Эффекте пельтье – Элемент Пельтье своими руками — видео урок как сделать термоэлектрический генератор, что такое эффект Пельтье, как выбрать, фото

Эффект Пельтье — Википедия

Материал из Википедии — свободной энциклопедии

Эффект Пельтье́ — термоэлектрическое явление переноса энергии при прохождении электрического тока в месте контакта (спая) двух разнородных проводников, от одного проводника к другому.

Величина перемещённой энергии и направление её переноса зависят от вида контактирующих веществ и от направления и силы протекающего электрического тока[1]:

Peltier effect circuit.png

Q=ΠABIt=(ΠB−ΠA)It{\displaystyle Q=\Pi _{AB}It=(\Pi _{B}-\Pi _{A})It},

где:

Q{\displaystyle Q} — количество выделенного или поглощённого тепла;
I{\displaystyle I} — сила тока;
t{\displaystyle t} — время протекания тока;
Π{\displaystyle \Pi } — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α{\displaystyle \alpha } вторым соотношением Томсона [2]Π=αT{\displaystyle \Pi =\alpha T}, где T{\displaystyle T} — абсолютная температура в K.

Эффект открыт Ж. Пельтье в 1834 году, суть явления исследовал несколькими годами позже — в 1838 году Ленц, который провёл эксперимент, в котором он поместил каплю воды в углубление на стыке двух стержней из висмута и сурьмы. При пропускании электрического тока в одном направлении капля превращалась в лёд, при смене направления тока — лёд таял, что позволило установить, что в зависимости от направления протекающего в эксперименте тока, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Эффект Пельтье «обратен» эффекту Зеебека.

Эффект Пельтье более заметен у полупроводников, это свойство используется в элементах Пельтье.

Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта.

  1. ↑ В отличие от джоулева тепла, которое пропорционально квадрату силы тока, тепло эффекта Пельте пропорционально силе тока в первой степени.
  2. Яворский Б. М., Детлаф А. А. Справочник по физике: для инженеров и студентов ВУЗов. — Изд. 4-е, перераб. — Наука — Главная редакция Физико-математической литературы, 1968. — С. 417.

Элемент Пельтье — Википедия

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. 

Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу — противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье

[1] возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, требуемая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийных холодильников и до −120 °C для двухстадийных).

Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота.[2][3] До азотного охлаждения использовали именно такой способ.

«Электрогенератор Пельтье» (более корректно было бы «генератор Зеебека», но неточное название устоялось) — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:

  1. непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
  2. источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)

Эффекту Пельтье — 175 лет

На пластину наносятся проводящие дорожки, формирующие последовательно — параллельное подсоединение полупроводниковых брусочков, которые подпаиваются к контактным площадкам, используя механические шаблоны. При этом не используются оловянные или свинцовые припои, так как эти металлы достаточно агрессивны к полупроводникам и могут диффундировать в них, ухудшая термоэлектрические показатели. Свойства использованного припоя в значительной степени определяют максимальную температуру ТЭМ, которая для модулей «бытового» применения (а это большинство из выпускаемых в мире), обычно находится в диапазоне от 100 до 200°С.

Разумеется, «развертыванием» р-n перехода и соединением двух разнородных проводников посредством контактной дорожки и пайки, вместо одного спая создается два, и на каждом из них будет проявляться свой эффект Пельтье, что в сумме даст худший эффект, чем при непосредственном контакте полупроводников. Кроме того, в случае охлаждающего ТЭМ, электрическое сопротивление такого соединения приведет и к дополнительному паразитному нагреву. Но этих явлений не избежать, поэтому внутренние соединения ТЭМ делаются толстой напайкой из металла или сплава, соответствующего используемым полупроводникам.

Коэффициент Пельтье π связывает количество теплоты от эффекта Пельтье и плотность тока. Хоть Зеебек и не признал открытое им же явление термоэдс, тем не менее, это величина, которую достаточно легко измерить, в отличие от коэффициента Пельтье.

Поэтому коэффициент Пельтье вычисляют по коэффициенту Зеебека. Значения коэффициента Зеебека для некоторых веществ (при 0°С) сведены в таблицу, размерность — микровольт на градус.


ВеществоКоэффициент Зеебека (термоэдс)
Висмут-72
Константан-35
Никель-15
Платина0
Алюминий3.5
Германий300
Кремний440
Теллур500
Селен900

По мере развития термоэлектричества, стало ясно, что свойства ТЭМ сильно зависят от температуры и нужен более универсальный параметр эффективности, чем добротность по Альтенкирху. Было предложено использовать коэффициент ZT, дающий возможность охарактеризовать работу термоэлектриков в широком диапазоне температур. И на многие годы камнем преткновения стали попытки преодоление этим коэффициентом значения единицы. Физическая теория не накладывает ограничений на величину ZT и современная наука находится в поисках таких материалов.

Можно отметить тот факт, что существуют и магнитоэлектрические явления, которые могут существенно усилить термоэлектрические эффекты.

В завершение главы необходимо упомянуть еще об одном термоэлектрическом явлении, эффекте Томсона, открытом в 1856 году, который проявляется в однородной среде и для него не нужны контакты разнородных материалов. Если вдоль проводника, по которому проходит электрический ток, существует перепад температур, то, в дополнение к теплоте Джоуля, в проводнике выделяется или поглощается (в зависимости от направления тока) дополнительное количество теплоты.
Насколько существенна эта теплота, прямых данных обнаружить не удалось, однако Альтенкирх, зная об эффекте Томпсона, ее не учитывал. С другой стороны, современные (2008 года) исследования этот эффект, при рассмотрении термоэлектрических явлений, считают существенным, особенно при низких температурах и приводит к появлению существенных нелинейностей, кроме того, и сама величина теплоты Томсона рассчитывается в современной физике по-другому.
Чтобы не затруднять себе жизнь, эффект Томсона учитывать не будем.

Работа термоэлектрического модуля

Многие вопросы у начинающих пользователей ТЭМ возникают из-за непонимания сути происходящих при его работе явлений. Давайте рассмотрим упрощенную модель ТЭМ, без учета эффекта Томсона, Ричардсона и других, не оказывающих в «бытовом» применении существенного влияния на результат, и считая, что теплопередача не осуществляется через боковые (нерабочие) поверхности термоэлементов. Говоря еще более строго, параметры ТЭМ определяются в вакууме и при поддержании постоянной температуры «горячей» стороны на уровне 300К. Попробуем определить тепловой баланс Q для «холодного» спая, без учета временных параметров (в нестационарных режимах за счет инерционности теплообменных процессов и безынерционности эффекта Пельтье, при подаче импульсов тока, возможно кратковременное получение пиковой холодопроизводительности в несколько раз большей, чем при стационарном режиме).

В этом случае действуют:

собственно эффект Пельтье с отводом теплоты Qпельтье = α *Tхол*I, где α — термоэдс элемента, I — ток через термоэлемент, Tхол — температура «холодного» спая;

эффект Джоуля, с выделением теплоты из-за прохождения электрического тока через ТЭМ, Qджоуля = ½ I² R, где R — электрическое сопротивление термоэлемента, а половина взята, так как вторая половина будет относиться к «горячему» спаю;

эффект теплопроводности, стремящийся устранить разность температур рабочих сторон термоэлемента, с выделением теплоты Qтп = K*(Tхол-Tгор), где К — полная теплопроводность, зависящая от удельной теплопроводности, площади сечения и длины термоэлемента, Tгор – температура «горячего» спая.

Таким образом,

Q = Qпельтье – Qджоуля – Qтп ,
или
Q = α * Tхол * I — ½ I² R — K*(Tгор-Tхол)

В связи с этим существуют два маргинальных случая, когда Q=0 и Q=Q max.
Q=0 соответствует максимальной разнице температур на концах ТЭМ (ΔTmax = Tгор-Tхол), то есть, когда вся теплота (то есть, в данном случае, холод) от эффекта Пельтье расходуется на перемещение теплоты от эффекта Джоуля на «горячий» спай и компенсацию эффекта теплопроводности.
Этот вариант соответствует режиму «холостого хода» и отсутствию тепловой нагрузки, поэтому практического интереса не представляет.

Q=Q max соответствует ситуации, когда разница температур равна нулю, то есть предельный режим работы ТЭМ, при котором дальнейшее увеличение тока не имеет смысла. Этот параметр и соответствующий ему ток и рабочее напряжение указывается в паспортных данных ТЭМ. Поэтому, в отличие, например, от транзисторов, где превышение максимального тока чревато невосстанавливаемым пробоем и перманентным выходом из строя, превышение максимального тока ТЭМ может привести лишь к росту его температуры (она часто ограничена температурой низкоплавкого припоя на основе висмута, используемого при пайке, имея в виду ТЭМ, предназначенные для работы в условиях комнатных температур, надо сверяться с данными по конкретному ТЭМ). Практическую ценность может представлять информация, что максимальная холодопроизводительность составляет около 60% от потребляемой электрической мощности. Но режим работы с максимальным током, соответствующим Q max, является и самым неэкономичным для ТЭМ.

Рабочим режимом является некоторое промежуточное значение холодопроизводительности, ниже максимального, но при котором еще существует определенная разница температур под определенной тепловой нагрузкой.

При желании из приведенных соотношений можно вывести ряд формул, в том числе и для максимального тока.

Для серийно выпускаемых ТЭМ в паспортных характеристиках указываются максимальный ток и при каком напряжении он достигнут, максимальная холодопроизводительность, максимально достижимая разность температур, габаритные размеры и материал корпуса.

КПД ТЭМ

Эквивалентом КПД для ТЭМ, используемого как охладитель, является коэффициент преобразования

ɛ = (Tхол / (Tгор-Tхол)) * (SQR(1+ ½ Z(Tгор+Tхол)) –
— Tгор/Tхол) / (SQR(1+ ½ Z(Tгор+Tхол)) + 1)

SQR означает извлечение квадратного корня из последующего выражения, заключенного в скобки.

В принципе, легко узнается термодинамическая составляющая и функция потерь.
Можно также заметить, что при приближении Tхол к Tгор коэффициент преобразования будет увеличиваться и не видно, как и чем он ограничивается. И хоть такой режим соответствует максимальной холодильной мощности, в практических целях его обычно не применяют, ибо всегда стремятся достичь разницы температур. Конечно, в «рост КПД выше единицы» верится с трудом, но объяснение этому простое — если два контактирующих вещества находятся при близких температурах, энергетические уровни большинства электронов достаточны для совершения работы выхода без внешней подпитки энергией. И термоэлектрический насос, в отличие от механического, который должен физически перекачивать жидкость, не совершает работу по переносу каждого носителя.

Применение термоэлектрических устройств

Эффект Пельтье может использоваться как для охлаждения, так и для нагрева. Достигается это простым изменением полярности питающего напряжения.

Пожалуй, наиболее массово ТЭМ применяются в небольших переносных и автохолодильниках, где тепловая нагрузка — без притока теплоты извне и позволяет решать задачи охлаждения элементами малой мощности.

Далее можно отметить устройства охлаждения радиоэлектронных компонентов и различные устройства термостатирования ввиду легкости прецизионного электронного регулирования
температуры как для нагрева, так и для охлаждения.

Выше говорилось, что максимальная холодопроизводительность ТЭМ получается при определенном значении тока, который при заданном значении напряжения питания показывается как I max. Нестационарный режим питания импульсами тока, в несколько раз превышающими I max, на некоторое время позволит получить холодопроизводительность, намного превышающую паспортную. Это объясняется тем, что сам эффект Пельтье безынерционен, в отличие от распространения теплоты джоуля и явления теплопроводности, и, в течение нескольких секунд, этим можно воспользоваться. Впрочем, нестационарные режимы широкого применения не получили.

Ввиду обратимости термоэлектрических эффектов, ТЭМ может использоваться и в качестве ТЭГ. Вдали от удобств цивилизации это может быть один из немногих доступных источников электрической энергии, например, для подзарядки аккумуляторов или прямого питания радиоэлектронной аппаратуры или других устройств. Естественно, не каждый ТЭМ может быть использован для этих целей. Достаточно широко используются устройства, в которых разница температур создается между наружной металлической оболочкой, нагреваемой открытым огнем (костром), и внутренней оболочкой, охлаждаемой водой. «Холодная» сторона будет ограничена температурой кипения воды, поэтому такой ТЭМ должен быть рассчитан на рабочую температуру 500-600°К.

Следует иметь в виду, что тепловой баланс для ТЭГ качественно отличается от ТЭМ на основе эффекта Пельтье, и этот эффект (вместе с теплотой Джоуля) вносит всего несколько процентов в общий вклад, что требует совершенно других акцентов при конструировании ТЭГ.

ТЭГ широко применяются в космической технике, где температура «горячей» стороны поддерживается радиоизотопным источником.

Впрочем, вживляемые в тело человека кардиостимуляторы также снабжены ТЭГ с радиоизотопным источником для создания разности температур.

Можно упомянуть и возможность каскадирования элементов охлаждения, путем «построения пирамиды» можно добиться разницы температур, не достижимой с помощью одиночного элемента. Правда, за это нужно будет заплатить высокую энергетическую и инженерную цену — каждый следующий каскад должен быть соответствующей мощности, чтобы создавать разницу температур с учетом полезной и полной тепловой нагрузки предыдущего каскада, а на последнем этапе все возросшее в геометрической прогрессии тепло еще надо и отвести.

ТЭМ — за и против

ТЭМ обладает рядом уникальных потребительских свойств, что, в некоторых условиях эксплуатации, делает их просто незаменимыми.

За:
Полная бесшумность
Безынерционность эффекта
Отсутствие движущихся частей
Экологическая безопасность
Отличные массогабаритные данные и высокая удельная мощность
КПД не зависит от габаритов
Конструктивное исполнение практически любого форм-фактора
Способность работать в широком диапазоне температур
Нечувствительность к короткому замыканию
Мгновенная готовность к работе
Минимальные затраты на обслуживание

Против:
Даже при нулевой полезной холодопроизводительности потребляется энергия
Необходим качественный отвод тепла с горячей стороны, причем мощности, в несколько раз превышающей полезную холодопроизводительность

Мини-FAQ

Как правильно подобрать мощность элемента Пельтье для непосредственного охлаждения процессора с TDP ХХ Вт?

Предположим, имеется ТЭМ с холодопроизводительностью XX Вт. Что это означает? То, что, при условии интенсивного охлаждения «горячей» стороны ТЭМ до 27°С, температура процессора будет не ниже 27°С. Какую тепловую мощность при этом нужно будет рассеять на «горячей» стороне ТЭМ?
Суммируем тепловыделение процессора XX Вт и электрическую мощность, потребляемую ТЭМ Qджоуля = XX Вт / (0.5….0.6), что в итоге составляет примерно 3*XX Вт.
Готовы ли вы рассеять такую мощность и поддерживать на «горячей» стороне ТЭМ 27°С?
Если нет, то соответственно и «горячая» сторона, и «холодная» будут иметь одинаково более высокую температуру.

Если требуется понизить температуру процессора по отношению к температуре «горячей» стороны ТЭМ, то необходимо применять модуль, с холодопроизводительностью в несколько раз большей, чем TDP процессора, работающий на пониженной мощности, или не один, а несколько модулей, с суммарной холодопроизводительностью в два-четыре раза выше TDP процессора, или, в необходимых случаях, использовать и каскадное подключение. Но энергетические затраты и необходимость еще более лучшего охлаждения вряд ли обрадуют рядового пользователя.

Многие разочарования от использования систем охлаждения на основе эффекта Пельтье связаны именно с недооценкой количества того тепла, которое придется отводить от «горячей» стороны ТЭМ. Проблема с отводом тепла с помощью ТЭМ от процессора с TDP=125Вт будет очень сложной. В этом случае лучше использовать ТЭМ для вспомогательного охлаждения в контурах СВО, о чем подробно рассказано в соответствующей ветке на форуме overclockers.ru.

Кстати, производители ТЭМ часто предлагают специализированные программы, помогающие правильно спроектировать систему охлаждения.

ТЭМ имеет низкий КПД?
При работе ТЭМ одновременно протекают несколько физических процессов. Говоря о «чистом эффекте Пельтье», то есть о прямом преобразовании электрической энергии в тепловую, то КПД очень высокий, особенно в момент включения. Рассматривая же вопрос с практической точки зрения, надо понимать, что полезному эффекту Пельтье, в случае, если мы занимаемся охлаждением, противостоят, как минимум, два вредных эффекта. К тому же КПД возрастает с уменьшением разницы температур между холодной и горячей стороной. Так что КПД — изменчивая субстанция.

Чем больше модулей, тем выше КПД?
Само по себе число модулей КПД не повышает. Увеличение числа модулей, при правильном расчете, дает возможность получить, например, такую же холодопроизводительность с меньшими затратами энергии на каждый элемент, снижая рабочий ток, и, соответственно, получая пониженные требования к охлаждению «горячей» стороны.

В паспортных данных говорится, что разность температур ХХ, у меня же практически она равна нулю!
С процессором в TDP 125Вт не справляются два модуля по 89 Вт. Почему?

Параметры ТЭМ измеряются в идеальных условиях (вакууме и при постоянной температуре «горячей» стороны в 300К, к тому же максимальная температура достигается при отсутствии тепловой нагрузки на «холодной» стороне. При условии поддержания температуры «горячей» стороны в 300К (27°С) и повышении тепловой нагрузки на «холодной» стороне разность температур будет снижаться вплоть до нуля, а если тепловая мощность на «холодной» стороне будет повышаться и дальше, то «холодная» сторона уже будет теплее «горячей» за счет тепловой инерции и теплового сопротивления модуля.
То есть, в идеальных условиях и при нагрузке, равной максимальной тепловой мощности ТЭМ, разница температур равна нулю! Для получения разности температур нужно уменьшать тепловую нагрузку, при тех же энергетических затратах. Но для повышения энергоэффективности и облегчения условий охлаждения «горячей» стороны, на ТЭМ подается электрическая мощность, на 20-50% менее значения, соответствующего энергопотреблению при максимальной тепловой мощности. В реальных условиях для однокаскадной системы охлаждения достигается разность температур 20-40°.

Приведенные цифры соответствуют модулям с рабочими температурами, близкими к комнатным.
В общем случае, если температура «горячей» стороны не поддерживается и возрастает с тепловой нагрузкой, то максимально достижимая разница температур будет меньше паспортной.

ТЭМ, являясь тепловым насосом, перекачивает тепло от охлаждаемого тела на свою горячую сторону?
Термин «тепловой насос», то есть принудительная «перекачка» теплоты, применим только для внутренних процессов ТЭМ. «Рабочим телом» является электрический ток, создающий разность температур в соответствии с эффектом Пельтье. Тепловая нагрузка — это уже «естественное» явление теплопроводности через ТЭМ.

Без тепловой нагрузки, за счет явления теплопроводности точка «средней температуры» находится примерно посередине (не строго, так как за счет эффекта Томсона она будет смещена). В данном случае «перекачивается» теплота Джоуля от протекания тока по ТЭМ с «холодного» на «горячий» спай и производимым холодом блокируется эффект теплопроводности от «горячего» спая. Появление тепловой нагрузки на «горячем» спае можно рассматривать как теплоту, часть которой путем теплопроводности будет передана на «горячий» конец, повысив его температуру, если одновременно не увеличивать охлаждение «горячего» спая, а вторая половина, приведенная к «холодному» спаю, равносильна уменьшению холодильной мощности (происходит «взаимозачет» тепловых потоков), соответственно температура «холодного» спая повышается. Из-за этого происходит дальнейшее повышение температуры ТЭМ от теплоты Джоуля и за счет меньшего противодействия теплопроводности.

Заметим, что работа, совершаемая током, при этом не меняется (что, на самом деле, не совсем так, поскольку полупроводники и полуметаллы крайне чувствительны к температуре).

Холодильники на ТЭМ работают эффективнее по сравнению с охлаждением электронных компонентов из-за хорошей герметизации корпуса?
Герметизация, безусловно, важна, но она означает только то, что тепловая нагрузка на ТЭМ все время падает, в отличие, например, от охлаждения постоянно выделяющего тепло процессора.

Если используется несколько ТЭМ для охлаждения, как правильно их подключать?
Для нормальной работы ТЭМ необходимо выполнить несколько условий.
Источник питания должен обеспечивать требуемую мощность.
Не превышать допустимые параметры по току и напряжению, иначе придется бесполезно рассеивать дополнительную теплоту. Практически используемые режимы -понижение рабочего напряжения и, соответственно, тока до величин 50% от I max и менее.

К примеру, если нет подходящего источника питания и используется компьютерный блок питания, то 4 ТЭМ на 14-15 вольт, можно подключить параллельно к напряжению 5 вольт, или попарно последовательно-параллельно к напряжению 12 вольт ( два модуля последовательно с тем, чтобы каждый модуль запитывался напряжением 6 вольт, и оба блока параллельно к источнику 12 вольт).

Последовательное соединение можно рекомендовать только для однотипных модулей, при этом желательно их подобрать в пары по максимально близкому сопротивлению.

PS

В честь 175-летия открытия эффекта Пельтье была приобретена горстка ТЭМ для небольших практических опытов.

Для экспериментов потребуется небольшой набор аксессуаров,


Джентельменский набор начинающего пельтьемейкера

в данном случае это источники питания в виде компьютерного блока мощностью 650 Вт (на фото отсутствует), прецизионного регулируемого источника питания PXN-1505D, два цифровых мультиметра с термопарами, блок для измерения температур с 4-мя термодатчиками Zalman MFC2 (нет на фото), ИК термометра DVM8861 (-50..550°C) c двухлучевым лазерным указателем для визуальной индикации размера захватываемого участка и набор различных металлических пластин, радиаторов, крепежных элементов, проводов и силовых резисторов. Также на фото отсутствует 450-ваттный термогенератор (фен) SMD852, тюбик КПТ-8 и прочие мелочи.
Сразу следует сказать, что, для получения максимально эффективной работы ТЭМ как охладителей, для их питания необходимо использовать регулятор напряжения, управляемый температурой охлаждаемого устройства по требуемому графику регулировки. Конечно, для маломощных охлаждаемых устройств, например, для чипсетов материнских плат, можно подобрать требуемый ток и держать ТЭМ постоянно подключенными. Если требуется холодильная мощность более 100 Вт, например, для непосредственного охлаждения процессора, то это потребует рассеивания порядка 300Вт на «горячей» стороне ТЭМ, что вряд ли целесообразно делать постоянно — ведь процессор не все время такой прожорливый.

Но для тех, кто будет экспериментировать, используя компьютерный блок питания, возможно, пригодится следующая информация.

В горстке показанных термоэлементов всего три разновидности: TEC1-12710, TEC1-12706, TES1-12704. В таблицу сведены их паспортные параметры и то, что можно с них выжать (максимальную холодопроизводительность) при питании 12 вольт.


МодульUIWI(12)W(12)
TEC1-1271015.610.5895.033
TEC1-1270614.96.4533.725
TES1-1270414.64.3362.516.5

Ради эксперимента была предпринята попытка охладить модулем TEC1-12706 (на фото ниже примерка с TEC1-12710), подключенным к питанию 5 вольт, чипсет на материнской плате M3N72-EM (GF8300), после замены штатного радиатора на теплосъемную пластину (к сожалению, из латуни, так как в тот конкретный момент подходящего куска меди или алюминия под рукой не оказалось.


Примерка на чипсет

На горячую сторону устанавливались различные виды пассивного и активного воздушного охлаждения и затем те же радиаторы без TEC1-12706.

В результате, максимальный выигрыш (8-10° с модулем против 18-21° без, в обоих случаях радиатор с вентилятором). Конечно, можно заменить материал основания, добавить тока, но температуру ниже понижать уже нельзя, чтобы не образовывался конденсат. Пассивный радиатор на элементе приводит к прогреву до 27-30°С (в комнате 23°С), тот же радиатор без элемента обеспечивает температурный режим 57°. К слову, GlacialTech 5700 без кожуха и в пассивном режиме снижает температуру до 46°С.

Таким образом, решено не применять ТЭМ для охлаждения чипсета на этой материнской плате.

Разумеется, то, что модули ТЭМ были куплены в ознаменование 175-летия открытия эффекта Пельтье, это гротеск. На самом деле, все проще — в серии статей «Компьютер будущего» (для тех, кто не читал поясню, что имеется в виду компьютер из ближайшего будущего автора, а не будущего вообще), говорится о компьютере без механически движущихся частей (за исключением BluRay привода).

Полностью пассивное охлаждение — задача нетривиальная, даже для процессоров с TDP 45 Вт. Разумеется, в 2D или под небольшой нагрузкой и без разгона, задача решается относительно легко и красиво — стоит только посмотреть на моноблоки Аpple. Но стресс тест процессоров или просто тяжелые долговременные рабочие режимы быстро приводят к перегреву со всеми вытекающими последствиями.

Поэтому и появилась идея использовать ТЭМ. Конструкция непосредственного контакта ТЭМ с процессором непригодна, так как в таком случае требуется необоснованно большой расход энергии и необходимость рассеивания соответствующего тепла и в случае, когда процессор эффективно охладился бы силами крупного пассивного радиатора без всяких дополнительных затрат энергии. Но вполне возможно встроить ТЭМ во вторичный контур охлаждения, установив дополнительный теплосъемник в верхней точке тепловых трубок пассивного радиатора и охлаждая его, уже по мере необходимости (по сигналам с датчиков температур, а в простейшем случае используя механический термостат с гистерезисом). Радиатор охлаждения ТЭМ может вообще быть вынесен за пределы корпуса (как его декоративный элемент и чтобы повысить общую эффективность системы охлаждения).


Примерка теплосъемника радиатора процессора

На фотографии видно, что медная пластина Г-образной формы (будет) припаяна с помощью сплава Розе к верхним концам тепловых трубок пассивного радиатора, с трубок которого предварительно сняты 3-4 ребра охлаждения. На другом конце пластины (будет) установлено один-два-три ТЭМ. Общий теплосъемник «горячей» стороны ТЭМ через прорезь в корпусе передаст тепло на пассивный радиатор большой площади, находящийся на удалении нескольких миллиметров от боковой стенки корпуса.

Суммарная паспортная мощность 4-х ТЭМ (планируется две пластины) более 210 Вт, что, с учетом первичного пассивного радиатора, должно обеспечить охлаждение, даже в щадящем включении ТЭМ, 45 ваттного процессора.

Можно исхитриться и между боковой стенкой компьютера и большим радиатором ТЭМ поставить ТЭМ в режиме ТЭГ, обеспечив прижим элементов одной стороной к радиатору («горячая»), другой стороной («холодная») к корпусу. Сделав последовательное подключение элементов, можно, без всяких внешних элементов и источников питания, генерируемым напряжением запускать резервный вентилятор, выдувающий теплый воздух из корпуса наружу, или обдувающий пассивный радиатор процессора. Впрочем, экономическая самоокупаемость такого решения явно подкачает, но принципиальная возможность этого есть.

Дополнительные теплосъемники (или, например, один из существующих Г-образных), могут быть выполнены в виде U-образной пластины и дополнительный пассивный радиатор может располагаться и над верхней крышкой корпуса. На вторую боковую крышку планируется вывести просто пассивный радиатор, без ТЭМ, на который передается тепло с активных элементов блока питания, установленных на медный радиатор П-образного профиля с выфрезерованными зубцами для увеличения площади охлаждения.


Радиатор блока питания

Между этим радиатором и радиатором боковой стенки также могут быть установлены ТЭМ. Но рассказ о том, что получилось в итоге, и какие температурные режимы получаются внутри и снаружи, еще впереди.

Обменяться поздравлениями по случаю 175-летия открытия эффекта Пельтье можно здесь .

15 марта 2009 года
zauropod, специально для overclockers.ru

Элементы Пельтье или мой путь к криогенным температурам / Habr

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:


Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.


Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.


Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…


Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

Эффект Пельтье

Выполнил студент группы АТ-11

Мухарлямов Ильдар

Эффект Пельтье

Вход: электрический ток.

Выход: количество теплоты, температура.

Сущность

При протекании постоянного электрического тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощаются или выделяются, в зависимости от направления тока, тепло. Тепло Пельтье, выделенное или поглощенное в слое, пропорционально полному заряду, прошедшему через спай, или произведению силы тока на время. Коэффициент Пельтье зависит от рода соприкасающихся проводников и от их температур.

Наиболее сильно эффект Пельтье проявляется на контактах полупроводников с различным типом проводимости (р или n) (см. рис.). Объяснение эффекта Пельтье заключается во взаимодействие электронов проводимости, замедлившихся или ускорившихся в контактном потенциале р-n перехода, с тепловым колебаниями атомов в массив полупроводника. В результате, в зависимости от направления движения электронов и соответственно тока, происходит нагрев () или охлаждение с) участка полупроводника, непосредственно примыкающего к спаю (р-n или n-p переходу).

Математическое описание

,

Где — тепло Пельтье, Дж

П – коэффициент Пельтье;

q – заряд, прошедший через контакт, Кл;

I — Ток в проводнике, А;

t – время, с.

Тепло Пельтье меняет знак при перемене направления тока. Пределы изменения параметров:

до 1 В – полупроводник;

I –до нескольких ампер;

Q – от 0 до 50 Дж (за 1 сек.)

Коэффициент Пельтье может быть выражен через коэффициент Томсона:

q T,

Где Томсона;

Т – коэффициент температуры, К.

Применение

Модуль Пельтье Примечателен тем, что при прохождении через него электрического тока представляет собой термонасос, т.е. перекачивает тепло с одной стороны на другую, благодаря чему активно используется в различных системах охлаждения, от холодильников для напитков, до систем охлаждения мощных полупроводниковых лазеров и различных чипов, особенно там, где нужно ускорить процесс забора тепла от нагревающегося элемента. Основные направления практического использования эффекта Пельтье в полупроводниках: получение холода для создания термоэлектрических охлаждающих устройств, подогрев для целей отопления, термостатирование, управление процессом кристаллизации в условиях постоянной температуры.

Для увеличения отношения сигнал/ шум фотоэлектронных умножителей (ФЭУ) предлагается способ охлаждения фотокатодов термоэлектрическими элементами, расположенными внутри вакуумной оболочки ФЭУ (Пат. 3757151 США).

Устройство для отбора газа, в котором отвод конденсата составляет одно целое с холодильником. На внутренней стороне полого конуса закреплены холодные спаи элементов Пельтье и от него ответвляется трубопровод для отбора измерительного газа. Холодильник отличается тем, что в качестве генератора тока, потребляемого элементами Пельтье, предусмотрена батарея термоэлементов, горячие спаи которых находятся в канале дымовых газов, а холодные спаи – во внешнем пространстве (Заявка 1297У02 ФРГ).

Изображение устройства

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

  • сравнительно небольшие габариты;

  • возможность работы и на охлаждение, и на нагревание системы;

  • отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

  • низкий КПД модулей;

  • необходимость наличия источника тока для их работы;

  • большая потребляемая мощность для достижения заметной разности температур и, как следствие, существенное тепло-выделение;

  • ограниченные габариты

Контрольные вопросы:

  1. В чем сущность эффекта Пельтье?

(При протекании постоянного электрического тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощаются или выделяются, в зависимости от направления тока, тепло.)

  1. От чего зависит коэффициент Пельтье?

(Коэффициент Пельтье зависит от рода соприкасающихся проводников и от их температур.)

  1. Какие проводники используется в эффекте Пельтье?

Наиболее сильно эффект Пельтье проявляется на контактах полупроводников с различным типом проводимости (р или n)

  1. Как связан коэффициент Пельтье, с коэффициентом Томсона?

q T,

Где Томсона;

Т – коэффициент температуры, К.

  1. Основные применение эффекта?

(Используется в различных системах охлаждения)

Задачи:

  1. Найти коэффициент Пельтье, зная что ток равный 10 А прошел за 3 секунды и выделил 50 Дж тепла.

  1. Чему будет равен коэффициент Томсона, если заряд равен 70 Кл, а абсолютная температура равна 300 К. Коэффициент Пельтье равен 1,7 В.

Решение:

  1. Найти заряд через коэффициент Томсона, если известна абсолютная температура равная 400 К, коэффициент Пельтье равное 4 Дж, где =const (коэффициент Томсона).

  1. Сколько выделится тепла в местах контакта разнородных проводников, если коэффициент Пельтье равен 73 мВ, а заряд прошедший через термомодуль равен 40 Кл.

Решение: Qп=П*q=2.92 (Дж).

  1. Найти время за которое пройдет ток в проводнике зная, что напряжение 120 В, сопротивление 10 Ом. При этом выделяется 1 Дж тепла, а коэффициент Пельтье равен 60 мВ.

Элемент Пельтье своими руками — видео урок как сделать термоэлектрический генератор, что такое эффект Пельтье, как выбрать, фото

То, что все электронные устройства в процессе работы нагреваются, не секрет. И этот самый нагрев негативно влияет на качество работы, поэтому для охлаждения приборов в их конструкцию устанавливаются специальные элементы, которые носят имя французского изобретателя Жан-Шарля Пельтье. Устройство это миниатюрное, но именно оно отвечает за охлаждение конденсаторов. Установить элемент Пельтье своими руками не проблема, с этим справится даже новичок, главное – знать, в каком месте схемы его припаять.

Элемент ПельтьеЭлемент Пельтье

Немного истории

Жан-Шарль Пельтье был часовщиком. Жил он в девятнадцатом веке, когда электротехника и физика были на подъеме. Все, кто хотя бы немного понимал, как работают физические законы, старались в домашних условиях делать опыты. Пельтье не стал исключением. В 1834 году он решил провести один опыт, поместив каплю воды между двумя электродами: один был изготовлен из сурьмы, второй из висмута. После чего через электроды пропустил электрический ток.

Каково его было изумления, когда вода превратилась в лед. Ведь то, что под действием электрического тока любые материалы нагревались, было известно. Но чтобы произошел обратный эффект, это была новость. Французский часовщик так и не понял, что изобрел что-то новое, которое оказалось на границе двух областей науки – электричества и термодинамики. В то время для него произошло просто волшебство.

Жан-Шарль Пельтье

Правда, проблемы охлаждения в те времена мало кого интересовали, поэтому эффект Пельтье так и остался невостребованным. И только через два века, когда в промышленности и быту стали использовать электронные устройства, для которых требовались миниатюрные приборы охлаждения, о Пельтье и его эффекте вспомнили.

Достоинства и недостатки

Что же получилось, в конце концов? А получился тот самый элемент Пельтье, который обладал большими достоинствами:

  • Компактность устройства, которое давало возможность установить его на электронное плато.
  • Полное отсутствие движущихся деталей, что увеличивало его срок эксплуатации.
  • Возможность соединять несколько элементов в каскадной схеме, которая позволяет снизить достаточно большие температуры.

Внимание! Если поменять полярность подключения, то эффект Пельтье будет совершенно противоположного действия. То есть, устройство будет не охлаждать, а нагревать.

Эффект

Есть у этого элемента и свои недостатки.

  • Небольшой коэффициент полезного действия. Это влияет на то, что придется к нему подводить большой ток, чтобы получить заметный перепад температур.
  • Сложность отвода тепловой энергии от охлаждаемой плоскости.

Физические процессы в элементе Пельтье

Чтобы разобраться в том, что происходит в данном устройстве, необходимо погрузиться в сложность физических законов и математических выкладок. Простому обывателю в этом разобраться будет сложно, поэтому объясним все по-простому.

Все действие происходит на уровне атомной решетки материала. Поэтому для удобства объяснения заменим его любым газом, который состоит из фононов (это его частицы). Итак, температура газа зависит от нескольких показателей:

  • температуры окружающей среды;
  • от металла, а точнее, от его свойств.

Поэтому получаем в предположении, что металл представляет собой смесь фононного и электронного газа. Оба газа находятся в термодинамическом равновесии. При соприкосновении двух металлов с разной температурой происходит перемещение холодного электронного газа в теплый металл. Что и образует разность потенциалов.

Термоэлектрический эффект ПельтьеТермоэлектрический эффект Пельтье

На границе контактов двух металлов, то есть на переходе, электроны забирают энергию у фононов и передают ее фононам другого металла. Если поменять полярность подключения, то процесс пойдет в обратную сторону. Перепад температур будет увеличиваться до тех пор, пока в металле есть свободные электроны с высоким потенциалом. Когда они закончатся, настанет своеобразное равновесие температур в обоих металлах. Вот так можно описать по-простому картину эффекта Пельтье.

Итак, из всех процессов, протекающих в элементе Пельтье, можно сделать вывод, что эффективность его работы зависит от точного подбора двух металлов со своими свойствами, от силы тока, который будет протекать через прибор, и от того, как быстро будет отводиться тепло из теплой зоны.

Практическое применение

Что касается практического применения, то здесь пришлось ученым провести ряд опытов, которые показали, что достигнуть увеличения теплоотвода можно одним способом – увеличить количество соединений двух разных материалов. При этом спаи материалов можно увеличивать до бесконечности. Конечно, это утрированное высказывание, но на практике количество пар, чем больше, тем лучше. Но все же основное назначение этого охлаждающего устройства – снижение температуры в микросхемах и небольших приборах.

Итак, где сейчас применяется термоэлектрический модуль Пельтье?

  • В приборах ночного видения, а точнее, в матрицах, которые принимают инфракрасное излучение.
  • В цифровых фотоаппаратах, а точнее, в приборах зарядной связи (ПЗС), а еще точнее, в их микросхемах. Все дело в том, что эти микросхемы требуют глубокого охлаждения, чтобы увеличилась эффективность регистрации картинки.
  • В телескопах, где устройства Пельтье охлаждают детекторы.
  • В системах точного времени для снижения температуры кварцевых электрогенераторов.
Эффект Пельтье сегодня применяется для охлаждения микропроцессоровЭффект Пельтье сегодня применяется для охлаждения микропроцессоров

И это только малый список, который с недавних пор расширился за счет бытовых приборов, компьютерной техники и автомобилей (кондиционеры, охладители воды и прочее). Хотелось бы отметить высокопроизводительные микропроцессоры, в которых для снижения температуры устанавливаются высокоскоростные элементы Пельтье. И если раньше для охлаждения использовались только вентиляторы, то дополнительная установка модуля решила проблему эффективности и снижения шума.

По поводу этого возникает еще один немаловажный вопрос, будет ли проведена замена традиционных систем охлаждения в бытовых холодильниках модулями Пельтье? Сегодня это невозможно за счет низкого КПД устройства. Да и себестоимость мощных модулей пока очень высока. Но кто знает, что ждет нас в будущем. Может быть, через  лет 5-10 эффект Пельтье будет использован и в бытовых холодильниках. Тем более ученые проводят сегодня опыты с кластратами – это так называемые твердотельные растворы, сильно похожие по строению и свойствам на гидраты. Именно с их помощью можно будет снизить цену охладительному модулю.

Удивительный факт

Термоэлектрическая технология данного типа обладает одной очень интересной особенностью. Эта особенность состоит в том, что можно не только получать тепло или холод из электрического тока, но и, наоборот, из тепла или холода получать электричество. То есть, в обратном случае получаем элемент Пельтье как генератор электроэнергии.

Охлаждение с помощью Пельтье

Конечно, электрогенераторы пока в стадии теории, но ведь и француз в свое время не знал, как использовать свое открытие. Так что будем надеяться, что это в скором будущем пригодится.

Заключение по теме

Итак, как видите, эффект Пельтье сегодня применяется в электронике повсеместно. Границы использования будут в скором времени расширены, это подтверждают опыты и доклады ученых. Поэтому стоит ожидать в будущем совершенно новые возможности не только в электронной техники, но и бытовой. К примеру, бесшумно работающие холодильники и компьютеры. Сегодня же радиолюбители устанавливают модули Пельтье своими руками в разные схемы, тем самым решая задачи охлаждения плат.

Эффект Пельтье

В кулерах Пельтье используется так называемый термоэлектрический холодильник, действие которого основано на эффекте Пельтье. Данный эффект назван в честь французского часовщика Пельтье (1785-1845), сделавшего свое открытие более полутора столетий назад — в 1834 г.

В экспериментах Пельтье было установлено, что при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, помимо традиционного джоулева тепла, выделяется или поглощается (в зависимости от направления тока) дополнительное тепло. Количество выделяемой или поглощаемой теплоты пропорционально силе тока. Это явление было названо явлением Пельтье, а дополнительное тепло получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.

Описанный эффект по своей сути обратен ранее открытому явлению Зеебека, наблюдаемому в замкнутой электрической цепи, состоящей из разнородных металлов или полупроводников. Если температуры в местах контактов металлов или полупроводников различаются, то в цепи появляется электрический ток. Это явление термоэлектрического тока и было открыто в 1821 г. немецким физиком Зеебеком (1770-1831).

В отличие от хорошо известного тепла Джоуля-Ленца, которое пропорционально квадрату силы тока: Q = R x I2 x t,тепло Пельтье пропорционально первой степени силы тока и меняет знак при изменении направления последнего. Тепло Пельтье, как показали экспериментальные исследования, можно выразить формулой: Qп = П x·q, где q — количество электричества, прошедшего через контакт (q = I x t), П — так называемый коэффициент Пельтье, величина которого зависит от природы контактирующих материалов и от их температуры. Тепло Пельтье Qп считается положительным, если оно выделяется, и отрицательным, если оно поглощается.

Необходимо отметить, что коэффициент Пельтье существенно зависит от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице.

Значения коэффициента Пельтье для различных пар металлов

Железо-константан

Медь-никель

Свинец-константан

T, К

П, мВ

T, К

П, мВ

T, К

П, мВ

273

13,0

292

8,0

293

8,7

299

15,0

328

9,0

383

11,8

403

19,0

478

10,3

508

16,0

513

26,0

563

8,6

578

18,7

593

34,0

613

8,0

633

20,6

833

52,0

718

10,0

713

23,4

Коэффициент Пельтье, представляющий собой важную техническую характеристику материала, как правило, не измеряют, а вычисляют через коэффициент Томсона: П = t x T, где П — коэффициент Пельтье, t — коэффициент Томсона, T — абсолютная температура.

Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а затем и различных областей техники.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается и выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника, в результате чего происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а полной энергии.

Эффект Пельтье, как и многие термоэлектрические явления, особенно сильно выражен в цепях, составленных из полупроводников с электронной (n-тип) и дырочной проводимостью (p-тип). Такие полупроводники, как известно, называются соответственно полупроводниками n- и p-типа.

Рассмотрим термоэлектрические процессы, происходящие при контакте таких полупроводников. Допустим, направление электрического поля таково, что электроны в электронном и дырки в дырочном полупроводнике будут двигаться навстречу друг другу. Электрон из свободной зоны полупроводника n-типа после прохождения через границу раздела попадает в заполненную зону полупроводника p-типа и там рекомбинирует с дыркой. В результате рекомбинации высвобождается энергия, которая выделяется в контакте в виде тепла (рис. 1).

Рис. 1. Выделение тепла Пельтье в контакте полупроводников n- и p-типа.

При изменении направления электрического поля на противоположное электроны и дырки в полупроводниках соответствующего типа будут двигаться в противоположные стороны. Дырки, уходящие от границы раздела, будут пополняться в результате образования новых пар при переходах электронов из заполненной зоны полупроводника p-типа в свободную. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Электроны и дырки, образующиеся при рождении таких пар, увлекаются электрическим полем в противоположные стороны. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар, и в результате в контакте поглощается тепло (рис. 2).

Рис. 2. Поглощение тепла Пельтье в контакте полупроводников n- и p-типа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *