ЭДС и напряжение
Дата публикации: .
Категория: Электротехника.
Чтобы электрический ток проходил по цепи продолжительное время, нужно непрерывно поддерживать на полюсах источника напряжения разность потенциалов. Аналогично этому, если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить из одного сосуда в другой до тех пор, пока уровни в сосудах не сравняются. Доливая воду в один сосуд и отводя ее из другого, можно добиться того, что движение воды по трубке между сосудами будет продолжаться непрерывно.
При работе источника электрической энергии электроны с анода переходят на катод.
Отсюда можно заключить, что внутри источника электрической энергии действует сила, которая должна непрерывно поддерживать ток в цепи, то есть иначе говоря, должна обеспечивать работу этого источника.
Причина, которая устанавливает и поддерживает разность потенциалов, вызывает ток в цепи, преодолевая ее внешнее и внутреннее сопротивление, называется электродвижущей силой (сокращенно э. д. с.) и обозначается буквой E.
Электродвижущая сила источников электрической энергии возникает под влиянием причин, специфических для каждого из них.
В химических источниках электрической энергии (гальванических элементах, аккумуляторах) э. д. с. получается в результате химических реакций, в генераторах э. д. с. возникает вследствие электромагнитной индукции, в термоэлементах – за счет тепловой энергии.
![]() |
Рисунок 1. Внешний вид вольтметра |
Разность потенциалов, вызывающее прохождение тока через сопротивление участка электрической цепи, называется напряжением между концами этого участка. Электродвижущая сила и напряжение измеряются в вольтах. Для измерения э. д. с. и напряжения служат приборы – вольтметры (рисунок 1).
Тысячные доли вольта – милливольты – измеряются милливольтметрами, тысячи вольт – киловольты – киловольтметрами.
Чтобы измерить э. д. с. источника электрической энергии необходимо вольтметр включить к зажимам этого источника при разомкнутой внешней цепи (рисунок 2). Для измерения напряжения на каком-либо участке электрической цепи вольтметр нужно включить к концам этого участка (рисунок 3).
Рисунок 2. Измерение вольтметром электродвижущей силы элемента | Рисунок 3. Измерение вольтметром напряжений на различных участках электрической цепи |
Видео 1. Что такое электродвижущая сила (э. д. с.)
Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
ЭДС и напряжение в электрической цепи
Многие люди (в то числе и некоторые электрики) путают понятие электродвижущей силы (ЭДС) и напряжения. Хотя эти понятия имеют отличия. Несмотря на то, что они незначительные, не специалисту сложно в них разобраться. Не маловажную роль в этом играет единица измерения. Напряжение и ЭДС измеряются в одних единицах – Вольтах. На этом отличия не заканчиваются, подробно обо всем мы рассказали в статье!
Что такое электродвижущая сила
Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html
Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.
При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.
I=U/R,
где U – напряжение, а в рассмотренном примере — ЭДС.
Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.
I=E/(R+r),
где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.
Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.
Это наглядно представлено на ниже приведенном рисунке:
При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.
Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.
Итак, нам известен ток, тогда он равен:
I1=E/(R1+r)
I2=E/(R2+r)
При этом:
R1=U1/I1
R2=U2/I2
Если подставить в первые уравнения, то:
I1=E/( (U1/I1)+r)
I2=E/( (U2/I2)+r)
Теперь разделим левые и правые части друг на друга:
(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]
После вычисления относительно сопротивления источника тока получим:
r=(U1-U2)/(I1-I2)
Внутреннее сопротивление r:
r= (U1+U2)/I,
где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.
Тогда ЭДС равно:
E=I*(R+r) или E=U1+I1*r
Что такое напряжение
Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.
Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.
Для переменного тока используют следующие понятия:
- мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
- амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
- среднее значение – постоянная составляющая напряжения;
- среднеквадратичное и средневыпрямленное.
Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.
Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.
При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.
Так в чем же отличие
Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.
Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.
На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.
Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.
Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.
При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.
Вывод
Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:
- Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
- Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
- Напряжение и ЭДС имеет единую единицу измерения – Вольт.
- U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.
Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!
Материалы по теме:
§ 13.2 Сторонние силы. Электродвижущая сила и напряжение
Таким образом, для поддержания тока необходимы сторонние силы, действующие либо на всем протяжении цепи, либо на отдельных ее участках. Они могут быть обусловлены химическими процессами, диффузией носителей заряда в неоднородной среде или через границу двух разнородных, веществ, электрическими (но не электростатическими) полями, порожденными меняющимися во времени магнитными полями и т.д.
Например, в гальванических элементах и аккумуляторах происхождение сторонних сил – химическое. В генераторах электрического тока сторонние силы – это силы Лоренца, действующие со стороны магнитного поля.
Устройства, обеспечивающие возникновение и действие сторонних сил, называют источниками тока. В этих устройствах происходит разделение разноимённых зарядов. Под действием сторонних сил электрические заряды внутри источника тока движутся в направлении, противоположном действию сил электрического поля. В результате этого на полюсах источника тока поддерживается постоянная разность потенциалов.
Подобно тому, как насос сообщает энергию воде, поднимая её вверх, источник тока сообщает энергию заряженным частицам. Как для работы насоса, поднимающего воду, так и для работы источника тока необходима энергия. В зависимости от типа источника тока, в нём происходит преобразование механической, внутренней или ещё какой-либо энергии в электрическую. В зависимости от вида энергии, которая внутри источника тока преобразуется в электрическую энергию, различают механические, химические, тепловые источники тока.
Сторонние силы совершают работу по перемещению электрических зарядов.
Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э.д.с.) ε, действующей в цепи.
Сторонняя сила Fст, действующая на заряд q0, может быть выражена как
Fст = Eст q0,
где Eст – напряжённость поля сторонних сил. Работа же сторонних сил по перемещению заряда q0 на замкнутом участке цепи равна
(13.6)
Разделив на q0, получим выражение для э.д.с., действующей в цепи:
(13.7)
т.е. эдс, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряжённости поля сторонних сил. ЭДС, действующая на участке 1-2, равна
На
заряд q0 помимо
сторонних сил действует также силы
электростатического поля Fэ = E
q0.
Таким образом, результирующая сила,
действующая в цепи на заряд q0,
равна
F =Fст + Fэ = q0(Ест + Eэ) (13.8)
Рисунок – 13.3
Работа, совершаемая результирующей силой над зарядом q0 на участке 1-2, равна (13.9)
Используя выражения и
,
можем записать
А12 = q0ε12 + q0 (φ1-φ2) (13.10)
Для замкнутой цепи работа электростатических сил равна нулю, поэтому в данном случае А12 = q0ε12
Напряжением U на участке 1-2 называется физическая величина, определяемая работой, совершаемой суммарным полем кулоновских и сторонних сил при перемещении положительного единичного заряда на данном участке цепи.
U12 = ε12 + (φ1-φ2) (13.11)
ЭДС и напряжение 2020
ЭДС (электродвижущая сила) — это напряжение на концах источника, когда ток отсутствует. Когда цепь закрыта и ток течет, то на концах источника есть напряжение, которое меньше, чем ЭДС. Это является следствием внутреннего сопротивления самого источника, что приводит к этому падению напряжения.
Что такое EMF?
Электрически заряженные тела могут быть получены путем отделения электронов от атомов путем потребления какой-либо другой энергии, например. механический, легкий или химический. Такое разделение существует в электрических источниках. Из-за энергетической активности в источнике генерируется ЭДС, что дополнительно вызывает избыток отрицательного заряда (отрицательный полюс) и отсутствие отрицательного заряда (положительный полюс). В электротехнике понятие ЭДС определяет работу, требуемую для разделения носителей заряда в источнике электрического тока, в котором сила, действующая на заряды на концах источника, не является прямым следствием поля. EMF определяется как количество выполненных работ (A) в преобразовании энергии и количество электричества (Q), которое проходит через генератор E = A / Q. Устройство такое же, как и для напряжения (V-вольт). Устройство, которое подает электрическую цепь и производит электродвижущую силу, называется источником электродвижущей силы или более короткой EMS (электродвижущим источником).
Что такое напряжение?
Существует разница в электрических состояниях на полюсах (клеммах) источника. На отрицательном полюсе имеется избыток электронов и нехватка электронов на положительном. В замкнутой цепи тока электроны движутся от отрицательной половины к положительной половине через проводники и приборы. Разность электрических потенциалов называется электрическим напряжением [U]. Электрическое напряжение равно количеству работ, выполняемых электрической силой при перемещении заряда из одной точки поля в другую и этой зарядке. Электрическое напряжение измеряется вольтах [V]. Измеритель напряжения называется вольтметром.
Разница между ЭДС и напряжением
Определение
Электродвижущая сила обозначает выработанное напряжение внутри электрических источников. Напряжение определяется как разность электрического потенциала между двумя точками, и эта разница на полюсах электрического источника получается путем удаления электронов из одной части источника и передачи их в другую.
выражение
Электродвижущая сила источника равна работе, которую необходимо сделать некоторой внешней силе, чтобы переместить блок заряда с одного полюса источника на другой, но через источник. Напряжение во внешней части схемы очень равно работе, которая должна выполняться электрической силой для перемещения блока заряда с одного полюса источника на другой, но через провод.
формула
Электродвижущая сила рассчитывается следующим образом: E = I * (R + r). Напряжение рассчитывается V = I * R (I — ток, R — сопротивление нагрузки, r — внутреннее сопротивление).
Эксплуатация электр
1.2. Электродвижущая сила (эдс). Напряжение.
Постоянный электрический ток в цепи вызывается стационарным электростатическим полем (кулоновским полем), которое должно поддерживаться источником тока, создающим постоянную разность потенциалов на концах внешней цепи. Поскольку ток в проводнике несет определенную энергию, выделяющуюся, например, в виде некоторого количества теплоты, необходимо непрерывное превращение какой-либо энергии в электрическую. Иначе говоря, помимо кулоновских сил стационарного электростатического поля на заряды должны действовать еще какие-то силы, неэлектростатической природы — сторонние силы.
Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т.е. кулоновских), называют сторонними силами.
Природа (или происхождение) сторонних сил может быть различной: например, в гальванических элементах и аккумуляторах — это химические силы, в генераторах — это сила Лоренца или силы со стороны вихревого электрического поля.
Внутри источника тока за счет сторонних сил электрические заряды движутся в направлении, противоположном действию сил электростатического поля, т.е. кулоновских сил. Благодаря этому на концах внешней цепи поддерживается постоянная разность потенциалов. Во внешней цепи сторонние силы не действуют.
Работа электрического тока в замкнутой электрической цепи совершается за счет энергии источника, т.е. за счет действия сторонних сил, т.к. электростатическое поле потенциально. Работа этого поля по перемещению заряженных частиц вдоль замкнутой электрической цепи равна нулю.
Количественной характеристикой сторонних сил (источника тока) является электродвижущая сила (ЭДС).
Электродвижущей силой е называется физическая величина, численно равная отношению работыЛд^ сторонних сил по перемещению заряда ^ вдоль цепи к значению этого заряда:
e=Aст/q
Электродвижущая сила выражается в вольтах (1 В = 1 Дж/Кл). ЭДС — это удельная работа сторонних сил на данном участке, т.е. работа по перемещению единичного заряда. Например, ЭДС гальванического элемента равна 4,5В. Это означает, что сторонние силы (химические) совершают работу в 4,5 Дж при перемещении заряда в 1 Кл внутри элемента от одного полюса к другому.
Электродвижущая сила является скалярной величиной, которая может быть как положительной, так и отрицательной. Знак ЭДС зависит от направления тока в цепи и выбора направления обхода цепи .
Сторонние силы не потенциальны (их работа зависит от формы траектории), и поэтому работа сторонних сил не может быть выражена через разность потенциалов между двумя точками. Работа электрического тока по перемещению заряда по проводнику совершается кулоновскими и сторонними силами, поэтому полная работа А равна:
A=Aкул+Aст
Физическая величина, численно равная отношению работы, совершаемой электрическим полем при перемещении положительного
заряда из одной точки в другую, к значению заряда д, называется напряжением V между этими точками:
U=A/q или
U=Aкул/q+Aст/q
Учитывая, что
Aкул/q=ф1-ф2=-ф
т.е. разности потенциалов между двумя точками стационарного электростатического поля, где ф1и ф2 — потенциалы начальной и конечной точки траектории заряда, а
Aст/q=e имеем:
U= (ф1- ф2)+e
В случае электростатического поля, когда на участке не приложена ЭДС (е = 0), напряжение между двумя точками равно разности потенциалов:
U=ф1- ф2
При разомкнутой электрической цепи (Г = 0) напряжение равно ЭДС источника:
U=е
Единица напряжения в СИ — вольт (В), В = Дж/Кл. Напряжение измеряют вольтметром, который подключается параллельно тем участкам цепи, на которых измеряют напряжение.
эдс | Электроника как хобби
Это практический урок по теме «напряжение» в котором мы узнали каким образом появляется сама напряжённость.
Нам понадобится: 3 резистора на 25 Ом и 1 на 50 Ом, мультиметр и две батарейки типа АА.
И так, ЭДС создаёт напряжённость на участках цепи в зависимости от их сопротивления. Чем больше сопротивление участка тем большее напряжение достанется ему от ЭДС.
Значит, если в цепи все участки имеют равное сопротивление, то и их напряжённость будет равна.
- Соберите схему 1.
схема 1 Равная напряженность
Как видите все резисторы имеют номинал в 25 Ом и следовательно ЭДС должно создать на них одинаковую напряжённость.
Измерьте напряжение на каждом резисторе, оно должно быть одинаковым с учетом погрешности резисторов сопротивление которых не всегда идеально его номиналу.
2. Замените R3 на резистор в 50 Ом и измерьте напряжение на нём и на остальных резисторах. И тут уже более наглядно видна зависимость напряжённости участка от его сопротивления.
схема 2 Разная напряжённость участков цепи
3. Уберите из цепи один резистор в 25 Ом и измерьте напряжение на оставшихся резисторах. Так как резистор в 50 Ом вдвое больше по сопротивлению чем 25 Ом то и на нем будет вдвое больше напряжение.
схема 3 зависимость напряжения от сопротивления участка цепи
Вывод: ЭДС распределяется по цепи в зависимости от сопротивления её участков, чем большее сопротивление участка относительно других участков тем большее напряжение будет на нём.
Эдс и напряжение одно и тоже? Если нет то можно простое объяснение что они представляют?)))
Электродвижущая сила и напряжение Для поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника. Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой, которая создает и длительное время поддерживает разность потенциалов на концах проводника. Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е. Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой «В», а в международном обозначении — буквой «V». Итак, чтобы получить непрерывное течение электрического тока, нужна электродвижущая сила, т. е. нужен источник электрического тока. Первым таким источником тока был так называемый «вольтов столб», который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока. В настоящее время химические источники тока — гальванические элементы и аккумуляторы — широко применяются в электротехнике и электроэнергетике. Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы. Источники тока служат для питания электрическим током различных приборов — потребителей тока. Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U. Единицей измерения напряжения, так же как и ЭДС, служит вольт. Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U — 12 В. Для измерения ЭДС или напряжения применяется прибор, называемый вольтметром. Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если электрическая цепь разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь (c нагрузкой-лампочкой, например) , то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока. ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.
эдс — это как бы напряжение на самом источнике тока, а просто напряжение- это уже вся цепь, со всеми резисторами. Оно не обязательно равно ЭДС.
Попросту говоря, ЭДС — разновидность напряжения, отличающаяся происхождением — напряжение, создаваемое неэлектрическими силами. Например, напряжение аккумулятора или напряжение за счет изменения магнитного поля.
до того как ты подключился к источнику, например генератору на его клемах был эдс. после того как ты подсоединил к нему электроцепь например автомобиля то в цепи уже буде напряжение! вольтаж эдс обычно выше чем напряжения, так как последнему нужно преодолеть сопротивления. Учебник физики кажется 6ой класс.
все не так, как кажется
<a rel=»nofollow» href=»http://abitur.by/fizika/teoreticheskie-osnovy-fiziki/postoyannyj-elektricheskij-tok/svyaz-eds-i-napryazheniya/» target=»_blank»>http://abitur.by/fizika/teoreticheskie-osnovy-fiziki/postoyannyj-elektricheskij-tok/svyaz-eds-i-napryazheniya/</a>