиск неполадок. Показатели перенапряжения за счет шунтирования емкостей сетевых фаз при этом понижаются. Это способствует уменьшению вероятности проблем с изоляцией оборудования и снижает риск феррорезонансных явлений.

Сеть с эффективно заземленной нейтралью

Пути заземления в электросетях до 1 кВ

В электросетях с токонапряжением менее 1000 В подключают данные виды заземления нейтрали:

  • TN. Глухое подсоединение, посредством которого подключены проводящие элементы открытого типа (ОПЧ). Заземление называют глухим, когда нейтраль подсоединяется напрямую к прибору заземления (например, сваркой) либо через приборы с небольшой сопротивляемостью (например, токовый трансформатор). В системах с токонапряжением менее 1 кВ к нейтрали глухого подсоединения прибегают с целью питания трех- и однофазных нагрузок.
  • IT. Генераторная шина (или трансформаторов) подсоединена посредством систем с высокими показателями сопротивляемости. Открытые проводные элементы заземлены отдельно. Подобная схема не подходит для жилых построек. К ней прибегают при обстоятельствах, когда при первоначальном замыкании на землю прерывание питания не нужен. Как пример — электроаппаратура с повышенными требованиями к надежности электроснабжения.
  • TT. Нейтраль электропитания глухозаземлена. ОПЧ подсоединены устройством, которое не контактирует с шиной электроисточника. Другими словами, PE-проводник формируется непосредственно у потребителя, а не берет начало в источнике питания.

Заземление нейтрали трансформатора

Как расшифровывать буквы:

  1. Начальная говорит о пути заземления нейтрали: T — глухое, I — изолированное.
  2. Вторая демонстрирует метод подсоединения ОПЧ: N — посредством нейтрали электропитания глухозаземленного типа (neutral), T — отдельно от источника электропитания.
  3. Кроме того TN-тип включает три подвида: TN-S, -C и -C-S. Где «С» и «S» означают «combine» и «separe» соответственно. Буквы указывают на наличие централизации или разъединения в электропроводе нулевого предохранительного и действующего проводника (PE и N соответственно).

Методы включения нейтрали

Для электросетей от 6 до 35 кВ прибегают к нижеприведенным способам заземления нейтрали:

  • Подсоединение к ЗУ напрямую. Последнее установлено прямо у многовольтной опоры или вблизи проводки (подключение глухого типа).
  • Подключение посредством компенсатора либо же дугогасящего реактора (компенсированный тип).
    Монтаж резистора в трансформаторную шину (первый путь подключения при высокоомном заземлении).
  • Подключение общей точки напрямую к земле (в случае сетей с эффективно заземленной нейтралью). Создает оптимальную обстановку для токового потока в землю. Относят к слишком бюджетозатратным.

  • Применение обмотки с подсоединением к разомкнутому треугольнику (второй путь подключения при подсоединении высокоомного вида).
  • Отсутствие подсоединения к ЗУ в пределах предохраняемой линий (изолированный вариант).

Каждое из приведенных подключений должно быть обеспечено повторным заземлением на стороне ЗУ. Это обеспечит безопасность эксплуатации электричества. В противном случае при непредусмотренном обрыве нейтрального проводника аппаратура останется без защиты.

Эффективно заземлённая нейтраль — Википедия

Материал из Википедии — свободной энциклопедии

Эффективно заземлённая нейтраль

 — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше

[1].

Недостатки

  • Возникновение больших токов короткого замыкания (к.з.) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Литература

  • Правила устройства электроустановок М., Энергоатомиздат, 1987 г.

Примечания

7.4. Сеть с эффективно заземленной нейтралью

Сеть с эффективно заземленной нейтралью является частным слу­чаем сети с глухозаземленной нейтралью. Электрическая сеть с эффек­тивно заземленной нейтралью — трехфазная электрическая сеть напря­жением выше 1000 В, в которой коэффициент замыкания на землю не превышает 1,4.

Под К3 понимают отношение

где Uф.з

— фазное напряжение неповрежденной фазы при замыкании на землю.

Сети напряжением 110 кВ и выше выполняются с эффективным за­землением нейтрали по соображениям стоимости изоляции, так как в таких сетях при замыкании на землю одной фазы напряжение на двух, других не превышает 0,8 номинального междуфазного напряжения. Это означает, что изоляцию рассчитывают на это напряжение, а не на полное между фазное напряжение в случае изолированной или компен­сированной нейтрали.

При эффективном заземлении нейтрали замыкание фазы на землю является, по существу, однофазным коротким замыканием, которое требует немедленного отключения. Тяжелым аварийным режимом яв­ляется также двух- или трехфазное короткое замыкание на землю. Од­нако при таких КЗ напряжения на неповрежденных фазах, а также токи КЗ оказываются меньшими, чем при однофазных замыканиях на зем­лю. Поэтому двух- и трехфазное короткое замыкание на землю не рас­сматривается.

Значительная часть однофазных замыканий в сетях 110 кВ и выше при снятии напряжения самоустраняется, поэтому автоматическое по­вторное включение восстанавливает питание потребителей.

Обычно в электрических сетях с эффективно заземленной нейтра­лью для ограничения тока однофазного КЗ заземляют нейтрали не всех, а лишь части силовых трансформаторов. Например, из двух уста­новленных на подстанции трансформаторов нейтраль заземляют толь­ко у одного. Для этой же цели в некоторых случаях нейтрали транс­форматоров заземляют через дополнительное активное или реактивное сопротивление.

Основным преимуществом такого заземления нейтрали, в особен­ности для сетей напряжением 110 кВ и более, является ограничение напряжений, возникающих в неповрежденных фазах при замыканиях на землю в сети. Следовательно, изоляцию таких сетей можно рассчи­тывать на меньшую кратность перенапряжений. Некоторое значение имеет также возможность применения в сетях с эффективным заземлением нейтрали относительно простых устройств релейной защиты от замыканий на землю.

К недостаткам таких сетей по сравнению с сетями, в которых обес­печивается режим изолированной нейтрали, относятся более тяжелые последствия однофазных замыканий на землю (необходимость их немедленного отключения и т.д.), а также более высокая электроопасность для обслуживающего персонала, пожаро- и взрывоопасность. Кроме того, реализация режима эффективного заземления нейтрали, которое должно быть рассчитано на больший ток КЗ, требует сущест­венного усложнения системы заземления на подстанциях.

Основными областями применения эффективного заземления ней-! трели следует считать сети с номинальными напряжениями 110 кВ и более, а также сети напряжением до 1000 В при условии отсутствия в них установок с повышенной электро-, пожаро- и взрывоопасностью.

Следует отметить, что в последние годы эффективное заземление нейтрали получает распространение и в городских сетях. В этом слу­чае, если сеть имеет К3 < 1,0, при замыкании на землю перенапряже­ния не возникают и изоляция фаз по отношению к земле выбирается по фазному, а не по линейному напряжению. Благодаря этому сеть с на­пряжением 6 кВ может эксплуатироваться с напряжением 10 кВ. В ре­зультате мощность, передаваемая по сети, увеличивается в раз без замены токоведущих частей и изоляции, в том числе без замены кабелей.

Эффективно заземлённая нейтраль — Википедия. Что такое Эффективно заземлённая нейтраль

Материал из Википедии — свободной энциклопедии

Эффективно заземлённая нейтраль — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря, при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше[1].

Недостатки

  • Возникновение больших токов короткого замыкания (к.з.) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП[2] максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Литература

  • Правила устройства электроустановок М., Энергоатомиздат, 1987 г.

Примечания

3.4 Сети с эффективно заземленной нейтралью

Сети с UH0M= 110 кВ выполняются с эффективно за­земленной нейтралью по соображениям стоимости изоляции, так как в таких сетях при замыкании на землю одной фазы напряжение на двух других не превышает 0,8 междуфазного напряжения. Это означает, что изоляцию рассчитывают на это напряжение, а не на полное междуфазное напряжение в случае изолированной или компенсированной нейтрали.

Недостатком режима эффективно заземленной нейтрали является то, что замыкание фазы на землю является коротким замыканием и тре­бует немедленного отключения.

Значительная часть однофазных замыканий в сетях 110 кВ и выше при снятии напряжения самоустраняется, поэтому автома­тическое повторное включение (АПВ) восстанавливает питание потребителей.

Для уменьшения величины тока однофазного КЗ применяют частичное разземление нейтралей.

3.5 Сети с глухозаземленной нейтралью в установках до 1 кВ

В установках до 1 кВ для одновременного питания трехфазных и однофазных нагрузок применяются четырехпроводные сети с глухим заземлением нейтрали. В таких сетях применяют нулевой проводник, связанный с нейтралью трансформатора (рисунок 3.5), который служит также для защитного зануления, т. е. для присо­единения всех металлических частей электроустановки, нормаль­но не находящихся под напряжением.

Рисунок 3.5  Трехфазная четырехпроводная сеть

с глухозаземленной нейтралью

При пробое изоляции на корпус возникает однофазное КЗ, приводящее к отключению соответствующего автоматического выключателя. Нулевой проводник изолируется, как и фазные проводники, сечение его не менее 0,5 фазного, от его целостности зависит надежность и бе­зопасность работы электроустановки. Нулевой проводник повтор­но заземляется в местах разветвления и на длинных участках (бо­лее 200 м).

Пример. Выбрать дугогасящий реактор для компенсации емкостного тока сети 10 кВ, присоединенной к шинам подстан­ции (рисунок 3.6). Емкостный ток кабельной сети, присоединенной к секции К1 равен 19 А, к секции К2  18 А. Нормально секци­онный выключатель QK отключен. К секциям К1, K2 присоедине­ны трансформаторы собственных нужд ТМ-160.

Решение. Согласно требованиям ПУЭ компенсация емкост­ного тока необходима при 1С > 20 А, такой режим возникает при включении секционного выключателя QK (например, при выводе в ремонт Т1 или Т2):

Мощность реактора определим по формуле (3.4)

Выбираем по справочнику [7] реактор РУОМ-300/10, QH0М,Р= 300 кВА.

Такой реактор нельзя присоединить к нейтрали трансформато­ра собственных нужд мощностью 160 кВА, так как ST< QHOM,P.

Выбираем для присоединения реактора специальный трансфор­матор ТМ-400/10 (SТ= 400 кВА > QH0М,Р= 300 кВА).

Рисунок 3.6  Схема подстанции (к примеру)

3.6 Сравнение режимов заземления нейтрали

С точки зрения безопасности выбор между четырехпроводной и трехпроводной сетью до 1 кВ производится по условиям прикосновения к фазному проводу:

 в период нормального режима работы сети более безопасной является, как правило, сеть с изолированной нейтралью;

в аварийный период более безопасной является сеть с заземленной нейтралью.

Сети с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень изоляции проводов относительно земли и когда емкость проводов относительно земли незначительна. Такими являются короткие сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором электротехнического персонала.

При применении трехфазного тока с номинальным напряжением 500 или 660 В, а также при повышенных требованиях безопасности (на торфяных разработках, угольных шахтах), когда протекание тока короткого замыкания через землю в результате повреждения фазной изоляции сети или оборудования является опасным, электроустановки выполняются с изолированной нейтралью. Условия безопасности в этом случае достигаются быстрой ликвидацией ненормальных режимов, возникающих в сети.

Сети с заземленной нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (из-за высокой влажности, агрессивности среды), когда нельзя быстро отыскать или устранить повреждение изоляции или когда емкостные токи замыкания на землю достигают значений, опасных для человека.

Анализ режимов заземления нейтрали приведен в таблице 3.1.

Таблица 3.1  Режимы нейтрали. Преимущества и недостатки

Наименование

Область

применения

Преимущества

Недостатки

Сети высокого напряжения (трехпроводные) с глухозаземленной нейтрадью при большом токе замыкания на землю

Сети 110 и выше (в сетях 110 кВ заземляются нейтрали только части трансформаторов)

Не надо усиливать изоляцию

Потребитель отключается при КЗ на землю одной из фаз

Сети с изолированной нейтралью при малом токе замыкания на землю

Сети до 35 кВ

При замыкании на землю одной из фаз потребитель не отключается

Требуется усиление изоляции между фазой и землей

Сети с компенсированной нейтралью при малом токе замыкания на землю

Сети 335 кВ должны компенсироваться, если ток замыкания на землю превышает допустимый

При замыкании на землю одной из фаз потребитель не отключается. Емкостные токи компенсируются токами индуктивной катушки

Требуется дугогасительная катушка

Сети до 1 кВ (четырехпроводные) с глухозаземленной нейтралью

Сети 380/220 В

Технологические требования

Дополнительный расход металла на нулевой провод

Сети до 1 кВ (трехпроводные) с изолированной нейтралью

Сети 660 В при отсутствии потребителей 220 В. Сети 220 В при наличии потребителей 220 В

Меньше расход металла (три провода)

Необходим систематический контроль изоляции

3.7 Требования к устройствам защитного заземления [8]

3.7.1 В соответствии с ПУЭ [1] устанавливается допустимое сопротивление заземляющего устройства RЗ. Если заземляющее устройство является общим для установок на различное напряжение, то за расчетное сопротивление заземляющего устройства принимают наименьшее из допустимых.

3.7.2 Заземляющее устройство электроустановок напряжением выше 1 кВ в сети с эффективно заземленной нейтралью должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и объединять их между собой в заземляющую сетку. Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5-0,7 м от поверхности земли и на расстоянии 0,8-1,0 м от фундаментов или оснований оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены друг к другу, а расстояние между основаниями или фундаментами двух рядов не превышает 3,0 м.

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5-0,7 м от поверхности земли. Расстояние между ними рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0; 20,0 м.

Горизонтальные заземлители следует прокладывать по краю территории, занимаемой заземляющим устройством, так, чтобы они в совокупности образовывали замкнутый контур.

3.7.3 В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть RЗ 250/I, но не более 10 Ом, где I  расчетный ток замыкания на землю, А. В качестве расчетного тока принимается:

1) в сетях без компенсации емкостных токов – полный ток замыкания на землю, который может быть найден из выражения (3.3).

2) в сетях с компенсацией емкостных токов:

 для заземляющих устройств, к которым присоединены компенсирующие аппараты,  ток, равный 125 % номинального тока, наиболее мощного из этих аппаратов;

 для заземляющих устройств, к которым не присоединены компенсирующие аппараты,  ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

3.7.4 Сопротивление заземляющего устройства RЗ электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли > 100 Омм допускается увеличивать указанные нормы в 0,01 раз, но не более десятикратного.

3.7.5 Сопротивление заземляющего устройства RЗ электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью, используемого для защитного заземления открытых проводящих частей, должно соответствовать условию

RЗ  UПР/I, (3.6)

где UПР  напряжение прикосновения; принимается равным 50 В;

I  полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВА, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

3.8 Требования к устройствам молниезащиты [1], [8]

3.8.1 В соответствии с [1, п. 4.2.133] защита распределительных устройств (РУ) и подстанций (ПС) от прямых ударов молнии осуществляется стержневыми и тросовыми молниеотводами.

3.8.2 Выполнение защиты от прямых ударов молнии не требуется для ПС 20 и 35 кВ с трансформаторами единичной мощностью 1,6 МВА и менее независимо от количества таких трансформаторов и от числа грозовых часов в году, для всех открытых РУ (ОРУ) ПС 20 и 35 кВ в районах с числом грозовых часов в году не более 20, а также для ОРУ и ПС 220 кВ и ниже на площадках с эквивалентным удельным сопротивлением земли в грозовой сезон более 2000 Омм при числе грозовых часов в году не более 20.

Здания закрытых РУ и ПС следует защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20.

Защиту зданий закрытых РУ и ПС, имеющих металлические покрытия кровли, следует выполнять заземлением этих покрытий. При наличии железобетонной кровли и непрерывной электрической связи отдельных ее элементов защита выполняется заземлением ее арматуры.

Защиту зданий закрытых РУ и ПС, крыша которых не имеет металлических или железобетонных покрытий с непрерывной электрической связью отдельных ее элементов, следует выполнять стержневыми молниеотводами либо укладкой молниеприемной сетки непосредственно на крыше зданий.

При установке стержневых молниеотводов на защищаемом здании от каждого молниеотвода должно быть проложено не менее двух токоотводов по противоположным сторонам здания.

Молниеприемная сетка должна быть выполнена из стальной проволоки диаметром 68 мм и уложена на кровлю непосредственно или под слой негорючих утеплителя или гидроизоляции. Сетка должна иметь ячейки площадью не более 150 м2 (например, ячейка 12 х 12 м). Узлы сетки должны быть соединены сваркой. Токоотводы, соединяющие молниеприемную сетку с заземляющим устройством, должны быть проложены не реже чем через каждые 25 м по периметру здания.

В качестве токоотводов следует использовать металлические и железобетонные конструкции зданий. При этом должна быть обеспечена непрерывная электрическая связь от молниеприемника до заземлителя. Металлические элементы здания (трубы, вентиляционные устройства и пр.) следует соединять с металлической кровлей или молниеприемной сеткой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *