Эдс индукции формула: расчет электродвижущей силы по формуле

Содержание

расчет электродвижущей силы по формуле

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

Ф = L x I,

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.

Видео

Оцените статью:

Формула ЭДС индукции, E

Закон Фарадея – Максвелла для электромагнитной индукции

Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:

   

где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.

В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:

   

Частные случаи формул ЭДС индукции

Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:

   

где – потокосцепление.

При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:

   

где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .

При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:

   

где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .

Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:

   

В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:

   

Примеры решения задач по теме «ЭДС индукции»

что это такое, основные формулы, в чем измеряется, от чего зависит.

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Магнитный поток

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Е = — dФ/dt.

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е — ЭДС индукции; В — значение магнитной индукции; I — длина проводника; v —скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

  • при изменении магнитного потока меняется вектор направления;
  • изменяется площадь, заключенная в контур;
  • меняется угол.

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Взаимоиндукция

При расположении двух катушек рядом в них наблюдается ЭДС взаимоиндукции, которая определяется конфигурацией двух схем и их взаимной ориентацией. При возрастании разделения цепей значение взаимоиндуктивности уменьшается, поскольку наблюдается уменьшение общего для двух катушек магнитного потока.

Рассмотрим детально процесс возникновения взаимоиндукции. Есть две катушки, по проводу одной с N1 витков течет ток I1, которым создается магнитный поток и идет через вторую катушку с N2 числом витков.

Значение взаимоиндуктивности второй катушки в отношении первой:

М21 = (N2 x F21)/I1.

Значение магнитного потока:

Ф21 = (М21/N2) x I1.

Индуцированная ЭДС вычисляется по формуле:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt.

В первой катушке значение индуцируемой ЭДС:

Е1 = — M12 x dI2/dt.

Важно отметить, что электродвижущая сила, спровоцированная взаимоиндукцией в одной из катушек, в любом случае прямо пропорциональна изменению электрического тока в другой катушке.

Тогда взаимоиндуктивность считается равной:

М12 = М21 = М.

Вследствие этого , E1 = — M x dI2/dt и E2 = M x dI1/dt. М = К √ (L1 x L2), где К является коэффициентом связи между двумя значениями инжуктивности.

Взаимоиндукция широко используется в трансформаторах, которые дают возможность менять значения переменного электротока. Прибор представляет собой пару катушек, которые намотаны на общий сердечник. Ток в первой катушке формирует изменяющийся магнитный поток в магнитопроводе и ток во второй катушке. При меньшем числе витков в первой катушке, чем во второй, возрастает напряжение, и соответственно при большем количестве витков в первой обмотке напряжение снижается.

Помимо генерирования и трансформации электрической энергии, явление магнитной индукции используется в прочих приборах. К примеру, в магнитных левитационных поездах, движущихся без непосредственного контакта с током в рельсах, а на пару сантиметров выше по причине электромагнитного отталкивания.

Закон электромагнитной индукции. Курсы по физике

Тестирование онлайн

  • Электромагнитная индукция. Основные понятия

  • Закон электромагнитной индукции

ЭДС индукции в движущемся проводнике

Взаимосвязь электрических и магнитных явлений всегда интересовала физиков. Английский физик Майкл Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Он рассуждал, что электрический ток способен намагнитить кусок железа. Не может ли магнит в свою очередь вызвать появление электрического тока? Эта задача была решена.

Если в постоянном магнитном поле перемещается проводник, то свободные электрические заряды внутри него тоже перемещаются (на них действует сила Лоренца). Положительные заряды концентрируются в одном конце проводника (провода), отрицательные — в другом. Возникает разность потенциалов —

ЭДС электромагнитной индукции. Явление возникновения ЭДС индукции в проводнике, движущемся в постоянном магнитном поле, называется явлением электромагнитной индукции.

Правило определения направления индукционного тока (правило правой руки):

В проводнике, движущемся в магнитном поле, возникает ЭДС индукции, энергия тока в этом случае определяется по закону Джоуля-Ленца:

Работа внешней силы по перемещению проводника с током в магнитном поле

ЭДС индукции в контуре

Рассмотрим изменение магнитного потока через проводящий контур (катушку). Явление электромагнитной индукции было открыто опытным путем:

Закон электромагнитной индукции (закон Фарадея): ЭДС электромагнитной индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока через него.

Знак «минус» является математическим выражением следующего правила. Направление индукционного тока, возникающего в контуре, определяется по правилу Ленца: возникающий в контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Закон электромагнитной индукции — формулы, определение, примеры

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.


Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.


Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).


Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):



Магнитный поток



Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки


Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.

  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.

  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея



Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков



Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура



Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника



Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.


Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Репетитор-онлайн — подготовка к ЦТ

Пример 13. Проводящий контур, имеющий форму квадрата со стороной 20 см, помещен в однородное магнитное поле с индукцией 45 мТл. Плоскость контура составляет угол 30° с направлением силовых линий поля. За 0,15 с контур поворачивают таким образом, что его плоскость устанавливается перпендикулярно силовым линиям поля. Найти среднее значение ЭДС индукции, возникающей в контуре при его повороте в магнитном поле.

Решение. Появление ЭДС индукции в контуре вызвано изменением потока вектора индукции, пронизывающего плоскость квадрата, при повороте контура в магнитном поле.

Поток индукции магнитного поля через площадь квадрата определяется формулами:

  • в первом положении контура (до поворота)

Ф1 = BS cos α1,

где B — модуль индукции магнитного поля, B = 45 мТл; S — площадь квадрата, S = a 2; a — сторона квадрата, a = 20 см; α1 — угол между направлениями вектора магнитной индукции и вектора нормали (перпендикуляра) к плоскости квадрата в первом положении контура, α

1 = = 90° − 30° = 60°;

  • во втором положении контура (после поворота)

Ф2 = BS cos α2,

где α2 — угол между направлениями вектора магнитной индукции и вектора нормали (перпендикуляра) к плоскости квадрата во втором положении контура, α2 = 0°.

Изменение потока вектора индукции магнитного поля определяется разностью

ΔФ=Ф2−Ф1=BScos0°−BScos60°=BS2.

Среднее значение ЭДС индукции, возникающей в контуре при его повороте в магнитном поле:

〈ℰi〉=|ΔФΔt|=−BS2Δt=Ba22Δt,

где ∆t — интервал времени, за который происходит поворот контура, ∆t = 0,15 с.

Расчет дает значение:

〈ℰi〉=45⋅10−3⋅(20⋅10−2)22⋅0,15=6,0⋅10−3 В=6,0 мВ.

При повороте контура в нем возникает ЭДС индукции, среднее значение которой равно 6,0 мВ.

Эдс самоиндукции расчет. Формула ЭДС индукции определена как

Э. д. с. самоиндукции. Э. д. с. e L , индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции (рис. 60). Эта э. д. с. возникает при всяком изменении тока, например при замыкании и размыкании электрических цепей, при изменении нагрузки электродвигателей и пр. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Например, э. д. с. самоиндукции e L возникает в проводнике АБ (см. рис. 54) при изменении протекающего по нему тока i 1 . Следовательно, изменяющееся магнитное поле индуцирует э. д. с. в том же самом проводнике, в котором изменяется ток, создающий это поле.

Направление э. д. с. самоиндукции определяется по правилу Ленца. Э. д. с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 61, а), и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 61, б). Если же ток в катушке не изменяется, то э. д. с. самоиндукции не возникает.

Из рассмотренного выше правила для определения направления э. д. с. самоиндукции вытекает, что эта э. д. с. оказывает тормозящее действие на изменение тока в электрических цепях. В этом отношении ее действие аналогично действию силы инерции, которая препятствует изменению положения тела. В электрической цепи (рис. 62, а), состоящей из резистора с сопротивлением R и катушки К, ток i создается совместным действием напряжения U источника и э. д. с. самоиндукции e L индуцируемой в катушке. При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции e L (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 62, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются e L и i. Точно

так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. e L (см. штриховую стрелку) постепенно уменьшается.

Индуктивность. Способность различных проводников (катушек) индуцировать э. д. с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн), 1 Гн = 1 Ом*с. На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Индуктивность катушки зависит от числа витков катушки? и магнитного сопротивления R м ее магнитопровода, т. е. от его магнитной проницаемости? а и геометрических размеров l и s. Если в катушку вставить стальной сердечник, ее индуктивность резко возрастает из-за усиления магнитного поля катушки. В этом случае ток 1 А создает значительно больший магнитный поток, чем в катушке без сердечника.

Используя понятие индуктивности L, можно получить для э. д. с. самоиндукции следующую формулу:

e L = – L ?i / ?t (53)

Где?i – изменение тока в проводнике (катушке) за промежуток времени?t.

Следовательно, э. д. с. самоиндукции пропорциональна скорости изменения тока.

Включение и отключение цепей постоянного тока с катушкой индуктивности. При подключении к источнику постоянного тока с напряжением U электрической цепи, содержащей R и L, выключателем B1 (рис. 63, а) ток i возрастает до установившегося значения I уст =U/R не мгновенно, так как э. д. с. самоиндукции e L , возникающая в индуктивности, действует против приложенного напряжения V и препятствует нарастанию тока. Для рассматриваемого процесса характерным является постепенное изменение тока i (рис. 63, б) и напряжений u а и u L по кривым — экспонентам. Изменение i, u а и u L по указанным кривым называется апериодическим.

Скорость нарастания силы тока в цепи и изменения напряжений u а и u L характеризуется постоянной времени цепи

T = L/R (54)

Она измеряется в секундах, зависит только от параметров R и L данной цепи и позволяет без построения графиков оценить длительность процесса изменения тока. Эта длительность теоретически бесконечно велика. Практически же обычно считают, что она составляет (3-4) Т. За это время ток в цепи достигает 95-98 % установившегося значения. Следовательно, чем больше сопротивление и чем меньше индуктивность L, тем быстрее протекает процесс изменения тока в электрических цепях с индуктивностью. Постоянную времени Т при апериодическом процессе можно определить как отрезок АВ, отсекаемый касательной, проведенной из начала координат к рассматриваемой кривой (например, тока i) на линии, соответствующей установившемуся значению данной величины.
Свойством индуктивности замедлять процесс изменения тока пользуются для создания выдержек времени при срабатывании различных аппаратов (например, при управлении работой песочниц для периодической подачи порций песка под колеса локомотива). На использовании этого явления основана также работа электромагнитного реле времени (см. § 94).

Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (например, обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции e L может во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 64, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции.

Большая э. д. с. самоиндукции способствует также возникновению электрической искры или дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 64, б) образующаяся э. д. с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в, течение некоторого времени э. д. с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи. Это явление весьма нежелательно, так как дуга оплавляет контакты отключающих аппаратов, что приводит к быстрому выходу их из строя. Поэтому во всех аппаратах, служащих для размыкания электрических цепей, предусматриваются специальные дугогасительные устройства, обеспечивающие ускорение гашения дуги.

Кроме того, в силовых цепях, обладающих значительной индуктивностью (например, обмотки возбуждения генераторов), параллельно цепи R-L (т. е. соответствующей обмотке) включают разрядный резистор R р (рис. 65, а). В этом случае после отключения выключателя В1 цепь R-L не прерывается, а оказывается замкнутой на резистор R р. Ток в цепи i при этом уменьшается не мгновенно, а постепенно — по экспоненте (рис. 65,6), так как э. д. с. самоиндукции e L , возникающая в индуктивности L, препятствует уменьшению тока. Напряжение u p на разрядном резисторе в течение процесса изменения тока также изменяется по экспоненте. Оно равно напряжению, приложенному к цепи R-L, т. е. к зажимам соответ-

ствующей обмотки. В начальный момент U p нач = UR p /R, т. е. зависит от сопротивления разрядного резистора; при больших значениях Rp это напряжение может оказаться чрезмерно большим и опасным для изоляции электрической установки. Практически для ограничения возникающих перенапряжений сопротивление R p разрядного резистора берут не более чем в 4-8 раз больше сопротивления R соответствующей обмотки.

Условия возникновения переходных процессов. Рассмотренные выше процессы при включении и выключении цепи R-L называют переходными процессами . Они возникают при включении и выключении источника или отдельных участков цепи, а также при изменении режима работы , например при скачкообразном изменении нагрузки, обрывах и коротких замыканиях. Такие же переходные процессы имеют место при указанных условиях и в цепях, содержащих конденсаторы, обладающие емкостью С. В ряде случаев переходные процессы являются опасными для источников и приемников, так как возникающие токи и напряжения могут во много раз превышать номинальные значения, на которые рассчитаны эти устройства. Однако в некоторых элементах электрооборудования, в частности в устройствах промышленной электроники, переходные процессы являются рабочими режимами.

Физически возникновение переходных процессов объясняется тем, что катушки индуктивности и конденсаторы являются накопителями энергии, а процесс накопления и отдачи энергии в этих элементах не может происходить мгновенно, следовательно, не может мгновенно измениться ток в катушке индуктивности и напряжение на конденсаторе. Время переходного процесса, в течение которого при включениях, выключениях и изменениях режима работы цепи происходит постепенное изменение тока и напряжения, определяется значениями R, L и С цепи и может составить доли и единицы секунд. После окончания переходного процесса ток и напряжение приобретают новые значения, которые называют установившимися .

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-14-210×140..jpg 614w»>

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-10-768×454..jpg 960w»>

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Jpg?x15027″ alt=»Перемещение провода в МП»>

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-10-768×536..jpg 900w»>

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-5.jpg 680w»>

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

При изменении тока в контуре меняется поток магнитной индукции через поверхность , ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L :

.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи , при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation . 2010 .

Смотреть что такое «ЭДС самоиндукции» в других словарях:

    эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …

    Это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение… … Википедия

    — (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… … Физическая энциклопедия

    реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

    Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

    Электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток первичной и… … Энциклопедический словарь

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называетсяЭДС самоиндукции

Замыкание цепи

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключенииярко вспыхивает.

Вывод

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:


где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:



Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
(возможен сердечник).


ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равнасобственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ
по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
7. Самоиндукция (кратко проявление в электротехнике, определение).
8. ЭДС самоиндукции (ее действие и формула).
9. Индуктивность (определение, формулы, ед. измерения).
10. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Inductance — The Physics Hypertextbook

Обсуждение

введение

Готовы? Вот так.

Пуск с соленоидом. Пропустите через него ток, и вы получите электромагнит. Поле внутри задается формулой…

B = μ 0 nI = μ 0 N I

В то же время соленоид — это еще и устройство для улавливания магнитного потока.

Φ B = NBA

Статическая ситуация, безусловно, достаточно интересна, но когда дело доходит до потока, то, что нас действительно волнует, — это скорость изменения во времени. Это то, что дает нам электромагнитную индукцию или индуцированную электродвижущую силу, или как вы хотите это называть. Эта ситуация описывается законом Фарадея.

Давайте снова рассмотрим эти уравнения, но с изменяющимся во времени поворотом. Соленоид с изменяющимся током, проходящим через него, будет генерировать изменяющееся магнитное поле.

дБ = мк 0 N dI
дт дт

Это изменяющееся магнитное поле затем улавливается тем самым соленоидом, который его создал. Захваченное поле называется потоком, а изменяющийся поток генерирует ЭДС — в данном случае самоиндуцированную или обратную ЭДС.

ℰ = — d Φ B = — N

мк 0 N dI

А
дт дт

Немного изменив порядок вещей, мы получим это уравнение…

ℰ = — мкм 0 AN 2 dI
дт

, который может показаться не таким уж большим, пока вы не поймете, что члены первой дроби в значительной степени определяются геометрией соленоида.Если бы мы выбрали другую конфигурацию проводов, произошло бы то же самое.

Самоиндуцированная ЭДС в цепи прямо пропорциональна скорости изменения тока во времени ( dI / dt ), умноженной на константу ( L ). Эта постоянная называется индуктивностью (или, точнее, самоиндуктивностью ) и определяется геометрией схемы (или, чаще, геометрией отдельных элементов схемы).Например, индуктивность соленоида (как определено выше) определяется формулой…

Символ L для обозначения индуктивности был выбран в честь Генриха Ленца (1804–1865), чьи новаторские работы в области электромагнитной индукции сыграли важную роль в развитии окончательной теории. Если вы помните, Закон Ленца гласит, что индуцированный ток в цепи всегда действует таким образом, чтобы противодействовать изменению, которое в первую очередь его вызвало. Это наблюдение является причиной того, почему во всех версиях закона Фарадея стоит знак минус.Ленц поставил нам знак минус, и мы его чествуем символом L .

Индуктивность лучше всего определяется по ее роли в уравнении, полученном из закона индукции Фарадея. Некоторым это не нравится, и они предпочитают определения, написанные в форме простого предложения субъект-глагол-объект.

На английском языке мы бы прочитали это как «самоиндукция ( L ) — это отношение обратной ЭДС () к временной скорости изменения тока, производящего ее ( dI / dt ).«Как я уже сказал, мне не очень нравится такое определение, но оно помогает нам определить подходящие единицы.



H = В = Дж / К = (кг · м 2 / с 2 ) / (А · с) = кг м 2

А / с А / с А / с A 2 с 2

Единицей индуктивности является генри , названный в честь Джозефа Генри (1797–1878), американского ученого, открывшего электромагнитную индукцию независимо и примерно в то же время, что и Майкл Фарадей (1791–1867) в Англии.Первым свои открытия опубликовал Фарадей, поэтому ему заслуга в большей степени. Генри также открыл самоиндукцию и взаимную индуктивность (которые будут описаны позже в этом разделе) и изобрел электромеханическое реле (которое легло в основу телеграфа). Схема с собственной индуктивностью в один генри будет испытывать противоэдс в один вольт, когда ток изменяется со скоростью один ампер в секунду.

Индуктивность — это что-то. Индуктивность — это сопротивление элемента схемы изменениям тока.Индуктивность в цепи — это аналог массы в механической системе.

ℰ = — L dI причина изменения
= сопротивление
изменить
× курс
изменение
F = м d v
дт дт

индуктивный датчик петли

Движение на некоторых перекрестках контролируется с помощью индуктивных петлевых детекторов (ILD).ILD — это петля из проводящего провода, проложенная всего на несколько сантиметров ниже тротуара. Когда автомобиль проезжает через поле, он действует как проводник, изменяя индуктивность контура. Изменение индуктивности контура указывает на наличие автомобиля наверху. Затем эту информацию можно использовать для активации сигналов светофора, отслеживания транспортного потока или автоматического цитирования.

примера

индуктивность зависит от геометрии

соленоид ( A площадь поперечного сечения, N количество витков, длина ℓ, n количество витков на длину)

Φ B = N B А
Φ B = N мк 0 НИ А
Φ B = мкм 0 AN 2 I
d Φ B = мкм 0 AN 2 dI
дт дт
л = мкм 0 AN 2 = мкм 0 Aℓn 2

коаксиальных проводников ( a внутренний радиус, b внешний радиус, длина ℓ)

Φ B =
В · d A
б б
Φ B =
мк 0 I др = мкм 0 Iℓ
др
r r
a a
Φ B = мкм 0 пер.

a

I
б
d Φ B = мкм 0 пер.

a

dI
дт б дт
л = мкм 0 пер.

a

б

тороид (площадь поперечного сечения A , радиус вращения R , число витков N )

Φ B = N В А
Φ B N мк 0 НИ А
R
Φ B N мкм 0 NA I
R
d Φ B мкм 0 AN 2 dI
дт R дт
л мкм 0 AN 2
R

прямоугольная петля ( w ширина, h высота, a радиус провода )

Φ B = N
Φ B = N


x w x w

мк 0 НИ
г др +
x др +
г др +
x др
r r r r
a a a a
Φ B = 2 мкм 0 N 2

y ln

х

+ x лин

y



I
a a
d Φ B = мкм 0 N 2

y ln

x

+ x лин

y



dI
дт π a a дт
л = мкм 0 N 2

y ln

х

+ x лин

y



π a a

Эта формула не совсем работает, поскольку она игнорирует краевые эффекты.Вы можете найти точную формулу (а также скрипты, которые будут рассчитывать индуктивность для вас) в Интернете на нескольких веб-сайтах по электротехнике.

закон Фарадея

закон Фарадея

Закон Фарадея

Закон Фарадея — одно из уравнений Максвелла. Закон Фарадея гласит, что абсолютная величина или величина обращения электрическое поле E вокруг замкнутого контура равно скорости изменения магнитный поток через область, ограниченную петлей.В приведенное ниже уравнение выражает закон Фарадея в математической форме.

ΔΦ B / Δt (через фиксированная площадь) = -Σ вокруг контура E ∙ r (при a фиксированное время)

Знак минус в этом уравнении говорит нам о направлении тираж. (См. Ниже.)

Когда магнитный поток через замкнутую область при изменении петли Σ вокруг петли E ∙ r не равно нулю, электрическое поле E циркулирует.
E ∙
r — работа, выполненная за единичный заряд электрическим полем при перемещении заряда на расстояние ∆ r .
Если петля — это настоящая проволочная петля, тогда есть фактическая работа, выполняемая индуцированным поле на бесплатные начисления.
Σ вокруг петли E ∙ r — работа на единицу заряда полем при однократном перемещении заряда по петле.
Это наведенная ЭДС , и измеряется в вольтах.
Индуцированная ЭДС вызывает протекание тока без разность потенциалов из-за разделенных зарядов.

ΔΦ B / Δt (через фиксированная площадь) = наведенная ЭДС

Индуцированное электрическое поле НЕ консервативное поле. Когда вы перемещаете заряд против индуцированного поле один раз по кругу, вам нужно работать. Но твоя работа НЕ хранится как потенциальная энергия. Вы не можете позволить электрическому полю работать, чтобы восстановиться энергия, которую вы потратили на перемещение заряда.Индуцированное электрическое поле исчезает как как только магнитный поток перестанет меняться. Работа, которую ты делаешь на заряд против индуцированного поля не локально хранится. Энергия может быть отведена в виде электромагнитная волна. Электромагнитные волны переносят энергию через свободное пространство.

Какое направление динамического (индуцированного) поля?

Знак минус в уравнении, выражающем закон Фарадея, говорит нам о направление индуцированного поля.
Есть простой способ запомнить это направление. Циркуляция индуцированного поля равна ЭДС.
Любой текущий течет в результате этой ЭДС создает магнитное поле, которое противодействует изменения потока, которые его производят.
Это называется Закон Ленца.

Индуцированная ЭДС действует как противодействие изменению потока, которое произвести это.

Пример:

Магнит быстро перемещается к проволочной петле, как показано.
Поток через проволочную петлю увеличивается в направлении вниз.
Ток начинает течь в петлю в направлении, указанном стрелкой.
Магнитное поле, создаваемое этим током указывает вверх, противостоит потоку изменения, которые его производят.
Магнитная сила из-за петли на магните действует, чтобы замедлить приближающийся магнит.

Прелесть закона Ленца состоит в том, что вам не нужно вдаваться в подробности.Если магнитный поток через проводник изменяется, токи будут течь встречно что бы ни вызвало изменение. Если какое-то относительное движение вызывает изменение потока, ток попытается остановить это относительное движение. Если изменение тока в цепь отвечает за изменение потока, тогда наведенная ЭДС будет пытаться предотвратить изменение тока в этой цепи.

Пожалуйста, смотрите: Электромагнитная индукция и закон Фарадея (Youtube)

Проблема:

Рассмотрим плоскую квадратную катушку с N = 5 витками.
Катушка имеет длину 20 см с каждой стороны и магнитное поле. 0,3 Тл.
Плоскость катушки перпендикулярна плоскости магнитное поле: поле указывает за пределы страницы.
а) Если ничего не изменилось, какова наведенная ЭДС?
(b) Магнитное поле равномерно увеличивается от 0,3 Тл до 0,8 Тл за 1 с. Какова наведенная ЭДС в катушке, пока происходит изменение?
(c) При изменении магнитного поля ЭДС, индуцированная в катушке, вызывает ток течь.Ток течет по часовой стрелке или против часовой стрелки? вокруг катушки?

Решение:

  • Рассуждение:
    Если величина магнитного поля B изменяется, то поток Φ = BA изменяется, и возникает ЭДС.
  • Детали расчета:
    (a) ЭДС индуцируется изменяющимся магнитным потоком. Если ничего изменяется, наведенная ЭДС равна нулю.
    (б) Катушка имеет 5 витков. Каждый поворот имеет площадь A = (0,2 м) 2 .Начальный магнитный поток через каждый оборот катушки Φ 0 = B 0 A = 0,3 * (0,2) 2 Tm 2 = 0,012 Tm 2 .
    Конечный магнитный поток через каждый виток катушки Φ ф = B f A = 0,8 * (0,2) 2 Tm 2 = 0,032 Tm 2 .
    Суммарное изменение потока через катушку N (Φ ф — Φ 0 ), с N = 5. Индуцированная ЭДС составляет 90 · 103 ЭДС = -N∆Φ / ∆t = -N (Φ f — Φ 0 ) / ∆t = [-5 * (0.032 -0,012) / 1,0] V = -0,1 В.
    (c) При изменении магнитного поля магнитный поток увеличивался. со страницы. По закону Ленца наведенная в петле ЭДС этим изменяющимся потоком образуется ток, который создает поле, противодействующее изменять. Поле, создаваемое током в катушке, указывает на страницу, противоположную направлению увеличения потока. Чтобы произвести поле на страницу, ток должен течь по кругу по часовой стрелке. согласно правилу правой руки.
Модуль 5: Вопрос 1

Стержневой магнит расположен перед горизонтальной проволочной петлей с его северный полюс, указывающий на петлю. Затем магнит отрывается от петля. Идет ли индуцированный ток в контуре по часовой стрелке или против часовой стрелки?

Обсудите это со своими однокурсниками на дискуссионном форуме!
Визуализируйте магнитное поле стержневого магнита. Как происходит поток этого поле через проводную петлю поменять?


Самоиндукция

Если длинная катушка провода сечением A и длиной ℓ с N витками подключен или отключен от батареи, изменение магнитного потока через катушка производит наведенную ЭДС.Индуцированный ток создает магнитное поле, которое противодействует изменению магнитного потока. Величина наведенная ЭДС может быть рассчитана с помощью закона Фарадея.

  • Магнитное поле внутри длинной катушки B = μ 0 (Н / ℓ) I.
  • Поток через катушку равен NBA = μ 0 (N 2 /) IA.
  • Изменение потока в единицу времени составляет μ 0 (N 2 /) A ∆I / ∆t = L * ∆I / ∆t, поскольку I — единственная величина меняется со временем.
    L = μ 0 (N 2 / ℓ) A называется собственная индуктивность катушки. В единицы индуктивности — Генри (Гн) . 1 H = 1 Вс / А.
  • Индуцированная ЭДС равна ЭДС = -L * ∆I / ∆t, где знак минус является следствием закона Ленца.

Наведенная ЭДС пропорциональна скорости изменения тока в катушка. Оно может быть в несколько раз больше напряжения источника питания. Когда выключатель в цепи, по которой проходит большой ток, размыкается, уменьшая ток до ноль за очень короткий промежуток времени, это может привести к искре.Все схемы имеют собственную индуктивность, и у нас всегда есть ЭДС = -L * ∆I / ∆t. Собственная индуктивность L зависит только от по геометрии схемы.

Задача:
Катушка

А имеет собственную индуктивность 3 мГн, а ток через нее изменяется от 0,2 А. до 1,5 А за время 0,2 с. Найти величину средней наведенной ЭДС в катушке за это время.

Решение:

  • Рассуждение:
    ЭДС самоиндукции равна ЭДС = -L * ∆I / ∆t.
  • Детали расчета:
    L = 3 мГн, ∆I / ∆t = (1,5 A — 0,2 A) / 0,2 с = 6,5 A / с.
    э. Д. произвел это.
Проблема:

Круглая катушка с 25 витками проволоки имеет диаметр 1 м. Он размещен с его ось вдоль направления магнитного поля Земли (величина 50 мкТл), а затем в 0.2 с переворачивается 180 o . Какая средняя ЭДС сгенерировано

Решение:

  • Рассуждение:
    Φ B = B A — поток B через область A. Первоначально B и A выровнены, наконец, они анти-выровнены. Точка товар меняет знак.
  • Детали расчета:
    ЭДС = -∆Φ B / ∆t. Φ B (начальная) = NAB = 25 * π * (0,5 м) 2 50 * 10 -6 Т = 9.82 * 10 -4 Тм 2 .
    Φ B (окончательный) = -Φ B (начальный), поскольку катушка перевернута.
    | ∆Φ B | = 2Φ B (начальное).
    | ∆Φ B / ∆t | знак равно 2 * (9,82 * 10 -4 Tm 2 ) / (0,2 с) = 9,82 * 10 -3 В.
Проблема:

Катушка с 500 витками радиусом 0,5 м поворачивается на четверть оборота за 4,17. мс, изначально имеющая плоскость, перпендикулярную однородному магнитному полю. Найдите напряженность магнитного поля, необходимую для индукции средней ЭДС 10 000 В.

Решение:

  • Рассуждение:
    ЭДС = -∆Φ B / ∆t. Φ B = NABcosθ изменяется с NAB на 0 за 4,17 мс, так как θ изменяется от 0 до 90 o через 4,17 мс.
  • Детали расчета:
    | ∆Φ B | = NAB = 500 * π * (0,5 м) 2 * B = (393 м 2 ) * Б.
    Хотим
    | emf | = | ∆Φ B / ∆t | = (393 м 2 ) / (4.17 * 10 -3 с) * B = (94174 м 2 / с) * B = 10000 В.
    B = 0,1 Вс / м 2 = 0,1 Т.

Если вы пропускаете регулярные лекции, обратите внимание на эту видеолекцию.

Лекция 16: Электромагнитная индукция

Формула для наведенной ЭДС в катушке из-за изменения класса 12 физики JEE_Main

Подсказка: Концепция индуцированной ЭДС дана законом Фарадея, который гласит:
Любое изменение магнитного поля или магнитного потока катушки вызовет наведенную ЭДС.
$ e = — N \ dfrac {{d \ phi}} {{dt}} $ (e — наведенная ЭДС, N — количество витков катушки, а $ \ phi $ — магнитный поток)
Знак минус вышеприведенное уравнение связано с законом Ленца.
Обсудим вышеупомянутые два закона более подробно и решим данную задачу.

Полное пошаговое решение:
Давайте сначала объясним закон Ленца и закон Фарадея более подробно.
Закон Фарадея гласит, что: Индуцированная ЭДС прямо пропорциональна скорости изменения магнитного потока, создаваемого в катушке из-за протекающего тока в проводнике с конечным числом витков.
В математических терминах закон Фарадея имеет вид:
$ e = — N \ dfrac {{d \ phi}} {{dt}} $
Знак минус уравнения дается законом Ленца, который гласит:
Направление электрического тока, который индуцируется в проводнике изменяющимся магнитным полем, таково, что магнитное поле таково, что магнитное поле, создаваемое индуцированным током, противодействует начальному изменяющемуся магнитному полю.
На языке непрофессионалов мы можем сформулировать закон Ленца как; Ток или напряжение, которые индуцируются в цепи, противодействуют вызывающему их изменению.
Теперь вычислим формулу наведенной ЭДС.
Магнитное поле задается как:
$ B = \ dfrac {\ phi} {A} $ (B — магнитное поле, A — площадь, а $ \ phi $ — поток)
Следовательно, поток задается как, $ \ phi $ = BA
Согласно определению наведенной ЭДС, скорость изменения потока равна наведенной ЭДС, поэтому формула принимает следующий вид:
$ e = — \ dfrac {{dB.A}} {{dt}} $

Следовательно, вариант C верен.

Примечание: Закон Фарадея применим во многих электрических устройствах, таких как трансформаторы, где повышение или понижение тока или напряжения происходит из-за электромагнитной индукции, генераторы переменного тока, которые создают вращающиеся магнитные поля, двигатели постоянного тока, измерительные приборы, такие как счетчики энергии и т. д.

Индуцированная ЭДС и магнитный поток — College Physics

Цели обучения

  • Рассчитайте поток однородного магнитного поля через петлю произвольной ориентации.
  • Опишите методы создания электродвижущей силы (ЭДС) с помощью магнитного поля или магнита и проволочной петли.

Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на (Рисунок). Когда переключатель замкнут, в катушке в верхней части железного кольца создается магнитное поле, которое передается катушке в нижней части кольца.Гальванометр используется для обнаружения любого тока, наведенного в катушке внизу. Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. (Вы также можете наблюдать это в физической лаборатории.) Каждый раз, когда переключатель открывается, гальванометр обнаруживает ток в противоположном направлении. Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток.Это изменение магнитного поля, которое создает ток. Более основным, чем текущий ток, является вызывающая его ЭДС . Ток является результатом ЭДС , индуцированной изменяющимся магнитным полем , независимо от того, есть ли путь для протекания тока.

Аппарат Фарадея для демонстрации того, что магнитное поле может производить ток. Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях.Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.

Эксперимент, который легко выполняется и часто проводится в физических лабораториях, проиллюстрирован на (Рисунок). ЭДС индуцируется в катушке, когда стержневой магнит вставляется и выходит из нее. ЭДС противоположных знаков создаются движением в противоположных направлениях, и ЭДС также меняются на противоположные за счет изменения полюсов. Те же результаты будут получены, если перемещать катушку, а не магнит — важно относительное движение.Чем быстрее движение, тем больше ЭДС, и когда магнит неподвижен относительно катушки, ЭДС отсутствует.

Движение магнита относительно катушки создает ЭДС, как показано. Такие же ЭДС возникают при перемещении катушки относительно магнита. Чем больше скорость, тем больше величина ЭДС, и при отсутствии движения ЭДС равна нулю.

Метод индукции ЭДС, используемый в большинстве электрических генераторов, показан на (Рисунок). Катушка вращается в магнитном поле, создавая ЭДС переменного тока, которая зависит от скорости вращения и других факторов, которые будут исследованы в следующих разделах.Обратите внимание, что генератор очень похож по конструкции на двигатель (другая симметрия).

При вращении катушки в магнитном поле возникает ЭДС. Это основная конструкция генератора, в котором работа, выполняемая по вращению катушки, преобразуется в электрическую энергию. Обратите внимание, что генератор очень похож по конструкции на двигатель.

Итак, мы видим, что изменение величины или направления магнитного поля вызывает ЭДС. Эксперименты показали, что существует критическая величина, называемая магнитным потоком, равная

.

, где — напряженность магнитного поля над областью под углом к ​​перпендикуляру к области, как показано на (Рисунок). Любое изменение магнитного потока индуцирует ЭДС. Этот процесс определяется как электромагнитная индукция. Единицы магнитного потока ар. Как видно на (Рисунок), , который является компонентом , перпендикулярным области . Таким образом, магнитный поток является произведением площади и составляющей магнитного поля, перпендикулярной ей.

Магнитный поток связан с магнитным полем и площадью, на которой он существует. Поток связан с индукцией; любое изменение вызывает ЭДС.

Вся индукция, включая приведенные до сих пор примеры, возникает из-за некоторого изменения магнитного потока . Например, Фарадей изменил и, следовательно, при размыкании и замыкании переключателя в своем устройстве (показано на (Рисунок)). Это также верно для стержневого магнита и катушки, показанных на (Рисунок). При вращении катушки генератора угол, а значит, изменяется. Насколько велика ЭДС и какое направление она принимает, зависит от изменения в и от того, как быстро это изменение будет выполнено, как будет рассмотрено в следующем разделе.

Концептуальные вопросы

Каким образом многопетлевые катушки и железное кольцо в версии аппарата Фарадея, показанной на (Рисунок), улучшают наблюдение наведенной ЭДС?

Когда магнит вставляется в катушку, как показано на (Рисунок) (а), в каком направлении катушка воздействует на магнит? Нарисуйте диаграмму, показывающую направление тока, индуцируемого в катушке, и создаваемое ею магнитное поле, чтобы обосновать вашу реакцию. Как величина силы зависит от сопротивления гальванометра?

Объясните, как магнитный поток может быть равен нулю, когда магнитное поле не равно нулю.

Наведена ли ЭДС в катушке (рисунок), когда она растягивается? Если да, укажите причину и укажите направление индуцированного тока.

Круглая катушка с проволокой натянута в магнитном поле.

Задачи и упражнения

Какое значение магнитного потока в катушке 2 (рисунок) из-за катушки 1?

(a) Плоскости двух катушек перпендикулярны. (б) Проволока перпендикулярна плоскости катушки.

Какое значение магнитного потока, проходящего через катушку на (Рисунок) (b), обусловлено проводом?

Глоссарий

магнитный поток
— величина магнитного поля, проходящего через конкретную область, вычисляемая по формуле, где — напряженность магнитного поля в области под углом к ​​перпендикуляру к области
.
электромагнитная индукция
Процесс наведения ЭДС (напряжения) при изменении магнитного потока

Закон Фарадея

Закон Фарадея
Далее: Закон Ленца Up: Магнитная индукция Предыдущий: Магнитная индукция Явление магнитной индукции играет решающую роль в три очень полезных электрических устройства: электрогенератор , электрогенератор двигатель , и трансформатор .Без этих устройств современная жизнь была бы невозможно в нынешнем виде. Магнитная индукция была открыта в 1830 г. Английский физик Майкл Фарадей. Американский физик Джозеф Генри независимо друг от друга сделал то же открытие примерно в одно и то же время. Оба физиков заинтриговал тот факт, что электрический ток, протекающий вокруг цепь может генерировать магнитное поле. Наверняка, рассуждали они, если электрический ток может генерировать магнитное поле, тогда магнитное поле должно каким-то образом быть способным генерировать электрический ток.Однако потребовалось много лет бесплодных экспериментов. прежде, чем они смогли найти необходимый ингредиент, который позволяет магнитное поле для генерации электрического тока. Этот ингредиент изменение во времени .

Рассмотрим плоскую петлю из токопроводящего провода соответствующей площади поперечного сечения. Поместим эту петлю в магнитное поле, напряженность которого приблизительно равна равномерный по всей длине петли. Предположим, что направление магнитное поле образует угол с нормальным направлением к петля.Магнитный поток через петлю равен определяется как произведение площади петли и составляющей магнитное поле, перпендикулярное петле. Таким образом,

(191)

Если цикл оборачивается вокруг себя раз (, т.е. , если цикл имеет витков ), то магнитный поток через петлю просто умножить на магнитный поток за один виток:
(192)

Наконец, если магнитное поле неоднородно по петле или петля не лежать в одной плоскости, тогда мы должны оценить магнитный поток как поверхностный интеграл
(193)

Вот какая-то поверхность, к которой прикреплена.Если петля имеет витки, то поток в несколько раз превышает указанное выше значение. Единица измерения магнитного потока в системе СИ — вебер (Вб). Одна тесла эквивалентна один вебер на квадратный метр:
(194)

Фарадей обнаружил, что если магнитное поле проходит через петлю из проволоки изменяется во времени. , тогда вокруг контура индуцируется ЭДС. Фарадей смог наблюдать этот эффект, потому что ЭДС вызывает ток, циркулирующий в петле.Фарадей обнаружил, что величина ЭДС прямо пропорциональна скорости изменения магнитного поля во времени. Он также обнаружил, что ЭДС генерируется, когда петля провода перемещается на из области низкой напряженности магнитного поля в область высокой напряженности магнитного поля, и наоборот . ЭДС прямо пропорциональна скорость, с которой петля перемещается между двумя областями. Наконец, Фарадей обнаружил, что ЭДС генерируется вокруг петли, которая на вращается на . в однородном магнитном поле постоянной напряженности.В этом случае ЭДС прямо пропорциональна скорости вращения петли. Фарадей в конце концов в состоянии предложить единый закон, который мог объяснить все его многочисленные и разнообразные наблюдения. Этот закон, известный как Закон магнитной индукции Фарадея выглядит следующим образом:

ЭДС, индуцированная в цепи, пропорциональна скорости изменения во времени магнитный поток, связывающий эту цепь.
Единицы СИ были зафиксированы таким образом, чтобы константа пропорциональности в этом закон единица .Таким образом, если магнитный поток через цепь изменяется на сумму во временном интервале тогда генерируемая в цепи ЭДС равна
(195)

Есть много разных способов, которыми магнитный поток, связывающий электрическая цепь может изменять. Может измениться либо напряженность магнитного поля, либо направление магнитного поля. поле может измениться, или положение цепи может измениться, или форма цепь может измениться, или ориентация цепи может измениться.Закон Фарадея гласит, что все эти способы полностью эквивалент в части генерации ЭДС вокруг цепь касается.



Далее: Закон Ленца Up: Магнитная индукция Предыдущий: Магнитная индукция
Ричард Фицпатрик 2007-07-14

Закон Ленца и обратная ЭМП

Закон Ленца и обратная ЭДС работают рука об руку. При работе электродвигателя, когда якорь вращается внутри магнитного поля, создается напряжение.Это напряжение обычно называют обратной ЭДС (электродвижущей силой), поскольку оно действует против напряжения, приводящего в действие двигатель.

Законы электромагнетизма

Одним из фундаментальных законов, регулирующих работу электродвигателя, является закон Фарадея, который гласит, что любое изменение магнитной среды катушки с проволокой вызывает «индуцирование» напряжения (ЭДС) в катушке. Независимо от того, как происходит изменение — перемещая магнит и катушку относительно друг друга или изменяя магнитное поле, — будет генерироваться напряжение.Уравнение для этой наведенной ЭДС:

Рука об руку с законом Фарадея работает закон Ленца, который гласит, что полярность наведенной ЭДС такова, что она производит ток, магнитное поле которого противодействует изменению, которое его вызывает. Индуцированное магнитное поле внутри любой проволочной петли всегда поддерживает постоянный магнитный поток в петле. Проще говоря, согласно закону Ленца, индуцированное напряжение (ЭДС) будет противодействовать управляющему напряжению. Следовательно, отрицательный знак в уравнении.

Закон Ленца применяется к цепям двигателей

Рассматривая простую схему двигателя и принимая во внимание сохранение энергии, мы видим, что сетевое напряжение на двигателе всегда будет равно напряжению питания плюс обратная ЭДС:

Напряжение сети = напряжение питания + обратная ЭДС

Показано графически:

Напряжение питания = 195 В
Противо-ЭДС = -45 В
Напряжение сети на двигателе = 150 В

Напряжение питания = 195 В.

Задняя ЭДС = -45 В.

Напряжение сети на двигателе, рассчитанное по закону Ома (V = I x R = 10 A x 15 Ом), = 150 В.

Это согласуется с уравнением для сетевого напряжения:

150 В = 195 В + -45 В

Обратная ЭДС на практике

Теперь давайте посмотрим, что происходит, когда на двигатель прикладывается нагрузка.

Во-первых, повышенная нагрузка вызывает снижение скорости двигателя. Обратная ЭДС напрямую связана со скоростью, поэтому, когда скорость уменьшается, уменьшается и наведенная обратная ЭДС.Из приведенного выше уравнения мы видим, что при меньшей обратной ЭДС напряжение (и, следовательно, ток) на двигателе увеличится. Этот дополнительный ток создает дополнительный крутящий момент, необходимый двигателю для восстановления скорости при увеличении нагрузки.


В конструкции двигателя на обратную ЭДС влияет количество витков в обмотках статора и магнитное поле. Двигатели спроектированы с постоянной обратной ЭДС, которая позволяет двигателю потреблять номинальный ток и обеспечивать номинальный крутящий момент при работе на номинальной скорости.


Обратная ЭДС может иметь синусоидальную (AC) или трапециевидную (DC) форму волны. Форма обратной ЭДС важна, поскольку она определяет тип управляющего тока и метод коммутации, который следует использовать для двигателя.

Принципиальная схема и пример взяты из Департамента образования и профессиональной подготовки Нового Южного Уэльса, 2007 г.

Закон Фарадея Электромагнитная индукция | Electrical4u

Закон Фарадея Электромагнитная индукция:

Электромагнитная индукция была независимо открыта Майклом Фарадеем в 1831 году и Джозефом Генри в 1832 году.Фарадей был первым, кто опубликовал результаты своих экспериментов 29 августа 1831 года. Майкл Фарадей, английский физик, дал один из самых основных законов электромагнетизма, называемый законом электромагнитной индукции Фарадея. Сначала закон был отклонен из-за отсутствия математических и теоретических расчетов. Этот закон говорит об электрической цепи и магнитном поле. Этот принцип используется в большинстве электросетей. Как мы знаем, названиями некоторых приложений являются электродвигатели, генераторы, электрические трансформаторы и цепи магнитного управления, такие как контакторы, реле и т. Д.

[wp_ad_camp_1]

Закон электромагнитной индукции Фарадея:

Закон электромагнитной индукции Фарадея гласит, что ЭДС, индуцированная в замкнутой электрической цепи, равна скорости изменения потоковых связей.

Здесь N — количество витков в катушке, а Φ — магнитная связь со всеми из них.

Закон электромагнитной индукции Фарадея

В большинстве случаев поток Φ не связан со всеми витками, в этих случаях суммирование всех произведений магнитного потока на полные витки магнитной цепи дает общее значение потоковых связей. …

Следовательно, общая стоимость потокосцеплений составляет..

Здесь N k — количество витков, которые связаны с магнитным потоком Φ k .

В случае изменения значения потокосцеплений катушки, в ней создается наведенная ЭДС, значение которой равно…

Здесь отрицательный знак указывает на то, что направление индуцированной ЭДС таково, что создаваемый им ток противодействует изменению магнитных связей.

Изменение в потокосцеплении может быть вызвано тремя способами.

  1. Катушка неподвижна относительно магнитного потока, а величина магнитного потока изменяется во времени.

В этом методе, когда катушка или витки неподвижны (катушка не движется) и поток изменяется во времени, здесь ЭДС называется трансформаторной или (пульсационной) ЭДС. Поскольку движение не задействовано, преобразование энергии не происходит, и действительно происходит процесс передачи энергии. Этот принцип используется в трансформаторах, в которых используются неподвижные катушки и изменяющиеся во времени потоки для передачи энергии с одного уровня на другой.

Пример: трансформатор.

  1. Поток постоянен во времени и неподвижен, и катушка движется через него

В этом случае правило отсечения магнитного потока может использоваться для иллюстрации ЭДС, генерируемой в проводнике, движущемся в постоянном стационарном поле. ЭДС, генерируемая в проводнике длины, движущемся под прямым углом к ​​однородному, стационарному, изменяющемуся во времени магнитному полю, равна

.


[wp_ad_camp_1]
Сгенерированная ЭДС в этом случае называется «ЭДС движения», потому что она вызвана движением проводника.Поскольку движение участвует в создании этой ЭДС, процесс включает электромеханическое преобразование энергии. Этот принцип используется во вращающихся машинах, таких как машины постоянного тока, машины переменного тока, такие как индукционные и синхронные машины.

Пример: двигатели переменного тока, генератор и т. Д.

  1. Оба упомянутых выше изменения происходят вместе, т. Е. Катушка движется через изменяющееся во времени поле.

В этом случае проводник или катушка движется через стационарное изменяющееся во времени магнитное поле (поток), и поэтому как трансформатор, так и ЭДС движения создаются в проводнике или катушке.Таким образом, этот процесс включает в себя как передачу, так и преобразование энергии.

Пример: Коммутатор.

Ключевые точки:

  • Чтобы вызвать ЭДС в катушке или проводнике, проводник должен находиться в мгновенном положении, иначе поток должен изменяться во времени.

Пример машины для перемещения проводов: генератор и генератор

Пример для машины с изменяющимся потоком: Трансформатор

  • Скорость изменения потока прямо пропорциональна наведенной ЭДС.

Как увеличить наведенную ЭДС в катушке

Увеличить наведенную ЭДС в катушке можно четырьмя способами

  • Увеличение числа витков увеличивает потокосцепление в цепи, когда потокосцепление увеличивается, автоматически увеличивается наведенная ЭДС.

  • Увеличьте скорость кондуктора. Частота f говорит о скорости проводника. Обычно в синхронной машине это называется синхронной скоростью.
  • Увеличение плотности потока в цепи увеличивает наведенную ЭДС в проводнике. См. Формулу 2
  • Увеличение длины проводника увеличивает наведенную ЭДС в катушке. См. Формулу 2.

Видеообъяснение закона Фарадея Электромагнитная индукция:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *