Единицы измерения электрических величин – ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ — это… Что такое ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ?

Содержание

Единицы измерения электрических величин

Иногда в электрических или электронных схемах и системах необходимо использовать кратные или дольные значения стандартных единиц, когда измеряемые величины очень велики или очень малы.

В следующей таблице приведен список некоторых стандартных электрических единиц измерения, используемых в электрических формулах.

Стандартные электрические единицы

Электрический 
параметр

Измерительный 
блок

Символ

Описание

Напряжение

Вольт

U или E

Единица электрического потенциала 
U = I × R

Ток

Ампер

I или i

Единица электрического тока 
I = U ÷ R

Сопротивление

Ом

R или Ω

Единица сопротивления постоянного тока
R = U ÷ I

Проводимость

Сименс

G или ℧

Взаимное сопротивление 
G = 1 ÷ R

Емкость

Фарад

С

Единица емкости 
C = Q ÷ U

Заряд

Кулон

Q

Единица электрического заряда 
Q = C × U

Самоиндукция

Генри

L или H

Единица индуктивности 
L  = -L (di / dt)

Мощность

Вт

W

Единица мощности 
P = U × I   или   2  × R

Полное сопротивление

Ом

Z

Единица сопротивления переменного тока 
2  = R 2  + X 2

Частота

Герц

Гц

Единица частоты 
ƒ = 1 ÷ T

Кратные и дольные значения

Существует огромный диапазон значений, встречающихся в электрической и электронной технике, между максимальным значением и минимальным значением стандартной отдельно взятой единицы измерения. Например, сопротивление может быть ниже 0,01 Ом или выше, чем 1 000 000 Ом. Используя кратные и дольные значения  мы можем избежать написания большого количества нулей до или после десятичной запятой. В приведенной ниже таблице перечислены приставки для кратных и дольных единиц.

Десятичный множитель

Приставка

Обозначение

Пример

русская

международная

русское

международное

101

дека

deca

да

da

дал — декалитр

102

гекто

hecto

г

h

гПа — гектопаскаль

103

кило

kilo

к

k

кН — килоньютон

106

мега

mega

М

M

МПа — мегапаскаль

109

гига

giga

Г

G

ГГц — гигагерц

1012

тера

tera

Т

T

ТВ — теравольт

1015

пета

peta

П

P

Пфлопс — петафлопс

1018

экса

exa

Э

E

Эм — эксаметр

1021

зетта

zetta

З

Z

ЗэВ — зеттаэлектронвольт

1024

иотта

yotta

И

Y

Иг — иоттаграмм

10-1

деци

deci

д

d

дм — дециметр

10−2

санти

centi

с

c

см — сантиметр

10−3

милли

milli

м

m

мА — миллиампер

10−6

микро

micro

мк

µ

мкф — микрофарад

10−9

нано

nano

н

n

нм — нанометр

10−12

пико

pico

п

p

пФ — пикофарад

10−15

фемто

femto

ф

f

фс — фемтосекунда

10−18

атто

atto

а

a

ас — аттосекунда

10−21

зепто

zepto

з

z

зКл — зептокулон

10−24

иокто

yocto

и

y

иг — иоктограмм

Таким образом, чтобы отображать единицы или кратность единиц для сопротивления, тока или напряжения, мы использовали бы в качестве примера:

  • 1 кВ = 1 киловольт- что равно 1000 вольт.
  • 1 мА = 1 миллиампер,что равно одной тысячной (1/1000) ампера.
  • 47 кОм = 47 килоом- что равно 47000 Ом.
  • 100uF = 100 микрофарад,что равно 100 миллионной (100/1 000 000) фарада.
  • 1 кВт = 1 киловатт, что равно 1000 Вт.
  • 1MHz = 1 мегагерц,что равно миллиону Герц.

Для преобразования из одного префикса в другой необходимо либо умножить, либо разделить на разницу между двумя значениями. Например, для того чтобы преобразовать   МГц в кГц, необходимо значение в кГц умножить на 1000, т.е. 1МГц = 1000кГц.

Точно так же, если нам нужно было преобразовать килогерцы в мегагерцы, нам нужно было бы делить на тысячу. Гораздо проще и быстрее будет перемещать десятичную точку влево или вправо в зависимости от того, нужно ли умножать или делить.

Как и «стандартные» электрические единицы измерения, упомянутые выше, другие единицы также используются в электротехнике для обозначения других значений и величин, таких как:

  • Втч (Ваттчас) количество электрической энергии, потребляемой приемником в течение определенного периода времени. Например, лампочка потребляет сто ватт электроэнергии в течение одного часа. Он обычно используется в виде: 
    Втч
    (ватт-часов), кВтч (киловатт-час), который составляет 1000 ватт-часов или МВт-ч (мегаватт-час), что составляет 1 000 000 ватт-часов.
  • дБ — децибел – одна десятая единицы измерения Белл (символ Б) и используется для представления усиления как по напряжению, так и по току. Это логарифмическая единица, выраженная в дБ и, обычно, используется для представления отношения входного сигнала к выходному и используется, как правило, в разного рода усилителях.

Например, отношение дБ входного напряжения (Uin) к выходному напряжению (Uout) выражается как 20log 10 (Uout/Uin). Значение в дБ может быть положительным (20 дБ), представляющим коэффициент усиления или отрицательный (-20 дБ), представляющий потерю с единицей, т.е. при Вход = выход, получаем 0 дБ.

  • θ —  
    фазовый угол
    — это разность в градусах между формой сигнала напряжения и формой волны, имеющей такое же периодическое время. Это разность во времени или сдвиг во времени и в зависимости от элемента схемы может иметь «ведущее» или «отстающее» значение. Фазовый угол формы волны измеряется в градусах или радианах.
  • ω —  угловая частота – это величина, которая в основном используется в цепях переменного тока для представления скорости изменения фаз и равная 2πƒ. Измеряется в радианах в секундурад/с. Один цикл (оборот) составляет 360 градусов или 2π, поэтому половина оборота задается как 180 градусов или π рад.

В следующем учебном пособии по теории схем постоянного тока мы рассмотрим законы Кирхгофа, которые вместе с законом Ома позволяют рассчитать различные напряжения и токи, циркулирующие внутри сложной цепи.

единицы и средства, методы измерения

Потребности науки и техники включают в себя проведение множества измерений, средства и методы которых постоянно развиваются и совершенствуются. Важнейшая роль в этой области принадлежит измерениям электрических величин, находящим широчайшее применение в самых различных отраслях.

Понятие об измерениях

Измерение любой физической величины производится путем сравнения ее с некоторой величиной того же рода явлений, принятой в качестве единицы измерения. Результат, полученный при сравнении, представляется в численном виде в соответствующих единицах.

Эта операция осуществляется с помощью специальных средств измерения – технических приспособлений, взаимодействующих с объектом, те или иные параметры которого требуется измерить. При этом используются определенные методы – приемы, посредством которых проводится сравнение измеряемой величины с единицей измерения.

Существует несколько признаков, служащих основой для классификации измерений электрических величин по видам:

  • Количество актов измерения. Здесь существенна их однократность или многократность.
  • Степень точности. Различают технические, контрольно-поверочные, максимально точные измерения, а также равноточные и неравноточные.
  • Характер изменения измеряемой величины во времени. Согласно этому критерию измерения бывают статические и динамические. Путем динамических измерений получают мгновенные значения величин, меняющихся во времени, а статических – некоторые постоянные значения.
  • Представление результата. Измерения электрических величин могут быть выражены в относительной или в абсолютной форме.
  • Способ получения искомого результата. По данному признаку измерения делятся на прямые (в них результат получается непосредственно) и косвенные, при которых прямо измеряются величины, связанные с искомой величиной какой-либо функциональной зависимостью. В последнем случае искомая физическая величина вычисляется по полученным результатам. Так, измерение силы тока с помощью амперметра – это пример прямого измерения, а мощности – косвенного.

Средства измерения

Приспособления, предназначенные для измерения, должны обладать нормированными характеристиками, а также сохранять на протяжении определенного времени либо воспроизводить единицу той величины, для измерения которой они предназначены.

Аналоговый мультиметр

Средства измерения электрических величин подразделяются на несколько категорий в зависимости от назначения:

  • Меры. Данные средства служат для воспроизведения величины некоторого заданного размера – как, например, резистор, воспроизводящий с известной погрешностью определенное сопротивление.
  • Измерительные преобразователи, формирующие сигнал в форме, удобной для хранения, преобразования, передачи. Для непосредственного восприятия информация такого рода недоступна.
  • Электроизмерительные приборы. Эти средства предназначены для представления информации в доступной наблюдателю форме. Они могут быть переносными или стационарными, аналоговыми или цифровыми, регистрирующими или сигнализирующими.
  • Электроизмерительные установки представляют собой комплексы вышеперечисленных средств и дополнительных устройств, сосредоточенные в одном месте. Установки позволяют проводить более сложные измерения (например, магнитных характеристик или удельного сопротивления), служат как поверочные или эталонные устройства.
  • Электроизмерительные системы тоже являются совокупностью различных средств. Однако, в отличие от установок, приборы для измерения электрических величин и прочие средства в составе системы рассредоточены. С помощью систем можно измерять несколько величин, хранить, обрабатывать и передавать сигналы измерительной информации.

При необходимости решения какой-либо конкретной сложной измерительной задачи формируют измерительно-вычислительные комплексы, объединяющие ряд устройств и электронно-вычислительную аппаратуру.

Переключатель режимов и клеммы мультиметра

Характеристики измерительных средств

Устройства измерительной аппаратуры обладают определенными свойствами, важными для выполнения их непосредственных функций. К ним относятся:

  • Метрологические характеристики, такие как чувствительность и ее порог, диапазон измерения электрической величины, погрешность прибора, цена деления, быстродействие и др.
  • Динамические характеристики, например амплитудные (зависимость амплитуды выходного сигнала прибора от амплитуды на входе) или фазовые (зависимость фазового сдвига от частоты сигнала).
  • Эксплуатационные характеристики, отражающие меру соответствия прибора требованиям эксплуатации в определенных условиях. К ним относятся такие свойства, как достоверность показаний, надежность (работоспособность, долговечность и безотказность аппарата), ремонтопригодность, электрическая безопасность, экономичность.

Совокупность характеристик аппаратуры устанавливается соответствующими нормативно-техническими документами для каждого типа устройств.

Применяемые методы

Измерение электрических величин производится посредством различных методов, которые также можно классифицировать по следующим критериям:

  • Род физических явлений, на основе которого измерение проводится (электрические или магнитные явления).
  • Характер взаимодействия измерительного средства с объектом. В зависимости от него различают контактные и бесконтактные методы измерения электрических величин.
  • Режим проведения измерения. В соответствии с ним измерения бывают динамическими и статическими.
  • Способ осуществления измерений. Разработаны как методы непосредственной оценки, когда искомая величина прямо определяется прибором (к примеру, амперметром), так и более точные методы (нулевые, дифференциальные, противопоставления, замещения), в которых она выявляется путем сравнения с известной величиной. В качестве приборов сравнения служат компенсаторы и электроизмерительные мосты постоянного и переменного тока.
Бесконтактный метод электроизмерений

Электроизмерительные приборы: виды и особенности

Измерение основных электрических величин требует большого разнообразия приборов. В зависимости от физического принципа, положенного в основу их работы, все они делятся на следующие группы:

  • Электромеханические приборы обязательно имеют в конструкции подвижную часть. К этой большой группе измерительных средств относятся электродинамические, ферродинамические, магнитоэлектрические, электромагнитные, электростатические, индукционные приборы. Например, магнитоэлектрический принцип, применяющийся очень широко, может быть положен в основу таких устройств, как вольтметры, амперметры, омметры, гальванометры. На индукционном принципе основаны счетчики электроэнергии, частотомеры и т. д.
  • Электронные приборы отличаются наличием дополнительных блоков: преобразователей физических величин, усилителей, преобразователей и пр. Как правило, в приборах этого типа измеряемая величина преобразуется в напряжение, и конструктивной основой их служит вольтметр. Электронные измерительные приборы применяются в качестве частотомеров, измерителей емкости, сопротивления, индуктивности, осциллографов.
  • Термоэлектрические приборы сочетают в своей конструкции измерительное устройство магнитоэлектрического типа и термопреобразователь, образуемый термопарой и нагревателем, через который протекает измеряемый ток. Приборы этого типа используются в основном при измерениях высокочастотных токов.
  • Электрохимические. Принцип их работы базируется на процессах, которые протекают на электродах либо в исследуемой среде в межэлектродном пространстве. Применяются приборы этого типа для измерения электропроводности, количества электричества и некоторых неэлектрических величин.

По функциональным особенностям различают следующие виды приборов для измерения электрических величин:

  • Показывающие (сигнализирующие) – это устройства, позволяющие производить только непосредственное считывание измерительной информации, такие как ваттметры или амперметры.
  • Регистрирующие – приборы, допускающие возможность регистрации показаний, например, электронные осциллографы.

По типу сигнала приборы делятся на аналоговые и цифровые. Если устройство вырабатывает сигнал, представляющий собой непрерывную функцию измеряемой величины, оно является аналоговым, например, вольтметр, показания которого выдаются при помощи шкалы со стрелкой. В том случае, если в устройстве автоматически вырабатывается сигнал в виде потока дискретных значений, поступающий на дисплей в численной форме, говорят о цифровом измерительном средстве.

Цифровой мультиметр

Цифровые приборы имеют некоторые недостатки по сравнению с аналоговыми: меньшая надежность, потребность в источнике питания, более высокая стоимость. Однако их отличают и существенные преимущества, в целом делающие применение цифровых устройств более предпочтительным: удобство эксплуатации, высокая точность и помехоустойчивость, возможность универсализации, сочетания с ЭВМ и дистанционной передачи сигнала без потери точности.

Погрешности и точность приборов

Важнейшая характеристика электроизмерительного прибора – класс точности. Измерение электрических величин, как и любых других, не может производиться без учета погрешностей технического устройства, а также дополнительных факторов (коэффициентов), влияющих на точность измерения. Предельные значения приведенных погрешностей, допускаемые для данного типа прибора, называются нормированными и выражаются в процентах. Они и определяют класс точности конкретного прибора.

Стандартные классы, которыми принято маркировать шкалы измерительных устройств, следующие: 4,0; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05. В соответствии с ними установлено разделение по назначению: приборы, принадлежащие к классам от 0,05 до 0,2, относятся к образцовым, классами 0,5 и 1,0 обладают лабораторные приборы, и, наконец, устройства классов 1,5–4,0 являются техническими.

При выборе измерительного прибора необходимо, чтобы он соответствовал по классу решаемой задаче, при этом верхний предел измерения должен быть как можно ближе к численному значению искомой величины. То есть чем большего отклонения стрелки прибора удается достичь, тем меньше будет относительная погрешность проводимого измерения. Если в распоряжении имеются только приборы низкого класса, выбирать следует такой, который обладает наименьшим рабочим диапазоном. Используя данные способы, измерения электрических величин можно провести достаточно точно. При этом также нужно учитывать тип шкалы прибора (равномерная или неравномерная, как, например, шкалы омметров).

Шкала и клеммы аналогового мультиметра

Основные электрические величины и единицы их измерения

Чаще всего электрические измерения связаны со следующим набором величин:

  • Сила тока (или просто ток) I. Данной величиной обозначается количество электрического заряда, проходящего через сечение проводника за 1 секунду. Измерение величины электрического тока проводится в амперах (A) при помощи амперметров, авометров (тестеров, так называемых «цешек»), цифровых мультиметров, измерительных трансформаторов.
  • Количество электричества (заряд) q. Эта величина определяет, в какой мере то или иное физическое тело может являться источником электромагнитного поля. Электрический заряд измеряется в кулонах (Кл). 1 Кл (ампер-секунда) = 1 А ∙ 1 с. Приборами для измерения служат электрометры либо электронные зарядометры (кулон-метры).
  • Напряжение U. Выражает разность потенциалов (энергии зарядов), существующую между двумя различными точками электрического поля. Для данной электрической величины единицей измерения служит вольт (В). Если для того, чтобы из одной точки переместить в другую заряд в 1 кулон, поле совершает работу в 1 джоуль (то есть затрачивается соответствующая энергия), то разность потенциалов – напряжение – между этими точками составляет 1 вольт: 1 В = 1 Дж/1 Кл. Измерение величины электрического напряжения производится посредством вольтметров, цифровых либо аналоговых (тестеры) мультиметров.
  • Сопротивление R. Характеризует способность проводника препятствовать прохождению через него электрического тока. Единица сопротивления – ом. 1 Ом – это сопротивление проводника, имеющего напряжение на концах в 1 вольт, к току величиной в 1 ампер: 1 Ом = 1 В/1 А. Сопротивление прямо пропорционально сечению и длине проводника. Для измерения его используются омметры, авометры, мультиметры.
  • Электропроводность (проводимость) G – величина, обратная сопротивлению. Измеряется в сименсах (См): 1 См = 1 Ом-1.
  • Емкость C – это мера способности проводника накапливать заряд, также одна из основных электрических величин. Единицей измерения ее служит фарад (Ф). Для конденсатора эта величина определяется как взаимная емкость обкладок и равна отношению накопленного заряда к разности потенциалов на обкладках. Емкость плоского конденсатора растет с увеличением площади обкладок и с уменьшением расстояния между ними. Если при заряде в 1 кулон на обкладках создается напряжение величиной 1 вольт, то емкость такого конденсатора будет равна 1 фараду: 1 Ф = 1 Кл/1 В. Измерение производят при помощи специальных приборов – измерителей емкости или цифровых мультиметров.
  • Мощность P – величина, отражающая скорость, с которой осуществляется передача (преобразование) электрической энергии. В качестве системной единицы мощности принят ватт (Вт; 1 Вт = 1Дж/с). Эта величина также может быть выражена через произведение напряжения и силы тока: 1 Вт = 1 В ∙ 1 А. Для цепей переменного тока различают активную (потребляемую) мощность Pa, реактивную Pra (не принимает участия в работе тока) и полную мощность P. При измерениях для них используют следующие единицы: ватт, вар (расшифровывается как «вольт-ампер реактивный») и, соответственно, вольт-ампер В∙А. Размерность их одинакова, и служат они для различения указанных величин. Приборы для измерения мощности – аналоговые или цифровые ваттметры. Косвенные измерения (например, с помощью амперметра) применимы далеко не всегда. Для определения такой важной величины, как коэффициент мощности (выражается через угол фазового сдвига) применяют приборы, называемые фазометрами.
  • Частота f. Это характеристика переменного тока, показывающая количество циклов изменения его величины и направления (в общем случае) за период в 1 секунду. За единицу частоты принята обратная секунда, или герц (Гц): 1 Гц = 1 с-1. Измеряют данную величину посредством обширного класса приборов, называемых частотомерами.
Измерение напряжения

Магнитные величины

Магнетизм теснейшим образом связан с электричеством, поскольку и то, и другое представляют собой проявления единого фундаментального физического процесса – электромагнетизма. Поэтому столь же тесная связь свойственна методам и средствам измерения электрических и магнитных величин. Но есть и нюансы. Как правило, при определении последних практически проводится электрическое измерение. Магнитную величину получают косвенным путем из функционального соотношения, связывающего ее с электрической.

Эталонными величинами в данной области измерений служат магнитная индукция, напряженность поля и магнитный поток. Они могут быть преобразованы с помощью измерительной катушки прибора в ЭДС, которая и измеряется, после чего производится вычисление искомых величин.

  • Магнитный поток измеряют посредством таких приборов, как веберметры (фотогальванические, магнитоэлектрические, аналоговые электронные и цифровые) и высокочувствительные баллистические гальванометры.
  • Индукция и напряженность магнитного поля измеряются при помощи тесламетров, оснащенных преобразователями различного типа.

Измерение электрических и магнитных величин, состоящих в непосредственной взаимосвязи, позволяет решать многие научные и технические задачи, например, исследование атомного ядра и магнитного поля Солнца, Земли и планет, изучение магнитных свойств различных материалов, контроль качества и прочие.

Неэлектрические величины

Удобство электрических методов дает возможность успешно распространять их и на измерения всевозможных физических величин неэлектрического характера, таких как температура, размеры (линейные и угловые), деформация и многие другие, а также исследовать химические процессы и состав веществ.

Приборы для электрического измерения неэлектрических величин обычно представляют собой комплекс из датчика – преобразователя в какой-либо параметр цепи (напряжение, сопротивление) и электроизмерительного устройства. Существует множество типов преобразователей, благодаря которым можно измерять самые разные величины. Вот лишь несколько их примеров:

  • Реостатные датчики. В таких преобразователях при воздействии измеряемой величины (например, при изменении уровня жидкости или же ее объема) перемещается движок реостата, изменяя тем самым сопротивление.
  • Терморезисторы. Сопротивление датчика в аппаратах этого типа изменяется под воздействием температуры. Применяются для измерения скорости газового потока, температуры, для определения состава газовых смесей.
  • Тензосопротивления позволяют проводить измерения деформации проволоки.
  • Фотодатчики, преобразующие изменение освещенности, температуры либо перемещение в измеряемый затем фототок.
  • Емкостные преобразователи, используемые как датчики химического состава воздуха, перемещения, влажности, давления.
  • Пьезоэлектрические преобразователи работают по принципу возникновения ЭДС в некоторых кристаллических материалах при механическом воздействии на них.
  • Индукционные датчики основаны на преобразовании таких величин, как скорость или ускорение, в индуктированную ЭДС.

Развитие электроизмерительных средств и методов

Современный цифровой осциллограф

Большое многообразие средств измерения электрических величин обусловлено множеством различных явлений, в которых эти параметры играют существенную роль. Электрические процессы и явления имеют чрезвычайно широкий диапазон использования во всех отраслях – нельзя указать такую область человеческой деятельности, где они не находили бы применения. Этим и определяется все более расширяющийся круг задач электрических измерений физических величин. Непрерывно растет разнообразие и совершенствование средств и методов решения этих задач. Особенно быстро и успешно развивается такое направление измерительной техники, как измерение неэлектрических величин электрическими методами.

Современная электроизмерительная техника развивается в направлении повышения точности, помехоустойчивости и быстродействия, а также все большей автоматизации измерительного процесса и обработки его результатов. Средства измерений прошли путь от простейших электромеханических приспособлений до электронных и цифровых приборов, и далее до новейших измерительно-вычислительных комплексов с использованием микропроцессорной техники. При этом повышение роли программной составляющей измерительных устройств является, очевидно, основной тенденцией развития.

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ — это… Что такое ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ?


где Т — период сигнала Y(t). Максимальное значение Yмакс — это наибольшее мгновенное значение сигнала, а среднее абсолютное значение YAA — абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Yэфф = 0,707Yмакс и YAA = 0,637Yмакс.
Измерение напряжения и силы переменного тока. Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы — на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Электронное умножение. Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.
Дискретизация сигнала. Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01-0,1%.
Тепловые электроизмерительные приборы. Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5-1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц. На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока Vас на выходе термопары преобразователя ТС1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС2, при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.
Рис. 5. ТЕПЛОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР для измерения эффективных значений напряжения и силы переменного тока.
Рис. 5. ТЕПЛОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР для измерения эффективных значений напряжения и силы переменного тока.
С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.
Измерение мощности и энергии переменного тока. Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj, где Е и I — эффективные значения напряжения и тока, а j — фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока. С экономической точки зрения, самая важная электрическая величина — энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так: Рис. 5. ТЕПЛОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР для измерения эффективных значений напряжения и силы переменного тока.
Если время (t1 — t2) измеряется в секундах, напряжение е — в вольтах, а ток i — в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧс). Если же время измеряется в часах, то энергия — в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт*ч = 1000 ВтЧч).
Счетчики электроэнергии с разделением времени. В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал -Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/»открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой — току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных — порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.
Дискретизирующие ваттметры и счетчики электроэнергии. Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e(k), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i(k) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах: Рис. 5. ТЕПЛОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР для измерения эффективных значений напряжения и силы переменного тока.
Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.
Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками — токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.
ЛИТЕРАТУРА
Атамалян Э.Г. и др. Приборы и методы измерения электрических величин. М., 1982 Малиновский В.Н. и др. Электрические измерения. М., 1985 Авдеев Б.Я. и др. Основы метрологии и электрические измерения. Л., 1987

Энциклопедия Кольера. — Открытое общество. 2000.

  • ЛИФТ
  • ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ

Смотреть что такое «ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ» в других словарях:

  • Электрические измерения —         измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др.… …   Большая советская энциклопедия

  • электрические измерения — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN electrical measurementelectricity metering …   Справочник технического переводчика

  • Электрические измерительные аппараты — Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При статических И. а. определяются постоянные или… …   Энциклопедия техники

  • ИЗМЕРЕНИЯ ИНКЛИНОМЕТРИЧЕСКИЕ — производятся в скважинах с целью определения угла и азимута отклонения скважин от заданного направления. Определения производятся поинтервально через 100 м и более с целью возможного исправления направления скважины в процессе бурения и учета ее… …   Геологическая энциклопедия

  • ЭЛЕКТРИЧЕСКИЕ ЦЕПИ — совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических… …   Энциклопедия Кольера

  • измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… …   Энциклопедия «Авиация»

  • измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… …   Энциклопедия «Авиация»

  • Электрические — 4.    Электрические нормы проектирования радиотрансляционных сетей. М., Связьиздат, 1961. 80 с. Источник: Руководство: Руководство по проектированию сети электросвязи в сельской местности Смотри также родственные термины: 3.4 электрические биения …   Словарь-справочник терминов нормативно-технической документации

  • Электрические станции — I. Общие понятия. II. Типы Э. станций по производству Э. энергии. III. Классификация их. IV. Здания и помещения Э. станций. V. Оборудование Э. станций. VI. Эксплуатация Э. станций. VII. Судовые Э. станции. VIII. Вагонные и поездные Э. станции. IX …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


Единицы измерения основных электрических величин


 

Единицы измерения основных электрических величин

Ампер. Основной электрической единицей тока в Международной системе единиц (СИ), является ампер (А). Определение эталонного значения величины ампера установлено на основании измерения силы электродина­ мического взаимодействия двух проводников с током.

 

Пример. Приведем несколько примеров действия тока, дающих представле­ ние о том, что такое ампер. Рабочий ток наиболее распространенных ламп накачивания 0,1… I А. а бытовой люминесцентной лампы 0,15 А. Элект­рическая плитка потребляет ток примерно 1,5…5 А. Ток электродвигателей средней мощности равен 5…25 А, а в электрометаллургических установках он достигает 50 кА и более. Организм человека начинает ощущать прохо­дящий через него ток, когда тот достигает примерно 5 мА, по если проходящий ток возрастает ориентировочно до 50 мА, он уже становится опасным для жизни (заметим, что именно величина тока, проходящего через человека, определяет степень опасности его поражения током).

 

Ом. Единицей электрического сопротивления является ом (Ом). Вольт. Единицей измерения напряжения (разности потенциалов) между дву­ мя точками электрической цепи является вольт (В).

 

  Напряжение в домашней электросети 220 В, а лампочка карманного фонари­ка горит при напряжении питания 1,5…3 В.

 

Ватт. Единицей измерения мощности, выделяемой при прохождении тока в электрической цепи, служит ватт (Вт). Для измерения больших мощностей применяют кратные единицы: киловатт ( I кВт = 1000 Вт) и мегаватт (1 МВт == 1 000 000 Вт = МО6 Вт).

Прибор, измеряющий мощность, называется ваттметр. Он имеет две изме­ рительные цепи (две катушки), одна из которых (катушка тока) включается как амперметр последовательно с объектом измерения, а вторая (катушка напряжения) подключается к этому объекту параллельно как вольтметр.

Джоуль, киловатт-час. Так как основная единица работы и энергии в системе СИ джоуль (Дж) сама по себе мала, то в электроэнергетических цепях практической единицей для измерения работы, совершаемой электрическим то ком, обычно служит более крупная единица — киловатт-час (кВт-ч). I кВт-ч работа, совершаемая током при непрерывном протекании его в течение одного часа с выделением на протяжении этого времени мощности 1 кВт. Следовательно, 1 кВт-ч = 3 600 000 Дж.

 

Единицы измерения электрических и магнитных величин

В инженерной практике использовались несколько систем измерений МГС, МКСА, СИ, поэтому в предложенном ниже списке вам встретятся единицы измерения из этих систем.

Таблица основных электрических и магнитных величин.

Таблица основных электрических и магнитных величин.

в/см — напряженность электрического поля,

к/см2 — электрическое смещение,

а/мм— плотность тока,

ом х см — удельное сопротивление,

1/ом х см— удельная проводимость,

в х сек/см— магнитная индукция,

а/см — напряженность магнитного поля,

мгом — мегом (106 ом),

кв — киловольт  (103 в),

мв — милливольт (10-3 в),

мкв -микровольт (10-6 в),

ма — миллиампер (10-3 а),

мка — микроампер (10-6 а),

мгвт — мегаватт (106 вт),

Таблица электротехнических величин.

гвт — гектоватт (102 вт),

мвт — милливатт (10-3 вт),

ква — киловольтампер (103 ва),

квар — киловольтампер реактивный (103 вар),

а-ч — ампер-час,

мкКл-микрокулон (10-6 к),

вт-сек — ватт-секунда (1 вт-сек = 1 дж),

вт-час — ватт-час (3600 дж),

квт-час — киловатт-час (103 вт-ч),

мгвт-час — мегаватт-час (106 вт-ч),

мкф — микрофарад (10-6 ф),

мкмкф — микромикрофарад (10-6 мкф),

мгн — миллигенри (10-3 гн),

мкгн — микрогенри (10-6 гн),

в-сек — вольт-секунда,

гс — гаусс (10-4 вб/м2),

в-сек/см2 — вольт-секунда или вб на 1см

а/см — ампер на 1 см,

кгц — килогерц  (103 гц),

мгц — мегагерц (106 гц),

мк — микрон  (10-3 мм),

ммк — миллимикрон (10-3 мк),

мсек — миллисекунда (10-3 сек),

лм — люмен,

св — свеча,

лк — люкс,

сб — стильб,

лм-сек — люмен-секунда,

(10-3 мм), н — ньютон, единица силы

Электрические единицы измерения основные электрических величин.

 

 

 

Тема: единицы измерения силы тока, напряжения, сопротивления, мощности.

 

Электрические единицы измерения тока напряжения сопротивления мощностиНаиболее значимые и используемые параметры, повсеместно применяемых в сфере электрики и электроники, являются четыре базовых величины — сила тока, напряжение, электрическая мощность и сопротивление. Именно они обуславливают главные процессы, происходящие внутри электрических схем. Их связь между собой тесно переплетена в определённую зависимость между собой. Фундаментальным законом их взаимоотношений является закон Ома, который формулируется следующим образом: сила тока в электрической цепи прямо пропорциональна величине напряжения в этой цепи, и обратно пропорционально электрическому сопротивлению. Мощность же равна произведению силы тока на напряжение. Давайте с вами разберём электрические единицы измерения тока, напряжения, сопротивления и мощности.

 

Единицей измерения силы электрического тока является «Ампер» (названная в честь своего первооткрывателя). Обозначается буквой «А». Она равна отношению количества электрического заряда «Q», который прошёл за определённое время «t» через сечение проводника (поперечное), к величине данного промежутка времени. Или один Ампер (А) = одному кулону (Q) делённому на одну секунду (t). Для проведения измерений силы электрического тока используют устройство «Амперметр». Помимо основной единицы «Ампер» на практике применяют «миллиампер = 0,001 А» и «микроампер = 0,000001 А».

 

 

 

 

Электрические единицы измерения напряженияЕдиницей измерения напряжения является «Вольт». Напряжение обозначается буквой «В или V». Электрическое напряжение, возникающее между некоторыми точками «а» и «б» электроцепи либо же электрического поля — это основная физическая величина, значение которой равно отношению работы электрического поля, что совершается при перемещении одного пробного заряда (электрического) из точки «а» в точку «б», к величине имеющегося пробного заряда. Для измерения напряжения применяется устройство под названием «вольтметр». В определённом смысле, простым языком, напряжение можно описать, как силу стремления заряженных частиц притянуться либо отталкиваться друг от друга.

 

Электрической единицей измерения сопротивления является «Ом». Обозначается данная физическая величина также «R либо r». Электрическое сопротивление — это физическая величина, обуславливающая свойства того или иного проводника мешать прохождению тока (электрического), которая равная отношению электрического напряжения на концах данного проводника к имеющейся силе тока, текущему по нему. Обратной величиной электрическому сопротивлению является проводимость — способность проводника беспрепятственно пропускать электрические заряды внутри себя. Прибором для измерения сопротивления служит «омметр».

 

измерения тока напряжения сопротивления мощностиЭлектрической единицей измерения мощности является «Ватт». Она обозначается так — «P». Мощность (электрическая) — это физическая величина, обуславливающая скорость передачи либо же преобразования электроэнергии. Её также можно выразить как — отношение работы электрического поля, которая совершается при перемещении пробного заряда (электрического) из точки «а» в точку «б», к величине этого пробного заряда. Иными словами говоря — мощность, это совершаемая работа в единицу времени. Прибором для измерения электрической мощности является «ваттметр». Следует учитывать, что даже электрическая мощность имеет несколько разновидностей. К примеру: мощность активная, реактивная, мгновенная, постоянная и т.д.

 

ps smail

P.S. Электрические величины, как впрочем и любые другие, позволяют измерять те или иные характеристики, относящиеся к сфере электрических процессов и явлений. Ведь имеено вполне определённая и конкретная мера даёт возможность совершать точные вычисления, а это позволяет создавать сложные системы и устройства.

Урок 1.2 Основные параметры и единицы измерения — Радиомастер инфо

1 2 Портреты 3 Основные параметры и единицы измерения введены для того, чтобы  качественно и количественно оценить характеристики  источников и потребителей электроэнергии.

Электрический ток обозначается буквой I и измеряется в Амперах (А). Распространены и более мелкие единицы измерения миллиамперы (мА), микроамперы (мкА).

1 А = 1000 мА

1мА = 1000 мкА

 

Величина, характеризующая количество зарядов в определенной точке называется потенциалом. Разность потенциалов называется напряжением, обозначается буквой U и измеряется в Вольтах (В).

Распространены и другие единицы измерения напряжения:

киловольты (кВ), милливольты (мВ), микровольты (мкВ).

1 кВ = 1000 В

1 В = 1000 мВ

1 мВ = 1000 мкВ.

 

Для переменного тока введен параметр частота. Эта величина показывает, как часто меняется направление тока в единицу времени. Обозначается буквой f и измеряется в Гц. Широко применяются килогерцы (кГц), мегагерцы (мГц), гигагерцы (ГГц).

1 ГГц = 1000 мГц

1 мГц = 1000 кГц

1 кГц = 1000 Гц

Величина обратная частоте называется периодом. Обозначается буквой «Т». Измеряется, как и время в секундах (сек), миллисекундах (мс), микросекундах (мкс).

f (Гц) =1/Т(сек)

 

Величина равная произведению тока на напряжение называется мощностью. Обозначается буквой Р, ( P = I × U). Единица измерения Ватт. Применяются также микроватт (мкВт), милливатт (мВт), киловатт (кВт), мегаватт (МВт).

1 МВт = 1000 кВт

1 кВт = 1000 Вт

1 Вт = 1000 мВт,

1 мВт = 1000 мкВт

 

В цепи переменного тока при определении мощности необходимо учитывать сдвиг фазы. Об этом будет рассказано позже.

Электрические цепи это все элементы, которые участвуют в прохождении электрического тока. Элементы которые проводят ток называются проводниками, которые не проводят – диэлектриками .

 

Идеальных проводников нет. При прохождении электрического тока они оказывают току сопротивление. Сопротивление обозначается буквой «R» . Единицей измерения сопротивления является Ом. Есть еще мегаом (мОм), килоом (кОм).

1 мОм = 1000 кОм

1 кОм = 1000 Ом.

 

1 2 Закон Ома рис

Сила тока в электрической цепи прямо пропорциональна напряжению, приложенному к этой цепи и обратно пропорциональна сопротивлению всех элементов цепи.

   З н Ома

  закон Ома,   это основной закон электротехники

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *