Эдс индукции и самоиндукции – Явление самоиндукции.Индуктивность. Энергия магнитного поля тока. Работа поля. Тесты, курсы по физике

Эдс самоиндукции

Изменение тока в катушке вызывает изменение потока сцепления самоиндукции, а следовательно возникает ЭДС.

Явление, при котором ЭДС возникает в контуре или в катушке в результате изменения тока в этом контуре или катушке, называется самоиндукцией.

ЭДС самоиндукции обозначается .

Т.о. ЭДС самоиндукции пропорциональна индуктивности катушки и скорости изменения тока в ней.

Если

(ток нарастает), то— отрицательна, т.е. направлена навстречу току (противо ЭДС), если же(ток убывает), то— положительна, т.е. направлена согласно с током.

Время нарастания и уменьшения тока характеризуется постоянным временем.

— «тау»

При включении катушки в электрическую цепь вокруг катушки создается магнитное поле, в котором запасается часть энергии, израсходованной источниками.

Величина этой энергии определяется как:

Явление взаимоиндукции

Если две катушки с током расположены близко друг от друга, то часть магнитного потока первой катушки пронизывает витки второй и наоборот.

Такие контуры и катушки называют индуктивно- или магнитосвязанными.

Магнитный поток

, а следовательно и потокосцеплениепропорциональны току в катушкеI1, т. е.

М– взаимная индуктивность двух катушек, равная отношению потокосцепления одной катушки к току другой.

ЭДС, возникающая при этом в другой катушке будет равна:

,

где K– коэффициент связи двух катушек, зависящий от взаимного их расположения (чем ближе катушка, тем большеKи наоборот).

Однофазный переменный ток

Переменнымназывают такой электрический ток, который с течением времени изменяется по величине и по направлению.

Основным достоинством переменного тока является возможность его трансформации, а также то, то электрические машины и аппараты переменного тока значительно проще и дешевле, чем постоянного тока.

Время, в течении которого ток делает полный цикл своих изменений называется периодом.

Величина, обратная периоду и численно равная числу периодов за секунду, называется частотой .

Значение переменного тока в любой момент времени называется мгновенным значением.

Наибольшее из мгновенных значений называется максимальным, илиамплитудным .

Получение синусоидальной ЭДС

Простейший генератор переменного тока представляет собой магнитную систему, состоящую из двух полюсов, причем, форма полюсов такова, что магнитная индукция в воздушном зазоре распределяется по синусоидальному закону, т.е. значение магнитной индукции в любой точке

.

Допустим, за время tрамка развернулась на угол, тогда угловая скорость.

— угловая скорость (частота)

За один оборот рамка развернется на угол , а время оборота – период (Т), тогда угловая частотаопределяется:

Многополюсные генераторы

Для получения промышленной частоты 50Гц якорь двухполюсного генератора должен вращаться со скоростью 50 об/с или 3000 об/мин. Если скорость вращения меньше, то необходимо увеличить число пар полюсов. У многополюсных генераторов за 1 оборот якоря ЭДС совершает Р циклов своих

изменений, где Р – число пар полюсов. Если число оборотов в минуту n, то число циклов в минуту будет , а в секунду

определение, формула, применение на практике

«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания. На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля. В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Определение

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Самоиндукция

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

То есть:

E=dФ/dt,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

ЭДС самоиндукции формула

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Постепенное изменение тока

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Ф=L*I

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Катушка трансформатора

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

Схема люминесцентной трубчатой лампы

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

Зажигание в автомобиле

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Типы фильтров

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

Искрение контактов

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Снабберные цепи

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Вопрос 34 Электромагнитная индукция. Самоиндукция.

Электромагнитная индукция.

Электрические токи создают вокруг себя магнитное поле. 1831 г. английский физик М. Фарадей открыл явле­ние электромагнитной индукции (заключа­ющееся в том, что в замкнутом проводя­щем контуре при изменении потока маг­нитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного). Опытным путем было также установ­лено, что значение индукционного тока совершенно не зависит от способа измене­ния потока магнитной индукции, а опреде­ляется лишь скоростью его изменения. Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получе­ния электрического тока с помощью маг­нитного поля.

Закон Фарадея и его вывод из закона сохранения энергии:

Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции. Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξi определя­ются только скоростью изменения магнит­ного потока, т. е.

закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

ξξi<0, т. е. поле индукционного тока на­правлено навстречу потоку; уменьшение

потока (dФ/dt<0 ) вызывает ξi>0,

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца — общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея э.д.с. ξi элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξi не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

При вращении рамки в ней будет воз­никать переменная э.д.с. индукции (см. (123.2))

Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в пе­ременное магнитное поле. Эти токи оказы­ваются замкнутыми в толще проводника и поэтому называются вихревыми. Их так­же называют токами Фуко — по имени первого исследователя.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле на­правлено так, чтобы противодействовать изменению магнитного потока, индуциру­ющего вихревые токи. Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф=LI, (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В•с/А.

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L=const и

Вопрос №30

Действие магнитного поля на движущийся заряд

Опыт показывает, что магнитное поле дей­ствует не только на проводники с током (см. §111), но и на отдельные заряды, движущиеся в магнитном поле. Сила, дей­ствующая на электрический заряд Q, дви­жущийся в магнитном поле со скоростью v, называется силой Лоренца и выражает­ся формулой

F=Q[vB], (114.1) где В — индукция магнитного поля, в котором заряд движется.

Направление силы Лоренца определя­ется с помощью правила левой руки: если ладонь левой руки расположить так, что­бы в нее входил вектор В, а четыре вы­тянутых пальца направить вдоль вектора v (для Q> 0 направления I и v совпада­ют, для Q<0—противоположны), то отогнутый большой палец покажет на­правление силы, действующей на положи­тельный заряд. На рис. 169 показана вза­имная ориентация векторов v, В (поле направлено к нам, на рисунке показано точками) и F для положительного заряда. На отрицательный заряд сила действует в противоположном направлении.

Модуль силы Лоренца (см. (114.1)) равен

F=QvBsin,

где  — угол между v и В.

Отметим еще раз (см. § 109), что маг­нитное поле не действует на покоящийся электрический заряд. В этом существенное отличие магнитного поля от электрическо­го. Магнитное поле действует только на движущиеся в нем заряды.

Так как по действию силы Лоренца можно определить модуль и направление вектора В, то выражение для силы Лорен­ца может быть использовано (наравне с другими, см. § 109) для определения вектора магнитной индукции В.

Сила Лоренца всегда перпендикуляр­на скорости движения заряженной части­цы, поэтому она изменяет только направ­ление этой скорости, не изменяя ее модуля. Следовательно, сила Лоренца работы не совершает. Иными словами, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изме­няется.

Если на движущийся электрический заряд помимо магнитного поля с индук­цией В действует и электрическое поле с напряженностью Е, то результирующая сила F, приложенная к заряду, равна век­торной сумме сил — силы, действующей со стороны электрического поля, и силы Ло­ренца:

F=QE + Q[vB].

Это выражение называется формулой Ло­ренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.

Движение заряженных частиц в магнитном поле

Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной частицы в магнитном поле за­висят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле одно­родно и на частицы электрические поля не действуют. Если заряженная частица дви­жется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В ра­вен 0 или . Тогда по формуле (114.1) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она дви­жется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью v, перпен­дикулярной вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и нор­мальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяет­ся из условия

QvB = mv2/r,

откуда

Период вращения частицы, т. е. вре­мя Т, затрачиваемое ею на один полный оборот,

T = 2nr/v.

Подставив сюда выражение (115.1), по­лучим

т. е. период вращения частицы в однород­ном магнитном поле определяется только величиной, обратной удельному заряду

(Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v << с)). На этом основано действие цикли­ческих ускорителей заряженных частиц (см. §116).

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 170), то ее движение можно пред­ставить в виде суперпозиции: 1) равно­мерного прямолинейного движения вдоль поля со скоростью v||=vcos; 2) равно­мерного движения со скоростью v= vsin по окружности в плоскости, пер­пендикулярной полю. Радиус окружности определяется формулой (115.1) (в данном случае надо заменить v на v=vsin). В результате сложения обоих движений возникает движение по спирали, ось кото­рой параллельна магнитному полю (рис. 170). Шаг винтовой линии

h=v||T=vTcos.

Подставив в последнее выражение (115.2), получим

h=2mv cos/(BQ).

Направление, в котором закручивается спираль, зависит от знака заряда ча­стицы.

Если скорость v заряженной частицы составляет угол а с направлением векто­ра В неоднородного магнитного поля, ин­дукция которого возрастает в направле­нии движения частицы, то r и h уменьша­ются с ростом В. На этом основана фокусировка заряженных частиц в маг­нитном поле.

Вопрос №31

Ускорителями заряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (элек­тронов, протонов, мезонов и т.д.).

Любой ускоритель характеризуется типом ускоряемых частиц, энергией, со­общаемой частицам, разбросом частиц по энергиям и интенсивностью пучка. Ускорители делятся на непрерывные (из них выходит равномерный по времени пу­чок) и импульсные (из них частицы вы­летают порциями — импульсами). По­следние характеризуются длительностью импульса. По форме траектории и меха­низму ускорения частиц ускорители делят­ся на линейные, циклические и индукци­онные. В линейных ускорителях траекто­рии движения частиц близки к прямым линиям, в циклических и индукционных — траекториями частиц являются окружно­сти или спирали.

Рассмотрим некоторые типы ускорите­лей заряженных частиц.

Циклотрон — циклический резонан­сный ускоритель тяжелых частиц (прото­нов, ионов). Его принципиальная схема приведена на рис. 171. Между полюсами

Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тя­желых заряженных частиц (например, протонов, ионов, -частиц), в котором уп­равляющее магнитное поле постоянно, а частота ускоряющего электрического по­ля медленно изменяется с периодом. Дви­жение частиц в фазотроне, как и в цикло­троне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (огра­ничения здесь определяются размерами фазотрона, так как с ростом скорости частиц растет радиус их орбиты).

Синхрофазотрон — циклический ре­зонансный ускоритель тяжелых заряжен­ных частиц (протонов, ионов), в котором объединяются свойства фазотрона и син­хротрона, т. е. управляющее магнитное поле и частота ускоряющего электрическо­го поля одновременно изменяются во вре­мени так, чтобы радиус равновесной орби­ты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ.

Вопрос №32

Работа по перемещению проводника и контура с током в магнитном поле

На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник не закреплен (например, одна из сторон кон­тура изготовлена в виде подвижной пере­мычки, рис. 177), то под действием силы Ампера он будет в магнитном поле переме­щаться. Следовательно, магнитное поле совершает работу по перемещению про­водника с током.

Для определения этой работы рас-

смотрим проводник длиной l с током I (он может свободно перемещаться), помещен­ный в однородное внешнее магнитное по­ле, перпендикулярное плоскости контура. При указанных на рис. 177 направлениях тока и поля сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна

F=IBl.

Под действием этой силы проводник пере­местится параллельно самому себе на от­резок Ах из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна

dA=Fdx=IBldx =IBdS= IdФ,

так как ldx=dS— площадь, пересекае­мая проводником при его перемещении в магнитном поле, ВdS=dФ — поток век­тора магнитной индукции, пронизываю­щий эту площадь. Таким образом,

dA=IdФ, (121.1)

т. е. работа по перемещению проводника с током в магнитном поле равна произве­дению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.

Вычислим работу по перемещению за­мкнутого контура с постоянным током I в магнитном поле. Предположим, что кон­тур М перемещается в плоскости чертежа и в результате бесконечно малого переме­щения займет положение М’, изображен­ное на рис. 178 штриховой линией. На­правление тока в контуре (по часовой стрелке) и магнитного поля (перпендику­лярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно

разобьем на два соединенных своими кон­цами проводника: ABC и CDA.

Работа dA, совершаемая силами Ам­пера при рассматриваемом перемещении контура в магнитном поле, равна алгебра­ической сумме работ по перемещению проводников ЛВС (dA1) и СDA (dА2), т. е.

dA=dA1+dA2. (121.2)

Силы, приложенные к участку CDA контура, образуют с направлением пере­мещения острые углы, поэтому совершае­мая ими работа dA2>0. Согласно (121.1), эта работа равна произведению силы то­ка I в контуре на пересеченный проводни­ком CDA магнитный поток. Провод­ник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполнен­ную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Сле­довательно,

dA2= I(dФ0+dФ2). (121.3)

Силы, действующие на участок ЛВС контура, образуют с направлением пе­ремещения тупые углы, поэтому совер­шаемая ими работа dA1<0. Провод­ник ЛВС пересекает при своем движении поток dФ0 сквозь поверхность, выполнен­ную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следова­тельно,

dA1=I(dФ0+dФ1). (121.4)

Подставляя (121.3) и (121.4) в (121.2), получим выражение для эле­ментарной работы:

dA=I(dФ2 -dФ1),

где dФ2-dФ1=dФ’— изменение магнит­ного потока через площадь, ограниченную контуром с током. Таким образом,

dA=IdФ’. (121.5)

Проинтегрировав выражение (121.5), оп­ределим работу, совершаемую силами Ам­пера, при конечном произвольном переме­щении контура в магнитном поле:

A=IФ, (121.6)

т. е. работа по перемещению замкнутого

контура с током в магнитном поле равна произведению силы тока в контуре на из­менение магнитного потока, сцепленного

с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.

Вопрос№33

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента рm, сохраняя по­стоянным угол а, вращается вокруг на-

правления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные — вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому пара-

магнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Подобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнит­ным моментом единицы объема магнетика:

J=pm/V=pa/V,

где pm=ра— магнитный

Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намаг­ниченностью независимо от наличия внеш­него намагничивающего поля. Спонтанное намагничение, однако, находится в кажу­щемся противоречии с тем, что многие ферромагнитные материалы даже при тем­пературах ниже точки Кюри не намагниче­ны. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбива­ется на большое число малых макроскопи­ческих областей — доменов, самопроиз­вольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и ком­пенсируют друг друга, поэтому результи­рующий магнитный момент ферромагнети­ка равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ори­ентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых об­ластей спонтанной намагниченности. По­этому с ростом Н намагниченность

J (см. рис. 192) и магнитная индукции В (см. рис. 193) уже в довольно слабых полях растут очень быстро. Этим объясня­ется также увеличение  ферромагнетиков до максимального значения в слабых по­лях (см. рис. 194). Эксперименты показа­ли, что зависимость В от Я не является такой плавной, как показано на рис. 193, а имеет ступенчатый вид. Это свидетель­ствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепло­вое движение не в состоянии быстро дезо­риентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис.195). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную си­лу; размагничиванию способствуют также встряхивание и нагревание ферромагнети­ка. Точка Кюри оказывается той темпера­турой, выше которой происходит разруше­ние доменной структуры.

ЭДС самоиндукции и индуктивность цепи

Дата публикации: .
Категория: Электротехника.

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции», эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряжения График постоянного тока
Рисунок 1. Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряжения Рисунок 2. График постоянного тока

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

График нарастания тока в цепи с учетом ЭДС самоиндукции ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения
Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукции Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Индукционные токи при размыкании цепи
Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Размерность индуктивности

Ом × сек иначе называется генри (Гн).

1 генри = 103; миллигенри (мГн) = 106 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 109 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

Величина ЭДС самоиндукции

При равномерном изменении тока по времени выражение Величина ЭДС самоиндукции будет постоянным и его можно заменить выражением Величина ЭДС самоиндукции . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

Абсолютная величина ЭДС самоиндукции

На основании последней формулы можно дать определение единицы индуктивности – генри:

Определение единицы индуктивности

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как Определение единицы индуктивности . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Бифилярная обмотка катушки
Рисунок 7. Бифилярная обмотка катушки

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

Ускорение

или

Ускорение

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Ускорение

Если в этих формулах изменения скорости во времени Ускорение уподобить изменению тока во времени Величина ЭДС самоиндукции, механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется Ускорение и поэтому eL = 0.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

1.2. Явление электромагнитной индукции и самоиндукции

(основные величины и закономерности)

Индукция магнитного поля – силовая характеристика магнитного поля. Характеризует влияние магнитного поля на движущиеся заряды и токи. Единица измерения – тесла,.

Потоком вектора магнитной индукции (магнитным потоком) через площадку (или магнитным потоком) называется произведение, или

, (8*)

где – единичный вектор – нормаль к этой площадке,– вектор магнитной индукции,– угол между векторамии(рис. 1). (Магнитный поток можно трактовать, как количество линий магнитной индукции, которые пересекают поверхность). Единица измерения магнитного потока – вебер:.

Явление электромагнитной индукции состоит в возникновении ЭДС в замкнутом проводящем контуре при изменении магнитного потока, который пронизывает этот контур. (Например, когда в замкнутый контур (без батарейки) вносят магнит, в контуре возникает ЭДС и ток, который называют индукционным).

Закон Фарадея: ЭДС индукции, которая возникает в замкнутом проводящем контуре, равняется скорости изменения магнитного потока:

. (9*)

Эта ЭДС порождает индукционный ток. Знак „–” указывает на направление индукционного тока согласно правилу Ленца: при изменении магнитного потока, который пронизывает контур, в нём возникает индукционный ток такого направления, который своим магнитным полем противодействует первичному изменению магнитного потока. На рис. 2* магнитный поток, который пронизывает контур, благодаря внесению магнита, увеличивается. Поэтому индукционный ток должен иметь такое направление, чтобы его магнитное поле было противоположным полю магнита. Направление этого тока можно определить по правилу буравчика.

Если ток проходит по замкнутому контуру, он создает магнитное поле (и, следовательно, магнитный поток) через этот же контур. Когда ток в контуре меняется – меняется и магнитный поток через этот контур, поэтому должна возникать ЭДС индукции (самоиндукции). То есть явление самоиндукции состоит в возникновении ЭДС самоиндукции в замкнутом контуре при изменении тока в этом контуре. Когда по контуру течет ток , то созданный им магнитный поток будет пропорциональным силе тока:, где коэффициент пропорциональностиназываютиндуктивностью контура. То есть индуктивность контура численно равняется магнитному потоку, который пронизывает контур при силе тока

.

(10*)

(Индуктивность зависит от формы, размеров контура и среды, но не зависит от силы тока). Единица измерения индуктивности – генри: .

Поскольку магнитный поток равняется , то по закону Фарадея (9*) ЭДС самоиндукции. Если индуктивностьпостоянная, то ее можно вынести за знак производной. Тогда ЭДС самоиндукции равняется

.

(11*)

Знак „–” в этом выражении означает, что ток самоиндукции противодействует начальному изменению тока. (Например, когда ток в контуре увеличивается, ток самоиндукциипротивоположен начальному току. Когда токв контуре уменьшается, тонаправлен в ту же сторону, что и).

2. Индуктивность, емкость и активное сопротивление в цепи переменного тока

Рассмотрим контур, который включает в себя индуктивность , емкостьи активное сопротивление. Пусть в этот контур включен источник ЭДС, которая изменяется по гармоничному закону (синуса или косинуса) с амплитудойи циклической частотой, где– линейная частота. Выясним, как влияют,иотдельно и вместе на ток в этом цепи и какие падениянапряжения будут на этих элементах. Ток на всех элементах цепи будет одинаковым (ток неразрывный). Пусть он меняется по закону синуса

,.

(1)

где – амплитудное значение силы тока (пока еще неизвестное).

2.1.Активное сопротивление в цепи переменного тока

Рассмотрим электрическую цепь, которая состоит только из источника переменного тока и активного сопротивления R. Падение напряжения на активном сопротивлении определяется из закона Ома и выражения (1)

. (2)

Величина будет представлять собой амплитудное значение напряжения на активном сопротивлении. Сравнивая выражения (1) и (2) видим, что колебания напряжения и тока на активном сопротивлении происходит с одинаковой фазой (по закону синуса, рис.1). Заметим, что в цепи с активным сопротивлением происходит необратимый процесс преобразования электрической энергии в тепловую.

Явление самоиндукции

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

Ф = LI, (3)

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

. (4)

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔWпмагнитного поля, связанного с этой цепью, т.е.A= -ΔWп.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

. (9)

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что получим,. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I0sinωt, u = U0sin(ωt + φ0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

, (16)

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаiпредставлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой и фазой φ = (ωt + φ0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

ЭДС самоиндукции — это… Что такое ЭДС самоиндукции?


ЭДС самоиндукции

Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.

При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:

\mathcal E = -L \frac{dI}{dt}.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation. 2010.

Смотреть что такое «ЭДС самоиндукции» в других словарях:

  • эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …   Справочник технического переводчика

  • Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение… …   Википедия

  • ИНДУКТИВНОСТЬ — (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… …   Физическая энциклопедия

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… …   Энциклопедия Кольера

  • электрический трансформатор — электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток  первичной и… …   Энциклопедический словарь

  • Импульсный стабилизатор напряжения — Импульсный стабилизатор напряжения  это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… …   Википедия

  • Катушка индуктивности — У этого термина существуют и другие значения, см. Катушка (значения). Катушка индуктивности (дроссель) на материнской плате компьютера …   Википедия

  • Индуктивность — Размерность L2MT−2I−2 Единицы измерения СИ Гн СГС …   Википедия

  • Диод — У этого термина существуют и другие значения, см. Диод (значения). Четыре диода и диодный мост. Диод (от др. греч …   Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *