Эдс электро: ООО «Эдс Электро» Нижний Новгород (ИНН 5215003272)

Содержание

ООО ЭДС-Электро — УНП 691514912 — Контрагенто

Статус ЕГР

Действующий

Краткое наименование

ООО ЭДС-Электро

ТАА ЭДС-Электра

Статус МНС

Действующий

Деятельность

ОКЭД 52489
Прочая розничная торговля в специализированных магазинах, не включенная в другие группировки

Дата регистрации

25 октября 2013

Юридический адрес

Минская обл.,Молодечненский р-н,г. Молодечно,ул. Космонавтов,вблизи дома № 6

Постановка на учёт

28 октября 2013

Инспекция МНС

Инспекция МНС по Молодечненскому району – 614

Управление ФСЗН

Учётный орган

Минский областной исполнительный комитет

Что такое ЭДС (электродвижущая сила)

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

 

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Д

вижущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением R

вн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая  (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от пьезоэлектриков)

Мастер Электро — ЭДС-200-4

Трехфазная дизельная электростанция 1-ой степени автоматизации для использования в качестве основного источника электропитания.

Дизельный электроагрегат ЭДС-200 производится на базе двигателя STEYR серии WD618. Предназначен для использования в качестве основного источника электропитания объектов.  Поставляется с машинным маслом, охлаждающей жидкостью (антифриз), аккумуляторными батареями и комплектом ЗИП. Полностью готов к работе. Оборудование может быть поставлено в любую точку РФ.

  • Все ДГУ проходят минимум 2-х часовую обкатку на нагрузочном стенде.
  • Гарантия производителя 2 года либо 2000 м/ч
  • Все агрегаты укомплектованы дополнительно топливным фильтром-сепаратором воды. Поставляются в комплекте с АКБ, комплектом ЗИП, заправлены маслом и антифризом
  • 100% заводская готовность электростанций к работе

Стандартная комплектация:

  1. Двигатель дизельный, жидкостного охлаждения с радиатором, стандартным глушителем (кроме Doosan), электростартером и зарядным генератором
  2. Исполнение открытое на раме (либо под капотом — К ) со встроенным топливным баком минимум на 8 часов работы.
  3. Генератор синхронный с электронным регулятором напряжения
  4. Охлаждающая жидкость (антифриз до минус 35°С), машинное масло согласно спецификации завода-изготовителя двигателя
  5. Аккумуляторные батареи со стартерными проводами (90—132 А·ч) в зависимости от мощности ДГУ
  6. Дополнительная розетка в шкафу управления для подключения слаботочных потребителей (местное освещение и т.п., ~220В, 6 Ампер)
  7. Запасной масляный и топливный фильтр на первое ТО
  8. Шланг слива машинного масла
  9. Комплект фирменной спецодежды механика


Защита двигателя и генератора:

  • От низкого давления машинного масла
  • От превышения температуры ОЖ
  • От превышения оборотов двигателя
  • От запуска и останова двигателя под нагрузкой
  • От превышения мощности нагрузки более чем на 10%
  • По напряжению и частоте
  • От КЗ в нагрузке

Компания Общество с ограниченной ответственностью «ЭДС-Электро», УНП 691514912 – юридический адрес, статус юридического лица.

Информация актуальна по состоянию на 21.07.2021
Полные и актуальные на сегодняшний день данные предоставляются по подписке

Основная информация

УНП: 691514912

Статус: Действующий

Дата регистрации: 25.10.2013 (7 лет 8 месяцев)

Факторы риска

Доступно по подписке

Полная информация за 7 р.

Часть данных о контрагенте скрыта и откроется через несколько минут после оплаты запроса на получение полной информации

Данные из ЕГР

УНП: Доступно по подписке

Статус: Доступно по подписке История субъекта хозяйствования

История субъекта хозяйствования: Доступно по подписке

Дата регистрации: Доступно по подписке

Регистрирующий орган: Доступно по подписке

Вид деятельности: Доступно по подписке

История сведений видов деятельности

История сведений видов деятельности: Доступно по подписке

Юридический адрес: Доступно по подписке

История изменения юр. адреса

История изменения юр. адреса: Доступно по подписке

Наличие запрета на отчуждение доли: Доступно по подписке

Наименование (рус.): Доступно по подписке

Наименование (бел.): Доступно по подписке

История изменения наименования

История изменения наименования: Доступно по подписке

Актуально на

Данные реестра налогоплательщиков

Статус: Доступно по подписке

Дата постановки на учет: Доступно по подписке

Дата регистрации: Доступно по подписке

Юр. адрес: Доступно по подписке

История юр. адресов:

История юр. адресов: Доступно по подписке

Наименование инспекции МНС (код инспекции МНС): Доступно по подписке

Основание изменения состояния плательщика: Доступно по подписке

Дата изменения состояния плательщика: Доступно по подписке

Краткое наименование плательщика: Доступно по подписке

Полное наименование плательщика: Доступно по подписке

Доступно по подписке

Контактная информация

Доступно по подписке

Электродвижущая сила и её виды

В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила ( ЭДС )

 

 

Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

ЭДС – измеряется в Вольтах

E = 1в

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.

Электродвижущая сила

 

 

E = UR0 + URH

URH = E – UR0

URH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная электродвижущая сила

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Фотоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Электростатическая движущая сила

Что касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Пьезоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Термоионная электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Термоэлектрическая электродвижущая сила

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры.

Часть 2. Закон Ома для *инфопространства*. ЭДС (электро движущая сила в электрических сетях) и ИДС (инфо движущая сила в информацыонных сетях).

В первой части этого Нашего с Вами исследования, целью которого является выявление сходств в электрических и информацыонных процессах, Мы с Вами выяснили, что *инфопространство* — это поле, подобное полю электрическому (электромагнитному).  Соответственно,  в *инфопространстве* тоже могут возникать разности информацыонных потенцыалов, порождающих информацыонные токи, подобно тому, как в электромагнитном поле возникают разности электрических потенцыалов, порождающих электрические токи.

Што бы постичъ то, как возникают разности информацыонных потенцыалов и появляются информацыонные токи, Нам с Вами надо вспомнить то, как возникают разности электрических потенцыалов и начинают течъ электрические токи.  И без понятия *электродвижущей силы* и понимания закона Ома для  *полной цепи*, включающей в себя *сопротивление* и  *источник тока*, создающий *напряжение*, тут не обойтись.

Полная цепь:

В ней, в *полной электро сети* есть батарейка (источник электро тока). Возле батарейки написано буквами — ЭДС  Видите? Так обозначается *электро движущая сила* (ЭДС)

Это наводит на мысль, что и в *полной инфо сети*, как и в *полной электро сети*, тоже должно быть что-то типа инфо батарейки (источника инфо тока).  А также должно существовать понятие ИДС — *инфо движущая сила*. 

Вспомнив, что такое ЭДС (электро движущая сила), можно понять то, что являет собой ИДС (инфо движущая сила). 

Да.

Закон Ома для *полной электро сети* выглядит так:

  

Закон Ома для *полой электро цепи* принципиально не отличается от одноимённого закона для участка цепи. Как видим, общее сопротивление цепи складывается из собственно сопротивления R и внутреннего сопротивления r источника тока (батарейки), а вместо напряжения в формуле фигурирует  *электро движущая сила*  ε *источника электро тока*.

Какой же смысл стоит за этой ε ?

Что такое эта ЭДС ?

Поняв ЭДС (электро движущую силу), постигнем и ИДС (инфо движущую силу).

Так вот.

*Электро движущая сила* (ЭДС; ε) —  это физическая величина, характеризующая работу сторонних сил (сил не электрического происхождения), действующих в электро цепях, по которым может протекать электро ток.

Соответственно, возможна следующая очень грубая формулировка  понятия *инфо движущей силы* (ИДС; i ).

*Инфо движущая сила* (ИДС; i ). —  это не физическая (нематериальная) характеристика, связанная с умственными усилиями сторонних интересантов (лиц, действующих вне инфо сетей), создающих *разность инфо потенцыалов* (инфо напряжение), что, в сою очередь, порождает *инфо токи* между точками *инфо поля* с разными *инфо потенцыалами*. 


Природа ЭДС  (ε)

Существует много разных источников тока. Бывают батарейки. Тывают динамо машыны. И так далее. Причина возникновения ЭДС в разных источниках тока разная. 

По природе возникновения различают следующие типы:

Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.

Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.

ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.

Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.

Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

НУ ЧТО ТУТ СКАЗАТЬ? Человецы постарались. Хоть никто и не понимает, что какое *электричество*, его активно используют миллиарды человецей в *реале*, в повседневной жызни. По всякому. Извлекая *электричество* из всего, что движецца, нагреваецца, окисляецца, сжымаецца и разжымаецца. Молоццы.


Вот и подошли Мы с Вами к вопросу о природе ИДС (инфо движущей силы; i).

Где она , эта *инфо движущая сила зарождается*?

А?

Сёдня Мы опять  устали. Ответ на данный вопрос будет сформулирован Нами в третьей части статьи, которую Мы напишем опосля. Как отдохнём, так и напишем.

.

Грибы.

ЭДС-Сервис. Сахалин.Бизнес Справочник

Производство электромонтажных и пусконаладочных работ.



Добавить в Избранное

Результаты поиска

 

Расширенный поиск

Найти слова:

Компании из города:

— Александровск-Сахалинский Анива Быков Вахрушев Горнозаводск Долинск Ильинский Корсаков Красногорск Курильск Макаров Невельск Ноглики Онор Оха Поронайск Северо-Курильск Смирных Томари Тымовское Углегорск Холмск Чехов Шахтерск Южно-Курильск Южно-Сахалинск

Компании из раздела:

— Автосервис, автотовары Бытовое обслуживание Государство Для дома и офиса Животные, питомцы Компьютеры, интернет Красота, здоровье Культура, искусство Мебель Медицина Наука, образование, работа Недвижимость Нефть, газ Общество Одежда, обувь, аксессуары Отдых, развлечения, кафе Право Продукты питания Промышленность Реклама, полиграфия Рыбная отрасль Связь Семья, дети СМИ Строительство, ремонт Торговля Транспорт, перевозки Туризм, спорт Финансы Экстренные службы — Автоаксессуары Автоателье Автозаправочные станции Автозапчасти Автомойки Авторемонт Автостоянки Безопасность, автозвук Продажа автомобилей Технический осмотр Техобслуживание Тюнинг автомобилей Шиномонтаж Ателье, ремонт одежды Бани, сауны Дезинфекция, дератизация, дезинсекция Изготовление ключей Клининговые компании Парикмахерские Ремонт бытовой техники Ремонт обуви Ремонт часов Ритуальные услуги Свадьбы, организация торжеств Фотоуслуги Химчистки, прачечные Ювелирные, граверные мастерские Администрация города Южно-Сахалинска Архивы, статистика ГИБДД ГО и ЧС, военные учреждения Другие государственные службы ЖКХ, управляющие компании ЗАГСы Инспекции Налоговые органы Пожарная охрана Полиция, УВД Правительство Сахалинской области Прокуратуры и суды Социальная защита Таможенные услуги УИН, экспертизы Федеральные службы Бытовая техника Бытовая химия Инженерные системы Клининговые компании Книги и канцелярские товары Охранные агентства Предметы интерьера Радио и телевидение Системы безопасности Шторы, жалюзи Ветеринарные клиники, аптеки Зоомагазины Зоосалоны Клубы любителей животных Приюты, зоогостиницы Видео, музыка, игры Интернет провайдеры Интернет услуги Интернет-кафе, компьютерные клубы Компьютеры и оргтехника Обслуживание компьютеров и оргтехники Правовые базы данных Программное обеспечение Бани, сауны Косметика, парфюмерия Ногтевые студии Оптика Парикмахерские Салоны красоты Санаторно-курортные учреждения Спортивные клубы, бассейны Библиотеки Выставки и музеи Культурные центры Театры и кино Корпусная мебель Кухни Мебель — производство Мебельная фурнитура Мягкая мебель Офисная мебель Аптеки Больницы и поликлиники Ветеринарные клиники, аптеки Дезинфекция, дератизация, дезинсекция Детские больницы и поликлиники Медицинские центры Медицинское оборудование Оптика Психологическая помощь Санаторно-курортные учреждения Стоматологические клиники УИН, экспертизы Автошколы Библиотеки Высшее образование Детские сады Дополнительное образование Дошкольное образование Кадровые, рекрутинговые агентства Курсы повышения квалификации Научные организации Переводческие услуги Профессиональное образование Репетиторство, помощь в обучении Спортивные школы Учебные центры, курсы Школы Агентства недвижимости Аренда складов, производственных помещений Бизнес-центры, аренда офисов Жилищное строительство ЖКХ, управляющие компании Оценка собственности Торговые центры Юридические услуги Автозаправочные станции Нефтепродукты — торговля Нефть, газ — добыча, обслуживание Промышленное обеспечение Экология и охрана труда Общественные организации Политические организации Религиозные организации Нижнее белье Обувь Одежда Свадебные салоны Сумки, аксессуары Ювелирные изделия Аттракционы Базы отдыха Бани, сауны Бары Боулинг, бильярд Видео, музыка, игры Выставки и музеи Детские клубы Интернет-кафе, компьютерные клубы Караоке Кафе Культурные центры Мастер-классы Ночные клубы Рестораны Театры и кино Адвокатские услуги Нотариальные услуги Правовые базы данных Прокуратуры и суды Удостоверяющие центры Юридические услуги Доставка еды Кафе Мини-маркеты Напитки Продуктовые магазины Рестораны Супермаркеты Добыча и переработка рыбы Легкая промышленность Лесная промышленность Мебель — производство Обращение с отходами Пищевая промышленность Промышленное обеспечение Сельское хозяйство Спецодежда Стройматериалы — производство Угольная промышленность Экология и охрана труда Энергетика Издательства, полиграфия Наружная реклама Печати, штампы Рекламные агентства Добыча и переработка рыбы Охрана и воспроизводство морских биоресурсов Промышленное обеспечение Реализация рыбной продукции Рыбная промышленность Интернет провайдеры Почтовая связь Связь — оборудование Связь — ремонт Сотовая связь Телефонная связь Аттракционы Детские дома, интернаты Детские клубы Детские сады Детские товары Дошкольное образование Интернет-кафе, компьютерные клубы Психологическая помощь Санаторно-курортные учреждения Свадьбы, организация торжеств Спортивные клубы, бассейны Школы Издательства, полиграфия Информационные агентства Печатные издания Радио и телевидение Архитектура, проектирование Вентиляция, кондиционирование Ворота, заборы Геодезия, изыскания Дизайн интерьера ЖБИ, бетон Жилищное строительство Инженерные системы Инструменты Металлоизделия, металлопрокат Метизы, крепеж Окна, двери Отопление, водоснабжение Потолки Ремонт квартир и офисов Ремонтно-строительные организации Сантехника Строительные и отделочные материалы Строительная техника Строительное оборудование Строительство и ремонт автодорог Стройматериалы — производство Шторы, жалюзи Электромонтажные работы Электротовары Оборудование Оптовая торговля Промышленные товары Садовый и хоз.инвентарь Сувениры, подарки Торговые центры Цветы Авиакомпании Авиаперевозки Грузовики, спецтехника Железнодорожный транспорт Железнодорожные перевозки Курьерские службы Морские перевозки Пассажирские перевозки Прокат автомобилей Системы мониторинга транспорта Судовое обслуживание Такси Таможенные услуги Транспортные компании Авиабилеты Визы, представительства, консульства Гостиницы Охота и рыбалка Спортивные товары Спортивные клубы, бассейны Туристические фирмы Туристические клубы Аудиторские услуги Банки Бухгалтерские услуги Валюта, пункты обмена Инвестирование, кредитование Консалтинг Лизинг Микрозаймы Налоговые органы Оценка собственности Страхование Аварийно-ремонтные службы Специальные службы Справочные службы Телефоны доверия Экстренные телефоны

Только с сайтами
Работающие сегодня
Работающие по выходным
Работающие после 18:00
Исключить ликвидированные компании

Искать %d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be&rlogin=reg на карте

Электрические и магнитные поля

Электрические и магнитные поля (ЭМП) — это невидимые области энергии, часто называемые излучением, которые связаны с использованием электроэнергии и различных форм естественного и искусственного освещения. ЭМП обычно делятся на две категории по частоте:

  • Неионизирующий : низкоуровневое излучение, которое обычно считается безвредным для человека
  • Ионизирующий : излучение высокого уровня, которое может привести к повреждению клеток и ДНК

← Вернуться на страницу

Тип излучения Определение Формы излучения Примеры исходного кода
Неионизирующий Низко- и среднечастотное излучение, которое обычно считается безвредным из-за недостаточной активности.
  • Чрезвычайно низкая частота (ELF)
  • Радиочастота (RF)
  • Микроволны
  • Визуальный свет
  • Микроволновые печи
  • Компьютеры
  • Интеллектуальные счетчики электроэнергии для дома
  • Беспроводные сети (wifi)
  • Сотовые телефоны
  • устройства Bluetooth
  • Линии электропередач
  • МРТ
Ионизация Средне- и высокочастотное излучение, которое при определенных обстоятельствах может привести к повреждению клеток или ДНК при длительном воздействии.
  • Ультрафиолет (УФ)
  • Рентген
  • Гамма
  • Солнечный свет
  • Рентген
  • Некоторые гамма-лучи
Могут ли ЭМП быть вредными для моего здоровья?

В 1990-е годы большинство исследований ЭМП было сосредоточено на чрезвычайно низкочастотном воздействии, исходящем от обычных источников энергии, таких как линии электропередач, электрические подстанции или бытовые приборы. Хотя некоторые из этих исследований показали возможную связь между напряженностью поля ЭМП и повышенным риском лейкемии у детей, их результаты показали, что такая связь была слабой.Немногочисленные исследования, проведенные на взрослых, не показывают доказательств связи между воздействием ЭМП и раком у взрослых, например лейкемией, раком мозга и раком груди.

Сейчас, в эпоху сотовых телефонов, беспроводных маршрутизаторов и Интернета вещей, которые все используют ЭМП, сохраняются опасения по поводу возможных связей между ЭМП и неблагоприятными последствиями для здоровья. Эти воздействия активно изучаются. NIEHS рекомендует продолжить обучение практическим способам снижения воздействия ЭМП.

Излучает ли мой сотовый телефон электромагнитное излучение?

Сотовые телефоны излучают форму радиочастотного излучения в нижней части спектра неионизирующего излучения. В настоящее время научные данные не позволяют однозначно связать использование сотового телефона с какими-либо неблагоприятными проблемами для здоровья человека, хотя ученые признают, что необходимы дополнительные исследования.

Национальная токсикологическая программа (NTP), штаб-квартира которой находится в NIEHS, только что завершила крупнейшее на сегодняшний день исследование на животных по радиочастотному воздействию сотовых телефонов.Чтобы ознакомиться с кратким изложением результатов, посетите наш пресс-релиз и веб-страницу NTP «Радиочастотное излучение сотовых телефонов».

Что делать, если я живу рядом с линией электропередачи?
EMF: Электрические и магнитные поля, связанные с использованием электроэнергии Буклет

Важно помнить, что сила магнитного поля резко уменьшается с увеличением расстояния от источника. Это означает, что сила поля, достигающего дома или строения, будет значительно слабее, чем в исходной точке.

Например, по данным Всемирной организации здравоохранения в 2010 году, магнитное поле величиной 57,5 ​​миллигаусс непосредственно рядом с линией электропередачи на 230 киловольт составляет всего 7,1 миллигаусс на расстоянии 100 футов и 1,8 миллигаусс на расстоянии 200 футов.

Для получения дополнительной информации см. Учебный буклет NIEHS «ЭМП: электрические и магнитные поля, связанные с использованием электроэнергии». Этот буклет, подготовленный в 2002 году, содержит самые последние исследования NIEHS в области здравоохранения и электрических и магнитных полей в линиях электропередач.

Как я могу узнать, не подвержен ли я воздействию электромагнитных полей?

Если вас беспокоят ЭМП, излучаемые линией электропередачи или подстанцией в вашем районе, вы можете связаться с местной энергетической компанией, чтобы запланировать чтение на месте. Вы также можете измерить ЭМП самостоятельно с помощью гауссметра, который можно приобрести в Интернете через ряд розничных продавцов.

Физика — Электродвижущая сила — Бирмингемский университет

Электродвижущая сила (ЭДС) равна разности потенциалов на клеммах при отсутствии тока.ЭДС и разность потенциалов на клеммах ( В, ) измеряются в вольтах, но это не одно и то же. ЭДС ( ϵ ) — это количество энергии ( E ), обеспечиваемое батареей на каждый кулон заряда ( Q ), проходящий через нее.

Как рассчитать ЭДС?

ЭДС можно записать через внутреннее сопротивление батареи ( r ) где: ϵ = I (r + R )

Что из закона Ома, мы можем изменить это с точки зрения оконечного сопротивления: ϵ = В + Ir

ЭДС ячейки может быть определена путем измерения напряжения на ячейке с помощью вольтметра и тока в цепи с помощью амперметра для различных сопротивлений.Затем мы можем настроить схему для определения ЭДС, как показано ниже.

ЭДС и внутреннее сопротивление электрических элементов и батарей

Исследование ЭМП

Как закон Фарадея соотносится с ЭМП?

Закон Фарадея гласит, что любое изменение магнитного поля катушки будет индуцировать в катушке ЭДС (а следовательно, и ток). Он пропорционален минус скорости изменения магнитного потока ( ϕ ) (примечание N — количество витков в катушке).

Согласно закону Фарадея, общество извлекло выгоду из таких важных технологий, как трансформаторы, которые используются для передачи электроэнергии в национальной энергосистеме Великобритании, которая сейчас необходима в наших домах. Также он используется в электрических генераторах и двигателях, таких как плотины гидроэлектростанций, которые производят электричество, которое сейчас является неотъемлемой частью наших современных технологических потребностей. Текущий исследовательский проект MAG-DRIVE в Бирмингеме направлен на поиск способов разработки и улучшения материалов с постоянными магнитами, которые можно использовать в электромобилях следующего поколения.ЭМП также генерируется солнечными батареями, поэтому они важны для исследований в области возобновляемых источников энергии.

Лабораторные признания

Исследователи подкаста In the Laboratory Confessions рассказывают о своем лабораторном опыте в контексте практических экзаменов A Level. Эпизоды, посвященные правильному использованию цифровых инструментов (простое гармоническое движение), правильному построению принципиальных схем (удельное сопротивление в проводе) и использованию источников питания постоянного тока (конденсаторов), имеют отношение к эксперименту по ЭДС, ниже вы можете услышать удельное сопротивление. в проводном подкасте.

Как мы интерпретируем наши данные?

По мере увеличения сопротивления переменного резистора величина тока будет уменьшаться. График зависимости напряжения от тока должен давать линейную зависимость, где градиент линии дает отрицательное внутреннее сопротивление ячейки ( -r ), а точка пересечения дает ЭДС (напряжение, при котором ток равен 0).

Выполнение нескольких измерений при разных значениях сопротивления даст больше точек на графике V-I, что сделает подбор более надежным.Также рекомендуется повторить измерения, так как ячейка будет постепенно стекать, что повлияет на показания. Во избежание разряда элемента / батареи ее следует отключать между измерениями. В качестве альтернативы в схему можно включить выключатель. Также не рекомендуется использовать аккумуляторные батареи, так как они имеют низкое внутреннее сопротивление.

Несмотря на то, что этот эксперимент довольно прост, он поможет вам отличить конечную разницу от ЭДС, что может быть сложной концепцией для понимания учащимися.Поскольку люди все больше полагаются на электричество, исследования, связанные с ЭМП, важны для развития и технического прогресса электричества.

Следующие шаги

Эти ссылки предоставляются только для удобства и в информационных целях; они не означают одобрения или одобрения Бирмингемским университетом какой-либо информации, содержащейся на внешнем веб-сайте. Бирмингемский университет не несет ответственности за точность, законность или содержание внешнего сайта или последующих ссылок.Пожалуйста, свяжитесь с внешним сайтом для получения ответов на вопросы относительно его содержания.

Излучение: электромагнитные поля

Стандарты

установлены для защиты нашего здоровья и хорошо известны для многих пищевых добавок, концентраций химических веществ в воде или загрязнителях воздуха. Точно так же существуют полевые стандарты, ограничивающие чрезмерное воздействие уровней электромагнитного поля, присутствующего в нашей окружающей среде.

Кто определяет руководящие принципы?

Страны устанавливают свои собственные национальные стандарты воздействия электромагнитных полей.Однако большинство этих национальных стандартов основаны на рекомендациях Международной комиссии по защите от неионизирующего излучения (ICNIRP). Эта неправительственная организация, официально признанная ВОЗ, оценивает научные результаты со всего мира. Основываясь на подробном обзоре литературы, ICNIRP выпускает руководящие принципы, рекомендующие пределы воздействия. Эти правила периодически пересматриваются и при необходимости обновляются.

Уровни электромагнитного поля изменяются сложным образом в зависимости от частоты.Было бы трудно понять перечисление каждого значения в каждом стандарте и на каждой частоте. Приведенная ниже таблица представляет собой краткое изложение рекомендаций по воздействию для трех областей, которые стали предметом общественного беспокойства: электричество в доме, базовые станции мобильной связи и микроволновые печи. Эти рекомендации последний раз обновлялись в апреле 1998 года.

Краткое изложение рекомендаций ICNIRP по воздействию

Европейская частота сети

Частота базовой станции мобильного телефона

Частота микроволновой печи

Частота

50 Гц

50 Гц

900 МГц

1.8 ГГц

2,45 ГГц

Электрическое поле (В / м)

Магнитное поле (мкТл)

Плотность мощности (Вт / м2)

Плотность мощности ( Вт / м2)

Плотность мощности (Вт / м2)

Пределы воздействия на общественное население

5000

100

4,5

9

10902

Пределы профессионального воздействия

10 000

500

22.5

45

ICNIRP, Руководящие принципы EMF, Health Physics 74, 494-522 (1998)

Нормы воздействия могут отличаться более чем в 100 раз между некоторыми бывшими советскими странами и западными странами. страны. В связи с глобализацией торговли и быстрым внедрением телекоммуникаций во всем мире возникла необходимость в универсальных стандартах. Поскольку многие страны бывшего Советского Союза сейчас рассматривают новые стандарты, ВОЗ недавно выступила с инициативой по гармонизации руководящих принципов воздействия во всем мире.Будущие стандарты будут основаны на результатах Международного проекта ВОЗ по электромагнитному полю.

На чем основаны руководящие принципы?

Важно отметить, что нормативный предел не является точным разграничением между безопасностью и опасностью. Не существует единого уровня, выше которого воздействие становится опасным для здоровья; вместо этого потенциальный риск для здоровья человека постепенно увеличивается с увеличением уровня воздействия. Руководящие принципы указывают, что согласно научным данным воздействие электромагнитного поля ниже заданного порогового значения является безопасным.Однако из этого автоматически не следует, что воздействие выше указанного предела является вредным.

Тем не менее, чтобы установить пределы воздействия, научные исследования должны определить пороговый уровень, при котором проявляются первые последствия для здоровья. Поскольку людей нельзя использовать для экспериментов, руководящие принципы критически полагаются на исследования на животных. Незначительные изменения в поведении животных на низких уровнях часто предшествуют более резким изменениям здоровья на более высоких уровнях. Аномальное поведение является очень чувствительным индикатором биологической реакции и было выбрано как наименьшее наблюдаемое неблагоприятное воздействие на здоровье.Руководящие принципы рекомендуют предотвращать уровни воздействия электромагнитного поля, при которых изменения поведения становятся заметными.

Этот пороговый уровень поведения не равен нормативному пределу. ICNIRP применяет коэффициент безопасности 10 для получения пределов профессионального воздействия и коэффициент 50 для получения нормативного значения для населения. Поэтому, например, в радиочастотном и микроволновом диапазонах частот максимальные уровни, которые могут возникнуть в окружающей среде или в вашем доме, по крайней мере в 50 раз ниже порогового уровня, при котором становятся очевидными первые изменения поведения животных.

Почему коэффициент безопасности для руководств по профессиональному облучению ниже, чем для населения?

Население, подвергающееся профессиональному облучению, состоит из взрослых, которые обычно находятся в известных условиях электромагнитного поля. Эти рабочие обучены осознавать потенциальный риск и принимать соответствующие меры предосторожности. Напротив, широкая общественность состоит из людей всех возрастов и разного состояния здоровья. Во многих случаях они не знают о своем воздействии ЭМП. Более того, нельзя ожидать, что отдельные представители общественности примут меры для сведения к минимуму или предотвращения воздействия.Это основные соображения для более строгих ограничений воздействия для населения, чем для населения, подвергающегося профессиональному облучению.

Как мы видели ранее, низкочастотные электромагнитные поля индуцируют токи в человеческом теле (см. Что происходит, когда вы подвергаетесь воздействию электромагнитных полей?). Но различные биохимические реакции внутри самого тела также генерируют токи. Клетки или ткани не смогут обнаружить какие-либо индуцированные токи ниже этого фонового уровня.Следовательно, при низких частотах нормы воздействия гарантируют, что уровень токов, индуцируемых электромагнитными полями, ниже, чем у естественных токов тела.

Основным эффектом радиочастотной энергии является нагрев тканей. Следовательно, нормы воздействия радиочастотных полей и микроволн установлены для предотвращения последствий для здоровья, вызванных локальным нагревом или нагреванием всего тела (см. Что происходит, когда вы подвергаетесь воздействию электромагнитных полей?). Соблюдение указаний гарантирует, что тепловое воздействие достаточно мало, чтобы не причинить вреда.

Какие руководящие принципы не могут учесть

В настоящее время предположения о потенциальных долгосрочных последствиях для здоровья не могут служить основой для выпуска руководств или стандартов. Суммируя результаты всех научных исследований, общий вес доказательств не указывает на то, что электромагнитные поля вызывают долгосрочные последствия для здоровья, такие как рак. Национальные и международные органы устанавливают и обновляют стандарты на основе последних научных знаний для защиты от известных последствий для здоровья.

Руководящие принципы установлены для среднего населения и не могут напрямую отвечать требованиям меньшинства потенциально более чувствительных людей. Например, директивы по загрязнению воздуха не основаны на особых потребностях астматиков. Точно так же правила электромагнитного поля не предназначены для защиты людей от вмешательства в имплантированные медицинские электронные устройства, такие как кардиостимуляторы. Вместо этого следует посоветоваться с производителями и клиницистом, имплантирующим устройство, по поводу ситуаций облучения, которых следует избегать.

Каковы типичные максимальные уровни воздействия дома и в окружающей среде?

Некоторая практическая информация поможет вам соотноситься с международными нормативными значениями, указанными выше. В следующей таблице вы найдете наиболее распространенные источники электромагнитных полей. Все значения являются максимальными уровнями публичного воздействия — ваша собственная подверженность, вероятно, будет намного ниже. Для более детального изучения уровней поля вокруг отдельных электроприборов см. Раздел Типичные уровни воздействия в домашних условиях и в окружающей среде.

200

70 (магнитное поле Земли)

Источник

Типичное максимальное воздействие на людей

Электрическое поле (В / м)

Плотность магнитного потока (мкТл)

Естественные поля
Электропитание от сети

(в домах не вблизи линий электропередач)

100

0,2

Электропитание от сети

(под большими линиями электропередач)

10 000

20

Электропоезда и трамваи

300

50

Экраны телевизоров и компьютеров

(на месте оператора)

4

10 03

0.7

Типичное максимальное облучение населения (Вт / м2)

Теле- и радиопередатчики

0,1

Базовые станции мобильных телефонов

0,1

Радары

0,2

Микроволновые печи

0,5

Источник: Европейское региональное бюро ВОЗ

Как рекомендации претворяются в жизнь и кто их проверяет?

Ответственность за исследование полей вокруг линий электропередач, базовых станций мобильной связи или любых других источников, доступных для широкой публики, лежит на государственных учреждениях и местных органах власти.Они должны обеспечить соблюдение правил.

В случае электронных устройств производитель несет ответственность за соблюдение стандартных ограничений. Однако, как мы видели выше, природа большинства устройств гарантирует, что излучаемые поля значительно ниже пороговых значений. Кроме того, многие ассоциации потребителей регулярно проводят тесты. В случае возникновения какой-либо особой озабоченности или беспокойства свяжитесь напрямую с производителем или обратитесь в местный орган здравоохранения.

Вредны ли воздействия, превышающие нормы?

Съесть банку с клубничным вареньем до истечения срока годности — это совершенно безопасно, но если вы потребляете варенье позже, производитель не может гарантировать хорошее качество еды. Тем не менее, даже через несколько недель или месяцев после истечения срока годности варенье, как правило, безопасно есть. Точно так же директивы по электромагнитному полю гарантируют, что в пределах заданного предела воздействия не произойдет никаких известных неблагоприятных последствий для здоровья. Большой коэффициент безопасности применяется к уровню, который, как известно, вызывает последствия для здоровья.Следовательно, даже если вы испытываете напряженность поля в несколько раз выше заданного предельного значения, ваше воздействие все равно будет в пределах этого запаса прочности.

В повседневных ситуациях большинство людей не испытывают электромагнитных полей, превышающих нормативные пределы. Типичные экспозиции намного ниже этих значений. Однако бывают случаи, когда воздействие на человека на короткий период может приближаться к нормативам или даже превышать их. Согласно ICNIRP, радиочастотное и микроволновое воздействие следует усреднять по времени, чтобы устранить кумулятивные эффекты.В рекомендациях указан период усреднения по времени в шесть минут, и допустимы краткосрочные воздействия сверх установленных пределов.

Напротив, воздействие низкочастотных электрических и магнитных полей в руководствах не усредняется по времени. Чтобы еще больше усложнить ситуацию, в игру вступает еще один фактор, называемый связью. Связь относится к взаимодействию между электрическим и магнитным полями и обнаженным телом. Это зависит от размера и формы тела, типа ткани и ориентации тела относительно поля.Рекомендации должны быть консервативными: ICNIRP всегда предполагает максимальную связь поля с экспонируемым человеком. Таким образом, рекомендуемые пределы обеспечивают максимальную защиту. Например, даже несмотря на то, что значения магнитного поля для фенов и электробритв, кажется, превышают рекомендуемые значения, чрезвычайно слабая связь между полем и головкой предотвращает индукцию электрических токов, которые могут превышать рекомендуемые пределы.

Ключевые моменты

  • ICNIRP издает руководящие принципы на основе современных научных знаний.Большинство стран опираются на эти международные руководящие принципы для своих собственных национальных стандартов.
  • Стандарты для низкочастотных электромагнитных полей гарантируют, что наведенные электрические токи ниже нормального уровня фоновых токов внутри тела. Стандарты для радиочастоты и микроволн предотвращают воздействие на здоровье, вызванное локальным нагреванием или нагреванием всего тела.
  • Рекомендации не защищают от возможных помех электромедицинским устройствам.
  • Максимальные уровни воздействия в повседневной жизни обычно намного ниже рекомендуемых пределов.
  • Из-за большого коэффициента безопасности воздействие, превышающее нормативные пределы, не обязательно вредно для здоровья. Кроме того, усреднение по времени для высокочастотных полей и предположение о максимальной связи для низкочастотных полей вносят дополнительный запас прочности.

6.1 Электродвижущая сила — Введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ

По окончании раздела вы сможете:
  • Опишите электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните основную работу аккумулятора

Если вы забудете выключить автомобильные фары, они будут постепенно тускнеть по мере разрядки аккумулятора.Почему они не мигают внезапно, когда разрядился аккумулятор? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных батарей заключается в том, что все источники напряжения состоят из двух основных частей — источника электрической энергии и внутреннего сопротивления. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Voltage имеет множество источников, некоторые из которых показаны на рисунке 6.1.1. Все такие устройства создают разности потенциалов и могут подавать ток, если подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС). ЭДС — это вовсе не сила, но термин «электродвижущая сила» используется по историческим причинам. Он был придуман Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как вольтовую батарею . Поскольку электродвижущая сила не является силой, принято называть эти источники просто источниками ЭДС (произносимыми буквами «ee-em-eff»), а не источниками электродвижущей силы.

(рисунок 6.1.1)

Рисунок 6.1.1 Различные источники напряжения. а) ветряная электростанция Бразос в Флуванна, штат Техас; (б) Красноярская плотина в России; (c) солнечная ферма; (d) группа никель-металлогидридных батарей. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet» / Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если электродвижущая сила вовсе не сила, то что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы, подключенной к батарее, как показано на рисунке 6.1.2. Батарея может быть смоделирована как устройство с двумя выводами, которое поддерживает один вывод с более высоким электрическим потенциалом, чем второй вывод. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

(рисунок 6.1.2)

Рисунок 6.1.2 Источник ЭДС поддерживает на одном выводе более высокий электрический потенциал, чем на другом выводе, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, нет чистого потока заряда внутри источника ЭДС. Как только батарея подключена к лампе, заряды перетекают от одной клеммы батареи через лампу (в результате чего лампа загорается) и обратно к другой клемме батареи. Если мы рассмотрим протекание положительного (обычного) тока, положительные заряды покидают положительный вывод, проходят через лампу и попадают в отрицательный вывод.

Положительный ток используется для большей части анализа схем в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному потоку тока.Поэтому более реалистично рассмотреть движение электронов для анализа схемы на рисунке 6.1.2. Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны перемещаться с положительного вывода на отрицательный. Источник ЭДС действует как накачка заряда, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила, действующая на отрицательный заряд от электрического поля, действует в направлении, противоположном электрическому полю, как показано на рисунке 6.1.2. Чтобы отрицательные заряды переместились на отрицательный вывод, необходимо провести работу с отрицательными зарядами. Для этого требуется энергия, которая возникает в результате химических реакций в батарее. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме для поддержания разности потенциалов между двумя клеммами.ЭДС равна работе, выполняемой над зарядом на единицу заряда () при отсутствии тока. Поскольку единицей измерения работы является джоуль, а единицей заряда — кулон, единицей измерения ЭДС является вольт ().

Напряжение на клеммах батареи — это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея — это источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что у реальной батареи есть внутреннее сопротивление, а напряжение на клеммах всегда меньше, чем ЭДС батареи.

Происхождение потенциала батареи

ЭДС батареи определяется сочетанием химических веществ и составом выводов батареи. Свинцово-кислотная батарея , используемая в автомобилях и других транспортных средствах, является одним из наиболее распространенных сочетаний химических веществ.На рисунке 6.1.3 показан один элемент (один из шести) этой батареи. Катодная (положительная) клемма ячейки соединена с пластиной из оксида свинца, а анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

(рисунок 6.1.3)

Рисунок 6.1.3 Химические реакции в свинцово-кислотном элементе разделяют заряд, отправляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины из оксида свинца подключаются к положительному или катодному выводу ячейки.Серная кислота проводит заряд, а также участвует в химической реакции.

Небольшое знание того, как взаимодействуют химические вещества в свинцово-кислотной батарее, помогает понять потенциал, создаваемый батареей. На рисунке 6.1.4 показан результат одной химической реакции. Два электрона помещаются на анод , что делает его отрицательным, при условии, что катод снабжает два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет полной цепи, позволяющей подавать два электрона на катод. Во многих случаях эти электроны выходят из анода, проходят через сопротивление и возвращаются на катод. Отметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

(рисунок 6.1,4)

Рис. 6.1.4 В свинцово-кислотной батарее два электрона принудительно направляются на анод элемента, а два электрона удаляются с катода элемента. В результате химической реакции в свинцово-кислотной батарее два электрона помещаются на анод и два электрона удаляются с катода. Для работы требуется замкнутая цепь, так как два электрона должны быть доставлены на катод.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления прохождению тока внутри источника напряжения называется внутренним сопротивлением .Внутреннее сопротивление батареи может вести себя сложным образом. Обычно она увеличивается по мере разряда батареи из-за окисления пластин или снижения кислотности электролита. Однако внутреннее сопротивление также может зависеть от величины и направления тока через источник напряжения, его температуры и даже его предыстории. Например, внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов зависит от того, сколько раз и насколько глубоко они были разряжены. Простая модель батареи состоит из идеализированного источника ЭДС и внутреннего сопротивления (рисунок 6.1.5).

(рисунок 6.1.5)

Рисунок 6.1.5 Батарею можно смоделировать как идеализированную ЭДС () с внутренним сопротивлением (). Напряжение на клеммах аккумулятора.

Предположим, что внешний резистор, известный как сопротивление нагрузки, подключен к источнику напряжения, например, к батарее, как показано на рисунке 6.1.6. На рисунке показана модель батареи с ЭДС, внутренним сопротивлением и нагрузочным резистором, подключенным к ее клеммам. При обычном протекании тока положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах аккумулятора зависит от ЭДС, внутреннего сопротивления и силы тока и равно

.

(6.1.1)

При заданной ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала внутреннего сопротивления.

(рисунок 6.1.6)

Рисунок 6.1.6 Схема источника напряжения и его нагрузочного резистора. Поскольку внутреннее сопротивление последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рисунке 6.1.7. В цепи протекает ток, и падение потенциала на внутреннем резисторе равно. Напряжение на клеммах равно падению потенциала на нагрузочном резисторе. Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что это на самом деле изменение потенциала, или. Однако для удобства часто опускается.

(рисунок 6.1.7)

Ток через нагрузочный резистор равен. Из этого выражения видно, что чем меньше внутреннее сопротивление, тем больше ток, подаваемый источником напряжения на свою нагрузку. По мере разряда батарей увеличивается. Если становится значительной частью сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

ПРИМЕР 6.1.1


Анализ цепи с аккумулятором и нагрузкой

У данной батареи есть ЭДС и внутреннее сопротивление.(a) Рассчитайте напряжение на его клеммах при подключении к нагрузке. (b) Какое напряжение на клеммах при подключении к нагрузке? (c) Какая мощность рассеивает нагрузка? (d) Если внутреннее сопротивление увеличивается до, найдите ток, напряжение на клеммах и мощность, рассеиваемую нагрузкой.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток будет найден, можно рассчитать напряжение на клеммах, используя уравнение. Как только ток будет найден, мы также сможем найти мощность, рассеиваемую резистором.

Решение

а. Ввод данных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в выражение выше дает

Введите известные значения в уравнение, чтобы получить напряжение на клеммах:

Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, что означает, что ток, потребляемый этой легкой нагрузкой, не имеет значения.

г. Аналогично с, ток

Напряжение на клеммах теперь

Напряжение на клеммах значительно снизилось по сравнению с ЭДС, что означает большую нагрузку на эту батарею.«Сильная нагрузка» означает большее потребление тока от источника, но не большее сопротивление.

г. Мощность, рассеиваемую нагрузкой, можно найти по формуле. Ввод известных значений дает

Обратите внимание, что эту мощность также можно получить с помощью выражения или, где — напряжение на клеммах (в данном случае).

г. Здесь внутреннее сопротивление увеличилось, возможно, из-за разряда батареи, до точки, в которой оно равно сопротивлению нагрузки.Как и раньше, мы сначала находим ток, вводя известные значения в выражение, что дает

Теперь напряжение на клеммах

, а мощность, рассеиваемая нагрузкой, равна

.

Мы видим, что увеличенное внутреннее сопротивление значительно снизило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиваться по многим причинам.Например, внутреннее сопротивление перезаряжаемой батареи увеличивается с увеличением количества раз, когда батарея перезаряжается. Повышенное внутреннее сопротивление может иметь двоякое влияние на аккумулятор. Сначала снизится напряжение на клеммах. Во-вторых, аккумулятор может перегреться из-за повышенной мощности, рассеиваемой внутренним сопротивлением.

ПРОВЕРЬТЕ ПОНИМАНИЕ 6.1

Если вы поместите провод прямо между двумя выводами батареи, эффективно закоротив клеммы, батарея начнет нагреваться.Как вы думаете, почему это происходит?

Тестеры батарей

Тестеры батарей , такие как показанные на рис. 6.1.8, используют малые нагрузочные резисторы, чтобы намеренно потреблять ток, чтобы определить, падает ли потенциал клемм ниже допустимого уровня. Хотя трудно измерить внутреннее сопротивление батареи, тестеры батареи могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея разряжена, о чем свидетельствует низкое напряжение на клеммах.

(рисунок 6.1.8)

Рисунок 6.1.8 Тестеры аккумуляторов измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние аккумулятора. (a) Техник-электронщик ВМС США использует тестер аккумуляторов для проверки больших аккумуляторов на борту авианосца USS Nimitz . Тестер батарей, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах.(кредит А: модификация работы Джейсона А. Джонстона; кредит б: модификация работы Кейта Уильямсона)

Некоторые батареи можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в прибор. Это обычно делается в автомобилях и батареях для небольших электроприборов и электронных устройств (рис. 6.1.9). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него реверсировал. Это приводит к тому, что напряжение на клеммах аккумулятора становится больше, чем ЭДС, так как и теперь отрицательны.

(рисунок 6.1.9)

Рисунок 6.1.9 Зарядное устройство для автомобильного аккумулятора меняет нормальное направление тока через аккумулятор, обращая вспять его химическую реакцию и пополняя ее химический потенциал.

Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с помощью напряжения на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто, без индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может со временем измениться.

Кандела Цитаты

Лицензионный контент CC, особая атрибуция

  • Загрузите бесплатно по адресу http://cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution

Антропогенные электромагнитные поля (ЭМП) влияют на поведение донных морских видов

  • 1.

    Gill, AB, Gloyne-Philips, I., Kimber, J. & Sigray, P. Морские возобновляемые источники энергии, электромагнитные (ЭМ) поля и животные, чувствительные к ЭМ в Marine Renewable Energy Technology and Environmental Interactions (eds. Mark A Шилдс и Эндрю И.Л. Пейн) 61–79 (Springer, Нидерланды, 2014).

  • 2.

    Бедор, К. Н. и Каджиура, С. М. Биоэлектрические поля морских организмов: вклад напряжения и частоты в обнаруживаемость электрорецептивных хищников. Физиолого-биохимическая зоология 86 , 298–311, https: // doi.org / 10.1086 / 669973 (2013).

    Артикул PubMed Google Scholar

  • 3.

    Бейкер, К. В. Х., Модрелл, М. С. и Гиллис, Дж. А. Эволюция и развитие электрорецепторов боковой линии позвоночных. Журнал экспериментальной биологии 216 , 2515–2522, https://doi.org/10.1242/jeb.082362 (2013).

    Артикул PubMed PubMed Central Google Scholar

  • 4.

    Нордманн, Г. К., Хохстогер, Т. и Кейс, Д. А. Магниторецепция — ощущение без рецептора. PLOS Biology 15 , e2003234, https://doi.org/10.1371/journal.pbio.2003234 (2017).

    CAS Статья PubMed PubMed Central Google Scholar

  • 5.

    Ломанн, К. Дж., Ломанн, К. М. Ф. и Эндрес, К. С. Сенсорная экология океанской навигации. Журнал экспериментальной биологии 211 , 1719–1728, https: // doi.org / 10.1242 / jeb.015792 (2008).

    Артикул PubMed Google Scholar

  • 6.

    Tricas, TC и Sinseros, JA. Экологические функции и адаптация электросенса эластожаберных в The Senses of Fish (ред. G. Emde, Mogdans, J., Kapoor, BG) (Springer, Dordrecht, 2004 ).

  • 7.

    Андерсон, Дж. М., Клегг, Т. М., Верас, Л. В. М. В. К. и Холланд, К. Н. Понимание восприятия магнитного поля акул на основе эмпирических наблюдений. Scientific Reports 7 , 11042, https://doi.org/10.1038/s41598-017-11459-8 (2017).

    ADS CAS Статья PubMed PubMed Central Google Scholar

  • 8.

    Рэдфорд, А. Н., Керридж, Э. и Симпсон, С. Д. Акустическая коммуникация в шумном мире: может ли рыба конкурировать с антропогенным шумом? Поведенческая экология 25 , 1022–1030, https://doi.org/10.1093/beheco/aru029 (2014).

    Артикул Google Scholar

  • 9.

    Симпсон С. Д. и др. . Антропогенный шум увеличивает смертность рыб от хищников. Nature Communications 7 , 10544, https://doi.org/10.1038/ncomms10544 (2016).

    ADS CAS Статья PubMed PubMed Central Google Scholar

  • 10.

    Магнхаген, К., Йоханссон, К. и Сигрей, П.Влияние шума моторной лодки на кормодобывающее поведение евразийского окуня и плотвы: полевой эксперимент. Marine Ecology Progress Series 564 , 115–125 (2017).

    ADS Статья Google Scholar

  • 11.

    Доулинг, Дж. Л., Лютер, Д. А. и Марра, П. П. Сравнительное влияние городского развития и антропогенного шума на песни птиц. Поведенческая экология 23 , 201–209, https://doi.org/10.1093 / beheco / arr176 (2011).

    Артикул Google Scholar

  • 12.

    Каорси, В. З., Бот, С., Чехин, С., Антунес, Р., Борхес-Мартинс, М. Влияние дорожного шума на кричащее поведение двух неотропических гилидных лягушек. PLoS One 12 , e0183342, https://doi.org/10.1371/journal.pone.0183342 (2017).

    CAS Статья PubMed PubMed Central Google Scholar

  • 13.

    Longcore, T. & Rich, C. Экологическое световое загрязнение. Frontiers in Ecology and the Environment 2 , 191–198, https://doi.org/10.1890/1540-9295(2004)002[0191:elp impression2.0.co;2 (2004).

    Артикул Google Scholar

  • 14.

    Климли, А. П., Вайман, М. Т. и Кавет, Р. Чавычи и зеленый осетр мигрируют через устье Сан-Франциско, несмотря на большие искажения местного магнитного поля, создаваемые мостами. PLoS One 12 , e0169031, https://doi.org/10.1371/journal.pone.0169031 (2017).

    CAS Статья PubMed PubMed Central Google Scholar

  • 15.

    Эллиот К., Аль-Таббаа О., Семейютин А. и Чуаму Нджоя Э. Экономическая и социальная оценка индустрии подводных кабелей Великобритании. (Университет Хаддерсфилда, 2016).

  • 16.

    Ardelean, M. & Minnebo, P. Подводные силовые кабели постоянного тока высокого напряжения в мире .(Европейский Союз, 2015).

  • 17.

    Кота, С., Бейн, С. Б. и Ниммагадда, С. Морская ветроэнергетика: сравнительный анализ Великобритании, США и Индии. Обзоры возобновляемых и устойчивых источников энергии 41 , 685–694, https://doi.org/10.1016/j.rser.2014.08.080 (2015).

    Артикул Google Scholar

  • 18.

    WindEurope. Offshore Wind in Europe — Ключевые тенденции и статистика 2018 (2019).

  • 19.

    Стрэттон, Дж. А. Теория электромагнитного поля 907 10. (Wiley, 2007).

  • 20.

    Слейтер М., Джонс Р. и Шульц А. Прогнозирование электромагнитных полей, создаваемых подводными силовыми кабелями . 47 (Орегонский фонд волновой энергии (OWET), 2010 г.).

  • 21.

    Гилл, А. Б., Бартлетт, М. и Томсен, Ф. Возможные взаимодействия между диадромными рыбами, имеющими важное значение для сохранения Великобритании, и электромагнитными полями и подводным шумом от морских разработок в области возобновляемых источников энергии. Journal of Fish Biology 81 , 664–695, https://doi.org/10.1111/j.1095-8649.2012.03374.x (2012).

    CAS Статья PubMed Google Scholar

  • 22.

    Оман М.С., Сигрей П. и Вестерберг Х. Морские ветряные мельницы и влияние электромагнитных полей на рыбу. Ambio 36 , 630–633 (2007).

    Артикул Google Scholar

  • 23.

    Таормина, Б. и др. . Обзор потенциального воздействия подводных силовых кабелей на морскую среду: пробелы в знаниях, рекомендации и направления на будущее. Обзоры возобновляемой и устойчивой энергетики 96 , 380–391, https://doi.org/10.1016/j.rser.2018.07.026 (2018).

    CAS Статья Google Scholar

  • 24.

    Шировски Т., Шарма С. К., Саттон Р. и Кеннеди Г. А. Развитие подводных силовых и телекоммуникационных кабелей: обнаружение электромагнитных полей. Международный журнал Общества подводных технологий 31 , 133–143 (2013).

    Артикул Google Scholar

  • 25.

    Гилл, А. Б. Морские возобновляемые источники энергии: экологические последствия производства электроэнергии в прибрежной зоне. Журнал прикладной экологии 42 , 605–615, https://doi.org/10.1111/j.1365-2664.2005.01060.x (2005).

    Артикул Google Scholar

  • 26.

    Бодзник Д., Монтгомери Дж. К. и Брэдли Д. Дж. Подавление синфазных сигналов в электросенсорной системе маленького конька Raja erinacea . Журнал экспериментальной биологии 171 , 107 (1992).

    Google Scholar

  • 27.

    Думан, К. Х. и Бодзник, Д. Роль ГАМКергического ингибирования в электросенсорной обработке и отклонении общего режима в дорсальном ядре маленького ската, Raja erinacea . Journal of Comparative Physiology A 179 , 797–807, https://doi.org/10.1007/bf00207358 (1996).

    CAS Статья Google Scholar

  • 28.

    Гиллис, Дж. А. и др. . Электросенсорные ампулярные органы происходят от плакод боковой линии у хрящевых рыб. Разработка 139 , 3142–3146 (2012).

    CAS Статья Google Scholar

  • 29.

    Лу, Дж. И Фишман, Х. М. Взаимодействие ионных каналов апикальной и базальной мембран лежит в основе электрорецепции в ампулярном эпителии скатов. Biophysical Journal 67 , 1525–1533 (1994).

    ADS CAS Статья Google Scholar

  • 30.

    Нью, Дж. Г. Электросенсорная обработка костного мозга в маленьком коньке. I. Характеристики ответа нейронов в дорсальном октаволатеральном ядре. Journal of Comparative Physiology A 167 , 285–294 (1990).

    CAS Статья Google Scholar

  • 31.

    Пакер, Д. Б., Цетлин, К. А. и Виталиано, Дж. Дж. Исходный документ по основным местообитаниям рыб: Маленький скейт, Leucoraja erinacea , история жизни и характеристики среды обитания. 76 (Национальное управление океанических и атмосферных исследований, 2003 г.).

  • 32.

    ASMFC. 2018 Обзор плана управления промыслом американского лобстера Комиссией по морскому рыболовству штата Атлантика (Homarus americanus) за 2017 промысловый год.(Комиссия по морскому рыболовству в Атлантических штатах, 2018 г.).

  • 33.

    Скопел, Д. А., Голет, У. Дж. И Уотсон, У. Х. III Динамика ареала обитания американского лобстера, Homarus americanus . Поведение и физиология в морской и пресноводной среде 42 , 63–80, https://doi.org/10.1080/10236240

    1498 (2009).

    Артикул Google Scholar

  • 34.

    Hoenig, J., Muller, R. & Tremblay, J. Контрольный отчет об оценке запасов американского лобстера и экспертной оценке . 493 (Вудс-Хоул, Массачусетс, 2015).

  • 35.

    Lohmann, K. et al. . Магнитная ориентация колючих омаров в океане: эксперименты с системами подводных катушек. Журнал экспериментальной биологии 198 , 2041–2048 (1995).

    CAS PubMed Google Scholar

  • 36.

    Болес, Л. К. и Ломанн, К. Дж.Настоящая навигация и магнитные карты в колючих лобстерах. Nature 421 , 60–63 (2003).

    ADS CAS Статья Google Scholar

  • 37.

    Бёлерт, Г. В. и Гилл, А. Б. Экологические и экологические последствия освоения возобновляемых источников энергии океана: текущий синтез. Океанография 23 , 68–81 (2010).

    Артикул Google Scholar

  • 38.

    Кестер, Д. М. и Спирито, К. П. Пунтинг: необычный способ передвижения у Маленького ската, Leucoraja erinacea (chondrichthyes: rajidae). Copeia 2003 , 553–561, https://doi.org/10.1643/cg-02-153r1 (2003).

    Артикул Google Scholar

  • 39.

    Ди Санто, В., Блевинс, Э. Л. и Лаудер, Г. В. Батоидная локомоция: влияние скорости на деформацию грудных плавников у маленьких коньков, Leucoraja erinacea . Журнал экспериментальной биологии 220 , 705 (2017).

    Артикул Google Scholar

  • 40.

    Ди Санто, В. и Кенали, К. П. Катание на коньках: низкие энергетические затраты на плавание в летучей рыбе. Журнал экспериментальной биологии 219 , 1804 (2016).

    Артикул Google Scholar

  • 41.

    Бодзник, Д., Монтгомери, Дж.И Трикас, Т. С. Электрорецепция: извлечение важных для поведения сигналов из шума при обработке сенсорных данных в водной среде . (Springer New York, 2003).

  • 42.

    Калмийн А. Дж. Электрическое чувство акул и скатов. Журнал экспериментальной биологии 55 , 371–383 (1971).

    CAS PubMed Google Scholar

  • 43.

    Кимбер, Дж. А., Симс, Д. У., Беллами, П.Х. и Гилл, А. Б. Способность придонных эластожаберных ветвей различать биологические и искусственные электрические поля. Морская биология 158 , 1–8, https://doi.org/10.1007/s00227-010-1537-y (2011).

    Артикул Google Scholar

  • 44.

    Кимбер, Дж. А., Симс, Д. У., Беллами, П. Х. и Гилл, А. Б. Когнитивные способности пластиножаберных: использование электрорецептивного кормодобывания для демонстрации обучения, привыкания и памяти у донной акулы. Познание животных 17 , 55–65 (2014).

    Артикул Google Scholar

  • 45.

    Мейер, К. Г., Холланд, К. Н. и Папастаматиу, Ю. П. Акулы могут обнаруживать изменения в геомагнитном поле. Журнал Королевского общества Интерфейс 2 , 129 (2005).

    Артикул Google Scholar

  • 46.

    Бенхаму, С. Эффективность поиска, сосредоточенного на площади, в непрерывной неоднородной среде. Журнал теоретической биологии 159 , 67–81, https://doi.org/10.1016/S0022-5193(05)80768-4 (1992).

    Артикул Google Scholar

  • 47.

    Белл У. Дж. Поведение при поиске 907 10. Экология поиска ресурсов . 1 изд, (Springer, 1990).

  • 48.

    Гилл, А. Б. и др. . COWRIE 2.0 Электромагнитные поля (ЭМП) Фаза 2: реакция рыбы, чувствительной к ЭМП, на электромагнитные излучения от подводных электрических кабелей того типа, который используется в морской индустрии возобновляемых источников энергии.№ отчета Проект Ref; COWRIE-EMF-1-06, (COWRIE, 2009).

  • 49.

    Карновски Э. Б. и Прайс Х. Дж. Поведенческая реакция омара Homarus americanus на ловушки. Канадский журнал рыболовства и водных наук 46 , 1625–1632, https://doi.org/10.1139/f89-207 (1989).

    Артикул Google Scholar

  • 50.

    van der Meeren, G. I. Хищничество выращенных в инкубаториях омаров, выпущенных в дикой природе. Канадский журнал рыболовства и водных наук 57 , 1794–1803, https://doi.org/10.1139/f00-134 (2000).

    Артикул Google Scholar

  • 51.

    Paille, N. & Bourassa, L. Американский лобстер: часто задаваемые вопросы , https://web.archive.org/web/20100310113207/http://www.osl.gc.ca /homard/en/faq.html (2008 г.).

  • 52.

    Вале, Р. А., Кастро, К. М., Талли, О. Хомарус в омарах: биология , Менеджмент , Аквакультура и рыболовство . 2-е изд., 8 (Wiley-Blackwell, 2013).

  • 53.

    Хааконсен, Х. О. и Аноруо, А. О. Мечение и миграция американского лобстера Homarus americanus . Reviews in Fisheries Science 2 , 79–93, https://doi.org/10.1080/10641269409388553 (1994).

    Артикул Google Scholar

  • 54.

    Узденский А.Б., Кутко О.Ю., Коган А.Б. Влияние слабого магнитного поля сверхнизкой частоты на изолированный нейрон рецептора растяжения рака: нелинейная зависимость от амплитуды и частоты поля. Электромагнитная биология и медицина 16 , 267–279, https://doi.org/10.3109/1536837970

    58 (1997).

    Артикул Google Scholar

  • 55.

    Ueno, S., Lövsund, P. & Öberg, P.A. Влияние изменяющихся во времени магнитных полей на потенциал действия в аксоне омара гигантского. Медицинская и биологическая инженерия и вычисления 24 , 521–526, https://doi.org/10.1007/bf02443969 (1986).

    CAS Статья PubMed Google Scholar

  • 56.

    Ломанн, К. Дж. Магнитная остаточная способность у колючих лобстеров Западной Атлантики, Panulirus argus . Журнал экспериментальной биологии 113 , 29 (1984).

    Google Scholar

  • 57.

    Муравейко В. М., Степанюк И. А., Зензеров В. С. Реакция краба Paralithodes camtschaticus (Tilesius, 1815) на геомагнитные бури. Доклады биологических наук 448 , 10–12, https://doi.org/10.1134/s0012496613010183 (2013).

    CAS Статья PubMed Google Scholar

  • 58.

    Томанова К. и Вача М. Магнитная ориентация антарктической амфиподы Gondogenia antarctica компенсируется очень слабыми радиочастотными полями. Журнал экспериментальной биологии 219 , 1717 (2016).

    CAS Статья Google Scholar

  • 59.

    Уголини, А. Экваториальные кулики используют сканирование тела для обнаружения магнитного поля Земли. Journal of Comparative Physiology A 192 , 45–49, https://doi.org/10.1007/s00359-005-0046-9 (2006).

    CAS Статья Google Scholar

  • 60.

    Уголини А. и Пеццани А. Магнитный компас и изучение направления оси Y (море-суша) в морской изоподе Idotea baltica basteri . Поведение животных 50 , 295–300, https://doi.org/10.1006/anbe.1995.0245 (1995).

    Артикул Google Scholar

  • 61.

    Скотт К., Харсани П. и Линдон А. Р. Понимание воздействия излучения электромагнитного поля от морских возобновляемых источников энергии (MRED) на коммерчески важного съедобного краба, Cancer pagurus (L.). Бюллетень загрязнения моря 131 , 580–588, https://doi.org/10.1016/j.marpolbul.2018.04.062 (2018).

    CAS Статья PubMed Google Scholar

  • 62.

    Уокер, М. М., Деннис, Т. Э. и Киршвинк, Дж. Л. Магнитное чувство и его использование в навигации на большие расстояния животными. Current Opinion in Neurobiology 12 , 735–744, https://doi.org/10.1016/S0959-4388(02)00389-6 (2002).

    CAS Статья PubMed Google Scholar

  • 63.

    Стоддард, П. К. Электрические сигналы в Энциклопедия поведения животных (ред. Майкл Д. Брид и Дженис Мур) 601–610 (Academic Press, 2010).

  • 64.

    Кальдекотт, Р., ДеВоре, Р. В., Кастен, Д. Г., Себо, С. А. и Райт, С. Е. Испытания преобразовательной станции HDVC в диапазоне частот от 0,1 до 5 МГц. IEEE Transactions on Power Delivery 3 , 971–977, https: // doi.орг / 10.1109 / 61.193875 (1988).

    Артикул Google Scholar

  • 65.

    Крона, Л., Фристедт, Т., Лундберг, П. и Сигрей, П. Полевые испытания нового типа электрода с графитовым волокном для измерения напряжений, индуцированных движением. Журнал атмосферных и океанических технологий 18 , 92–99, 10.1175 / 1520-0426 (2001) 018 <0092: ftoant> 2.0.co; 2 (2001).

  • 66.

    R: язык и среда для статистических вычислений v.3.2.4 (Пересмотрено 16 января 2016 г., r70336) «Очень безопасные блюда» (Фонд R для статистических вычислений, Вена, Австрия, 2016 г.).

  • 67.

    RStudio: интегрированная разработка для R. v. 1.0.136 (RStudio Inc., Бостон, Массачусетс, 2016).

  • 68.

    Зуур, А.Ф., Йено, Э.Н., Уокер, Н.Дж., Савельев, А.А. и Смит, Г.М. Модели смешанных эффектов и расширения в экологии с R . (Springer, 2009).

  • 69.

    Hutchison, Z. L. et al . Воздействие электромагнитного поля (ЭМП) на эластожаберных (акулы, скаты и скаты) и движение американских омаров и миграция из кабелей постоянного тока.Стерлинг (Вирджиния): Министерство внутренних дел США, Бюро управления океанической энергией. Исследование OCS BOEM 2018-003. (2018)

  • Электромагнитные поля и рак — Национальный институт рака

  • Международное агентство по изучению рака. Неионизирующее излучение, Часть 2: Радиочастотные электромагнитные поля. Лион, Франция: МАИР; 2013. Монографии МАИР по оценке канцерогенных рисков для человека, Том 102.

  • Альбом А., Грин А., Хейфец Л. и др.Эпидемиология воздействия радиочастотного излучения на здоровье. Перспективы гигиены окружающей среды 2004; 112 (17): 1741–1754.

    [Аннотация PubMed]
  • Международная комиссия по защите от неионизирующего излучения. Рекомендации по ограничению воздействия изменяющихся во времени электрических и магнитных полей (от 1 Гц до 100 кГц). Health Physics 2010; 99 (6): 818-36. DOI: 10.1097 / HP.0b013e3181f06c86.

  • Schüz J, Манн С.Обсуждение показателей потенциального воздействия для использования в эпидемиологических исследованиях воздействия на человека радиоволн от базовых станций мобильных телефонов. Журнал анализа воздействия и эпидемиологии окружающей среды 2000; 10 (6 Пт 1): 600-5.

    [Аннотация PubMed]
  • Виль Дж. Ф., Клерк С., Баррера С. и др. Воздействие радиочастотных полей базовых станций мобильных телефонов и радиопередатчиков в жилых помещениях: обследование населения с использованием персонального счетчика. Медицина труда и окружающей среды 2009; 66 (8): 550-6.

    [Аннотация PubMed]
  • Фостер KR, Moulder JE. Wi-Fi и здоровье: обзор текущего состояния исследований. Health Physics 2013; 105 (6): 561-75.

    [Аннотация PubMed]
  • АГНИР. 2012. Воздействие радиочастотных электромагнитных полей на здоровье. Отчет Независимой консультативной группы по неионизирующему излучению.В документах Агентства по охране здоровья R, химические и экологические опасности. RCE 20, Агентство по охране здоровья, Великобритания (ред.).

  • Фостер К.Р., Телль РА. Воздействие радиочастотной энергии от интеллектуального счетчика Trilliant. Health Physics 2013; 105 (2): 177-86.

    [Аннотация PubMed]
  • Lagroye I, Percherancier Y, Juutilainen J, De Gannes FP, Veyret B.Магнитные поля СНЧ: исследования на животных, механизмы действия. Прогресс в биофизике и молекулярной биологии 2011; 107 (3): 369-373.

    [Аннотация PubMed]
  • Бурман Г.А., Маккормик Д.Л., Финдли Дж.С. и др. Оценка хронической токсичности / онкогенности магнитных полей 60 Гц (промышленной частоты) у крыс F344 / N. Токсикологическая патология 1999; 27 (3): 267-78.

    [Аннотация PubMed]
  • Маккормик Д.Л., Бурман Г.А., Финдли Дж.С. и др.Оценка хронической токсичности / онкогенности магнитных полей 60 Гц (промышленной частоты) у мышей B6C3F1. Токсикологическая патология 1999; 2 7 (3): 279-85.

    [Аннотация PubMed]
  • Всемирная организация здравоохранения, Международное агентство по изучению рака. Неионизирующее излучение, Часть 1: Статические и крайне низкочастотные (СНЧ) электрические и магнитные поля. Монографии МАИР по оценке канцерогенных рисков для человека 2002; 80: 1-395.

  • Ahlbom IC, Cardis E, Green A, et al. Обзор эпидемиологической литературы по ЭМП и здоровью. Перспективы гигиены окружающей среды 2001; 109 Приложение 6: 911-933.

    [Аннотация PubMed]
  • Schüz J. Воздействие чрезвычайно низкочастотных магнитных полей и риск рака у детей: обновление эпидемиологических данных. Прогресс в биофизике и молекулярной биологии 2011; 107 (3): 339-342.

    [Аннотация PubMed]
  • Вертхаймер Н., Липер Э. Конфигурации электропроводки и детский рак. Американский журнал эпидемиологии 1979; 109 (3): 273-284.

    [Аннотация PubMed]
  • Кляйнерман Р.А., Кауне В.Т., Хэтч Е.Е. и др. Подвержены ли дети, живущие вблизи высоковольтных линий электропередач, повышенному риску острого лимфобластного лейкоза? Американский журнал эпидемиологии 2000; 151 (5): 512-515.

    [Аннотация PubMed]
  • Kroll ME, Swanson J, Vincent TJ, Draper GJ. Детский рак и магнитные поля от высоковольтных линий электропередачи в Англии и Уэльсе: исследование случай – контроль. Британский журнал рака 2010; 103 (7): 1122-1127.

    [Аннотация PubMed]
  • Wünsch-Filho V, Pelissari DM, Barbieri FE, et al. Воздействие магнитных полей и острый лимфолейкоз у детей в Сан-Паулу, Бразилия. Эпидемиология рака 2011; 35 (6): 534-539.

    [Аннотация PubMed]
  • Sermage-Faure C, Demoury C, Rudant J, et al. Детский лейкоз вблизи высоковольтных линий электропередачи — исследование Geocap, 2002-2007 гг. Британский журнал рака 2013; 108 (9): 1899-1906.

    [Аннотация PubMed]
  • Кабуто М., Нитта Х., Ямамото С. и др. Детский лейкоз и магнитные поля в Японии: исследование случай-контроль детской лейкемии и магнитных полей промышленной частоты в Японии. Международный журнал рака 2006; 119 (3): 643-650.

    [Аннотация PubMed]
  • Linet MS, Hatch EE, Kleinerman RA и др. Воздействие магнитных полей в жилых помещениях и острый лимфобластный лейкоз у детей. Медицинский журнал Новой Англии 1997; 337 (1): 1-7.

    [Аннотация PubMed]
  • Хейфец Л., Альбом А., Креспи С.М. и др. Объединенный анализ крайне низкочастотных магнитных полей и опухолей головного мозга у детей. Американский журнал эпидемиологии 2010; 172 (7): 752-761.

    [Аннотация PubMed]
  • Mezei G, Gadallah M, Kheifets L. Воздействие магнитного поля в жилых помещениях и рак мозга у детей: метаанализ. Эпидемиология 2008; 19 (3): 424-430.

    [Аннотация PubMed]
  • Does M, Scélo G, Metayer C и др. Воздействие электрических контактных токов и риск лейкемии у детей. Радиационные исследования 2011; 175 (3): 390-396.

    [Аннотация PubMed]
  • Ahlbom A, Day N, Feychting M и др. Объединенный анализ магнитных полей и детской лейкемии. Британский журнал рака 2000; 83 (5): 692-698.

    [Аннотация PubMed]
  • Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. Объединенный анализ магнитных полей, проводных кодов и детской лейкемии.Группа изучения детской лейкемии-ЭМП. Эпидемиология 2000; 11 (6): 624-634.

    [Аннотация PubMed]
  • Хейфец Л., Альбом А., Креспи С.М. и др. Объединенный анализ недавних исследований магнитных полей и детской лейкемии. Британский журнал рака 2010; 103 (7): 1128-1135.

    [Аннотация PubMed]
  • Hatch EE, Linet MS, Kleinerman RA и др. Связь между острым лимфобластным лейкозом у детей и использованием электрических приборов во время беременности и детства Epidemiology 1998; 9 (3): 234-245.

    [Аннотация PubMed]
  • Финдли Р.П., Димбилов П.Дж. SAR в воксельном фантоме ребенка от воздействия беспроводных компьютерных сетей (Wi-Fi). Физика в медицине и биологии 2010; 55 (15): N405-11.

    [Аннотация PubMed]
  • Пейман А., Халид М., Кальдерон С. и др. Оценка воздействия электромагнитных полей от беспроводных компьютерных сетей (Wi-Fi) в школах; результаты лабораторных измерений. Health Physics 2011; 100 (6): 594-612.

    [Аннотация PubMed]
  • Общественное здравоохранение Англии. Беспроводные сети (wi-fi): радиоволны и здоровье. Руководство. Опубликовано 1 ноября 2013 г. Доступно по адресу https://www.gov.uk/government/publications/wireless-networks-wi-fi-radio-waves-and-health/wi-fi-radio-waves-and-health. (по состоянию на 4 марта 2016 г.)

  • Ха М., Им Х, Ли М. и др.Воздействие радиочастотного излучения от AM-радиопередатчиков и детская лейкемия и рак мозга. Американский журнал эпидемиологии 2007; 166 (3): 270-9.

    [Аннотация PubMed]
  • Merzenich H, Schmiedel S, Bennack S, et al. Детский лейкоз в связи с воздействием радиочастотных электромагнитных полей в непосредственной близости от передатчиков теле- и радиовещания. Американский журнал эпидемиологии 2008; 168 (10): 1169-78.

    [Аннотация PubMed]
  • Эллиотт П., Толедано М.Б., Беннетт Дж. И др.Базовые станции мобильной связи и онкологические заболевания в раннем детстве: исследование случай-контроль. Британский медицинский журнал 2010; 340: c3077. DOI: 10.1136 / bmj.c3077.

    [Аннотация PubMed]
  • Infante-Rivard C, Deadman J.E. Профессиональное воздействие на мать магнитных полей крайне низкой частоты во время беременности и детской лейкемии. Эпидемиология 2003; 14 (4): 437-441.

    [Аннотация PubMed]
  • Hug K, Grize L, Seidler A, Kaatsch P, Schüz J.Воздействие на родителей чрезвычайно низкочастотных магнитных полей на производстве и детский рак: исследование случай-контроль в Германии. Американский журнал эпидемиологии 2010; 171 (1): 27-35.

    [Аннотация PubMed]
  • Свендсен А.Л., Вейкопф Т., Каач П., Шуз Дж. Воздействие магнитных полей и выживаемость после диагностики детской лейкемии: когортное исследование в Германии. Эпидемиология, биомаркеры и профилактика рака 2007; 16 (6): 1167-1171.

    [Аннотация PubMed]
  • Foliart DE, Pollock BH, Mezei G, et al. Воздействие магнитного поля и долгосрочное выживание среди детей с лейкемией. Британский журнал рака 2006; 94 (1): 161-164.

    [Аннотация PubMed]
  • Foliart DE, Mezei G, Iriye R, et al. Воздействие магнитного поля и прогностические факторы при лейкемии у детей. Bioelectromagnetics 2007; 28 (1): 69-71.

    [Аннотация PubMed]
  • Schüz J, Grell K, Kinsey S, et al. Чрезвычайно низкочастотные магнитные поля и выживаемость после детского острого лимфобластного лейкоза: международное последующее исследование. Журнал рака крови 2012; 2: e98.

    [Аннотация PubMed]
  • Schoenfeld ER, O’Leary ES, Henderson K, et al. Электромагнитные поля и рак груди на Лонг-Айленде: исследование случай – контроль. Американский журнал эпидемиологии 2003; 158 (1): 47-58.

    [Аннотация PubMed]
  • London SJ, Pogoda JM, Hwang KL, et al. Воздействие магнитного поля в жилых помещениях и риск рака груди: вложенное исследование случай-контроль, проведенное в многоэтнической когорте в округе Лос-Анджелес, Калифорния. Американский журнал эпидемиологии 2003; 158 (10): 969-980.

    [Аннотация PubMed]
  • Дэвис С., Мирик Д.К., Стивенс Р.Г.Магнитные поля в жилых помещениях и риск рака груди. Американский журнал эпидемиологии 2002; 155 (5): 446-454.

    [Аннотация PubMed]
  • Kabat GC, O’Leary ES, Schoenfeld ER, et al. Использование электрических одеял и рак груди на Лонг-Айленде. Эпидемиология 2003; 14 (5): 514-520.

    [Аннотация PubMed]
  • Клюкиене Дж., Тайнс Т., Андерсен А. Воздействие магнитных полей частотой 50 Гц и рак груди у женщин в жилых и производственных помещениях: популяционное исследование. Американский журнал эпидемиологии 2004; 159 (9): 852-861.

    [Аннотация PubMed]
  • Тайнес Т., Хальдорсен Т. Бытовое и профессиональное воздействие магнитных полей с частотой 50 Гц и гематологические раковые заболевания в Норвегии. Причины рака и борьба с ними 2003; 14 (8): 715-720.

    [Аннотация PubMed]
  • Лабреш Ф., Голдберг М.С., Валуа М.Ф. и др. Профессиональное воздействие магнитных полей крайне низкой частоты и рак груди в постменопаузе. Американский журнал промышленной медицины 2003; 44 (6): 643-652.

    [Аннотация PubMed]
  • Willett EV, McKinney PA, Fear NT, Cartwright RA, Roman E. Профессиональное воздействие электромагнитных полей и острый лейкоз: анализ исследования случай-контроль. Медицина труда и окружающей среды 2003; 60 (8): 577-583.

    [Аннотация PubMed]
  • Coble JB, Dosemeci M, Stewart PA и др.Профессиональное воздействие магнитных полей и риск опухолей головного мозга. Нейроонкология 2009; 11 (3): 242-249.

    [Аннотация PubMed]
  • Li W, Ray RM, Thomas DB и др. Профессиональное воздействие магнитных полей и рака груди среди текстильных женщин в Шанхае, Китай. Американский журнал эпидемиологии 2013; 178 (7): 1038-1045.

    [Аннотация PubMed]
  • Groves FD, Page WF, Gridley G и др.Рак у техников корейского военно-морского флота: исследование смертности через 40 лет. Американский журнал эпидемиологии 2002; 155 (9): 810-8.

    [Аннотация PubMed]
  • Грейсон Дж. Радиационное воздействие, социально-экономический статус и риск опухолей головного мозга в ВВС США: вложенное исследование случай-контроль. Американский журнал эпидемиологии 1996; 143 (5): 480-486.

    [Аннотация PubMed]
  • Thomas TL, Stolley PD, Stemhagen A, et al.Риск смертности от опухоли головного мозга среди мужчин, работающих в области электрики и электроники: исследование случай-контроль. Журнал Национального института рака 1987; 79 (2): 233-238.

    [Аннотация PubMed]
  • Армстронг Б., Терио Г., Генель П. и др. Связь между воздействием импульсных электромагнитных полей и раком у электриков в Квебеке, Канаде и Франции. Американский журнал эпидемиологии 1994; 140 (9): 805-820.

    [Аннотация PubMed]
  • Морган Р.В., Келш М.А., Чжао К. и др.Радиочастотное облучение и смертность от рака мозга и лимфатической / кроветворной систем. Эпидемиология 2000: 11 (12): 118-127.

    [Аннотация PubMed]
  • Гао Х., Аресу М., Верно А.С. и др. Использование радио в личных целях и риск рака среди 48 518 британских полицейских и сотрудников из исследования Airwave Health Monitoring Study. Британский журнал рака 2018; Впервые опубликовано онлайн: 26 декабря 2018 г.

    [Аннотация PubMed]
  • SCENIHR.2015. Научный комитет по возникающим и недавно выявленным рискам для здоровья: потенциальные последствия воздействия электромагнитных полей (ЭМП) на здоровье: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf, по состоянию на 15 августа, 2015.

  • Электрические и магнитные поля от линий электропередачи

    Факты о радиации

    • Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака.

    Электрические и магнитные поля, также известные как электромагнитные поля (ЭМП), состоят из волн электрической и магнитной энергии, движущихся вместе. Эти энергетические поля окружают нас все время. Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака. Несколько исследований связали ЭМП и воздействие на здоровье, но повторить их не удалось. Это означает, что они неубедительны. Ученые продолжают исследования по этому поводу.

    На этой странице:


    Об электрических и магнитных полях от линий электропередач

    Электромагнитное излучение (ЭМИ)

    Это изображение травяного поля и окружающих его деревьев; в центре изображения — линии электропередач и их опоры.

    Электромагнитное излучение (ЭМИ) состоит из волн электрической и магнитной энергии, движущихся вместе в пространстве. Примером электромагнитного излучения является видимый свет. Электромагнитное излучение может находиться в диапазоне от низкой до высокой частоты, которая измеряется в герцах, и может варьироваться от низкой до высокой энергии, которая измеряется в электрон-вольтах. Длина волны, еще один термин, связанный с электромагнитным излучением, — это расстояние от пика одной волны до другой.

    Существует два основных вида электромагнитного излучения: ионизирующее излучение и неионизирующее излучение.Ионизирующее излучение достаточно мощно, чтобы сбить электроны с орбиты вокруг атома. Этот процесс называется ионизацией и может повредить клетки организма. Неионизирующее излучение обладает достаточной энергией, чтобы перемещать атомы в молекуле и заставлять их вибрировать, что вызывает нагрев атома, но недостаточно для удаления электронов из атомов.

    Электромагнитные поля (ЭМП)


    Электромагнитные поля, связанные с электричеством, представляют собой тип низкочастотного неионизирующего излучения, и они могут исходить как от естественных, так и от искусственных источников.Например, молния во время грозы создает электромагнитное излучение, потому что она создает ток между небом и землей. Этот ток окружает электромагнитное поле. Одним из примеров является магнитное поле Земли. Мы всегда находимся в магнитном поле Земли, которое генерируется ядром Земли. Это магнитное поле заставляет работать компасы, а также используется голубями и рыбами для навигации. На изображении ниже показан диапазон частот для различных форм электромагнитного излучения, присутствующих в электромагнитном спектре.


    Волны от линий электропередач и электрических устройств имеют гораздо более низкую частоту, чем другие типы ЭМИ, такие как микроволны, радиоволны или гамма-лучи. Однако низкочастотная волна не обязательно означает низкую энергию; зарядный кабель для телефона создает низкочастотное электромагнитное поле с низкой энергией, в то время как линия электропередачи высокого напряжения может создавать электромагнитное поле с гораздо большей энергией, которое по-прежнему имеет низкую частоту.

    ЭМИ, связанное с линиями электропередач, представляет собой тип низкочастотного неионизирующего излучения.Электрические поля создаются электрическими зарядами, а магнитные поля создаются потоком электрического тока через провода или электрические устройства. Из-за этого низкочастотное ЭМИ обнаруживается в непосредственной близости от источников электричества, таких как линии электропередач. Когда ток проходит по линии электропередачи, он создает магнитное поле, называемое электромагнитным полем. Сила ЭДС пропорциональна количеству электрического тока, проходящего через линию электропередачи, и уменьшается по мере удаления от вас.Из-за этого свойства воздействие электромагнитного поля, которое вы получаете от линии электропередачи, уменьшается с расстоянием.

    Что вы можете сделать

    Если вас беспокоит возможный риск для здоровья от электрических и магнитных полей, вы можете:

    • Увеличить расстояние между вами и источником. Чем больше расстояние между вами и источником ЭДС, тем меньше ваша экспозиция.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *