Единица измерения линейная скорость – Единицы измерения скорости (линейной). Перевод единиц измерения скорости — таблица.

Содержание

Скорость — Википедия

Скорость
v→=dr→dt{\displaystyle {\vec {v}}={\frac {\mathrm {d} {\vec {r}}}{\mathrm {d} t}}}
Размерность LT−1
СИ м/с
СГС см/с
вектор

Ско́рость (часто обозначается v→{\displaystyle {\vec {v}}}, от англ. velocity или фр. vitesse, исходно от лат. vēlōcitās) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени[1]. Этим же словом называют и скалярную величину — либо модуль вектора скорости, либо алгебраическую скорость точки, то есть проекцию этого вектора на касательную к траектории точки[2].

Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Расширениями понятия скорости являются четырёхмерная скорость, или скорость в релятивистской механике, и обобщённая скорость, или скорость в обобщённых координатах.

Скорость точки в классической механике[править | править код]

Вектор скорости материальной точки в каждый момент времени определяется как производная по времени радиус-вектора r→{\displaystyle {\vec {r}}} текущего положения этой точки, так что

[3]:

v→=dr→dt≡vττ→,{\displaystyle {\vec {v}}={\mathrm {d} {\vec {r}} \over \mathrm {d} t}\equiv v_{\tau }{\vec {\tau }},}

где τ→≡dr→/ds{\displaystyle {\vec {\tau }}\equiv \mathrm {d} {\vec {r}}/\mathrm {d} s} — единичный вектор касательной, проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты s{\displaystyle s} движущейся точки), а vτ≡s˙{\displaystyle v_{\tau }\equiv {\dot {s}}} — проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая алгебраической скоростью

точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля v{\displaystyle v} этого вектора лишь знаком[4]. При этом:

  • если дуговая координата возрастает, то векторы v→{\displaystyle {\vec {v}}} и τ→{\displaystyle {\vec {\tau }}} сонаправлены, а алгебраическая скорость положительна;
  • если дуговая координата убывает, то векторы v→{\displaystyle {\vec {v}}} и τ→{\displaystyle {\vec {\tau }}} противонаправлены, а алгебраическая скорость отрицательна.

Не следует смешивать дуговую координату и пройденный точкой

путь. Путь s~{\displaystyle {\tilde {s}}}, пройденный точкой за промежуток времени от t0{\displaystyle t_{0}} до t{\displaystyle t}, может быть найден так:

s~=∫t0t|s˙|dt;{\displaystyle {\tilde {s}}=\int _{t_{0}}^{t}|{\dot {s}}|\,\mathrm {d} t\;;}

лишь в случае, когда алгебраическая скорость точки всё время неотрицательна, связь пути и дуговой координаты достаточно проста: путь совпадает с приращением дуговой координаты за время от t0{\displaystyle t_{0}} до t{\displaystyle t} (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то s~{\displaystyle {\tilde {s}}} будет совпадать с s{\displaystyle s}).

Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется[5]равномерным (алгебраическое касательное ускорение s¨{\displaystyle {\ddot {s}}} при этом тождественно равно нулю).

Предположим, что s¨⩾0{\displaystyle {\ddot {s}}\geqslant {0}}. Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути s~{\displaystyle {\tilde {s}}} к промежутку времени t−t0{\displaystyle t-t_{0}}, за который этот путь был пройден:

s˙cp=s~t−t0.{\displaystyle {\dot {s}}^{\,\mathrm {cp} }={{\tilde {s}} \over t-t_{0}}\;.}

В общем же случае аналогичные отношения

v→cp=r→−r→0t−t0≡Δr→Δt{\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }={{\vec {r}}-{\vec {r}}_{0} \over t-t_{0}}\equiv {\Delta {\vec {r}} \over \Delta {t}}}     и     s˙cp=s−s0t−t0≡ΔsΔt{\displaystyle {\dot {s}}^{\,\mathrm {cp} }={s-s_{0} \over t-t_{0}}\equiv {\Delta {s} \over \Delta {t}}}

определяют соответственно среднюю скорость точки[6] и её среднюю алгебраическую скорость; если термином «средняя скорость» пользуются, то о величинах v→{\displaystyle {\vec {v}}} и s˙{\displaystyle {\dot {s}}} говорят (чтобы избежать путаницы) как о мгновенных скоростях.

{\dot  {s}} Иллюстрация средней и мгновенной скорости

Не следует смешивать два введённых выше понятия средней скорости. Во-первых, v→cp{\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }} — вектор, а s˙cp{\displaystyle {\dot {s}}^{\,\mathrm {cp} }} — скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости — отношению длины витка ко времени движения.

Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны[7]; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).

В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера.

В декартовых координатах[править | править код]

В прямоугольной декартовой системе координат[8]:

v=vxi+vyj+vzk.{\displaystyle \mathbf {v} =v_{x}\mathbf {i} +v_{y}\mathbf {j} +v_{z}\mathbf {k} .}

В то же время r=xi+yj+zk,{\displaystyle \mathbf {r} =x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,} поэтому

v=d(xi+yj+zk)dt=dxdti+dydtj+dzdtk.{\displaystyle \mathbf {v} ={\frac {\mathrm {d} (x\mathbf {i} +y\mathbf {j} +z\mathbf {k} )}{\mathrm {d} t}}={\frac {\mathrm {d} x}{\mathrm {d} t}}\mathbf {i} +{\frac {\mathrm {d} y}{\mathrm {d} t}}\mathbf {j} +{\frac {\mathrm {d} z}{\mathrm {d} t}}\mathbf {k} .}

Таким образом, координаты вектора скорости — это скорости изменения соответствующей координаты материальной точки[8]:

vx=dxdt;vy=dydt;vz=dzdt.{\displaystyle v_{x}={\frac {\mathrm {d} x}{\mathrm {d} t}};v_{y}={\frac {\mathrm {d} y}{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

В цилиндрических координатах[править | править код]

{\displaystyle v_{x}={\frac {\mathrm {d} x}{\mathrm {d} t}};v_{y}={\frac {\mathrm {d} y}{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.} Скорость в полярных координатах

В цилиндрических координатах R,φ,z{\displaystyle R,\varphi ,z}[8]:

vR=dRdt;vφ=Rdφdt;vz=dzdt.{\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R{\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

vφ{\displaystyle v_{\varphi }} носит название поперечной скорости, vR{\displaystyle v_{R}} — радиальной.

В сферических координатах[править | править код]

В сферических координатах R,φ,θ{\displaystyle R,\varphi ,\theta }[8]:

vR=dRdt;vφ=Rsin⁡θdφdt;vθ=Rdθdt.{\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R\sin \theta {\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{\theta }=R{\frac {\mathrm {d} \theta }{\mathrm {d} t}}.}

Обобщениями понятия скорости является четырёхмерная скорость, или скорость в релятивистской механике, и обобщённая скорость, или скорость в обобщённых координатах[8].

Четырёхмерная скорость[править | править код]

В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю коодинату ct{\displaystyle ct}, где c{\displaystyle c} ― скорость света, t{\displaystyle t} ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом[8]:

v0=c1−v2c2;v1=vx1−v2c2;v2=vy1−v2c2;v3=vz1−v2c2.{\displaystyle v_{0}={\frac {c}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{1}={\frac {v_{x}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{2}={\frac {v_{y}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{3}={\frac {v_{z}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}

Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса[8].

В обобщённых координатах[править | править код]

Следует различать координатную и физическую скорости. При введении криволинейных или обобщённых координат положение тел описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями.

В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта S{\displaystyle S} была равна v→{\displaystyle {\vec {v}}}, а скорость системы отсчёта S′{\displaystyle S’} относительно системы отсчёта S{\displaystyle S} равна u→{\displaystyle {\vec {u}}}, то скорость тела при переходе в систему отсчёта S′{\displaystyle S’} будет равна[8]

v→′=v→−u→.{\displaystyle {\vec {v}}’={\vec {v}}-{\vec {u}}.}

Для скоростей, близких к скорости света преобразования Галилея становятся несправедливы. При переходе из системы S{\displaystyle S} в систему S′{\displaystyle S’} необходимо использовать преобразования Лоренца для скоростей[8]:

vx′=vx−u1−(vxu)/c2,vy′=vy1−u2c21−(vxu)/c2,vz′=vz1−u2c21−(vxu)/c2,{\displaystyle v_{x}’={\frac {v_{x}-u}{1-(v_{x}u)/c^{2}}},v_{y}’={\frac {v_{y}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},v_{z}’={\frac {v_{z}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},}

в предположении, что скорость u→{\displaystyle {\vec {u}}} направлена вдоль оси x{\displaystyle x} системы S{\displaystyle S}. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Ряд понятий классической механики выражаются через скорость.

Импульс, или количество движения, — это мера механического движения точки, которая определяется как произведение массы точки на его скорость p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}. Импульс является векторной величиной, его направление совпадает с направлением скорости. Для замкнутой системы выполняется закон сохранения импульса. Обобщением импульса в релятивистских системах является четырёхимпульс, временная компонента которого равна E/c{\displaystyle E/c}. Для обобщённого импульса также выполняется равенство[9]:

pμ=mUμ,{\displaystyle p^{\mu }=m\,U^{\mu }\!,}

где Uμ{\displaystyle U^{\mu }} — обобщённая четырёхмерная скорость.

От скорости также зависит кинетическая энергия механической системы. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения[10][11]:

T=mv22+Iω→22,{\displaystyle T={\frac {mv^{2}}{2}}+{\frac {{\mathcal {I}}{\vec {\omega }}^{2}}{2}},}

Формула для расчета линейной скорости

Понятие скорости

Когда мы сравниваем движение каких-либо тел, то говорим, что одни тела двигаются быстрее, а другие — медленнее. Такую простую терминологию мы используем в повседневной жизни, говоря, например, о движении транспорта. В физике быстрота движения тел характеризуется определенной величиной. Эта величина называется скоростью. Общее определение скорости (в случае, если тело движется равномерно):

Определение 1

Скорость при равномерном движении тела — это физическая величина, показывающая, какой путь прошло тело за единицу времени.

Под равномерным движением тела подразумевается, что скорость тела постоянна. Формула нахождения скорости: $v=\frac{s}{t}$, $s$ — это пройденный телом путь (то есть длина линии), $t$ — время (то есть промежуток времени, за который пройден путь).

Согласно международной системе СИ, единица измерения линейной скорости является производной от двух основных единиц — метра и секунды, то есть измеряется в метрах в секунду (м/с). Это значит, что под единицей скорости понимается скорость такого равномерного движения, при котором путь в один метр тело проходит за одну секунду.

Также скорость часто измеряют в км/ч, км/с, см/с.

Рассмотрим простой пример задачи на вычисление скорости.

Пример 1

Задача. Двигаясь равномерно, поезд за 4 ч проходит 219 км. Найти его скорость движения.

Решение. $v=\frac{219 км}{4 ч}=54,75\frac{км}{ч}$. Переведём километры в метры и часы в секунды: $54,75\frac{км}{ч}=\frac{54750 м}{3600c}\approx 15,2\frac{м}{c}$.

Ответ. $54,75\frac{км}{ч}$ или $15,2\frac{м}{c}$.

Из примера мы видим, что числовое значение скорости отличается в зависимости от выбранной единицы измерения.

Кроме числового значения, скорость имеет направление. Числовое значение величины в физике называют модулем. Когда у физической величины есть и направление, то эту величину называют векторной. То есть скорость — это векторная физическая величина.

На письме модуль скорости обозначается $v$, а вектор скорости — $\vec v$.

В свою очередь, такие величины как путь, время, длина и другие характеризуются только числовым значением. Тогда говорят, что это скалярные физические величины.

В случае, когда движение является неравномерным, используют понятие средней скорости. Формула средней скорости: $v_{ср}=\frac{s}{t}$, где $s$ — это весь пройденный телом путь, $t$ — всё время движения. Рассмотрим пример задачи на среднюю скорость, чтобы понять разницу.

Пример 2

Задача. Некоторый транспорт за 2,5 часа преодолевает путь в 213 км. Найти его $v_{ср}$.

Решение. $v_{ср}=\frac{213 км}{2,5 ч}= 85,2 \frac{км}{ч}=\frac{213000 м}{9000 с}\approx 23,7\frac{м}{с} $.

Ответ. $85,2 \frac{км}{ч}$ или $23,7\frac{м}{с} $.

Линейная скорость

Определение линейной скорости относится к разделу физики о механике и подразделу о кинематике в рамках вопроса движения по окружности. В измерении скорости движения по окружности выделяют угловую скорость и линейную скорость.

Дадим определение линейной скорости.

Определение 2

Линейная скорость $V$ — это физическая величина, показывающая путь, который прошло тело за единицу времени.

Формула линейной скорости:

$V=\frac{S}{t}$, где $S$ — путь, $t$ — время, за которое точка прошла путь $S$.

Также существует иной вариант этой формулы:

$V=\frac{l}{t}$, где $l$ — путь, $t$ — время, за которое точка прошла по дуге $l$.

В некоторых учебниках линейная скорость также обозначается маленькой буквой $v$.

Есть ещё одна формула, по которой можно найти линейную скорость:

$v=\frac{2\pi R}{T}$.

$2\pi$ соответствует полной окружности (360 угловым градусам).

$\vec V$ направленена по касательной к тракетории.

Связь между линейной и угловой скоростями

Чтобы проследить связь между линейной и угловой скоростями, нужно дать определение угловой скорости.

Определение 3

Угловая скорость — это величина, которая равна отношению угла поворота отрезка, соединяющего точку с центром окружности, к промежутку времени, за который этот поворот произошёл.

Записывается эта формула следующим образом:

$\omega = \frac{\phi}{t}$, где $\phi$ — это угловое перемещение (или угол поворота, измеряется в радианах), $t$ — промежуток времени, за которое соврешено угловое перемещение.

В системе СИ угловая скорость измеряется в рад/с.

Угловую скорость также называют циклической частотой вращения, потому что при вращении твёрдого тела угловая скорость всех его точек одинакова.

Связь между $V$ и $\omega$: $V=\omega R$.

Эта формула выводится из определения модуля центростремительного ускорения.

Определение 4

Центростремительное ускорение $a$ — это ускорение точки при равномерном движении по окружности.

$a=\frac{V^2}{R}$ и $a=\omega^2 R$.

С помощью элементарных математических действий из этих двух формул выводится связь между $V$ и $\omega$.

Таким образом, в данной статье мы разобрали следующие понятия:

  • скорость;
  • линейная и угловая скорость;
  • связь между линейной и угловой скоростями.

Угловая скорость — это… Что такое Угловая скорость?

Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки

Углова́я ско́рость — векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

,

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли просто «вручную», подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью , определяется формулой:

где  — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) от оси вращения можно считать так: Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

  • В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.
  • Производная угловой скорости по времени есть угловое ускорение.
  • Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).
  • Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
  • В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:
, где  — радиус-вектор точки (из начала координат),  — скорость этой точки.  — векторное произведение,  — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы , подходящие по определению, по другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как дает разные для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения — единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.
  • При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц), то есть в таких единицах . В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости связан с частотой вращения так: . Наконец, при использовании градусов в секунду связь с частотой вращения будет: .

Связь с конечным поворотом в пространстве

  • Пусть поворот, изменяющийся во времени, задан величиной угла и ортом оси конечного поворота в пространстве . Тогда угловая скорость, соответствующая этому повороту, равна
.
.
  • Если для описания поворота используется кватернион, выражаемый через угол и орт оси поворота как , то угловая скорость находится из выражения .
.

См. также

Литература

  • Лурье А. И. Аналитическая механика\\ А. И. Лурье. — М.: ГИФМЛ, 1961. — С. 100-136

Угловая скорость. Формула угловой скорости :: SYL.ru

Расстояние и время, которое уходит на преодоление этого расстояния, связывает физическое понятие – скорость. И у человека, как правило, не вызывает вопросов определение этой величины. Все понимают, что двигаться на автомобиле со скоростью 100 км/ч — значит за один час проехать 100 километров.

формула угловой скорости вращения

А как быть, если тело вращается? Например, обычный бытовой вентилятор делает с десяток оборотов в секунду. И в то же время скорость вращения лопастей такова, что их запросто можно остановить рукой без вреда для себя. Земля вокруг своей звезды – Солнца — делает один оборот за целый год, а это более 30 миллионов секунд, но скорость её движения по околозвёздной орбите составляет около 30 километров за одну секунду!

Как же связать привычную скорость с быстротой вращения, как выглядит формула угловой скорости?

Понятие угловой скорости

Понятие угловой скорости используется в изучении законов вращения. Оно применяется ко всем вращающимся телам. Будь то вращение некоторой массы вокруг другой, как в случае с Землёй и Солнцем, или же вращение самого тела вокруг полярной оси (суточное вращение нашей планеты).

Отличие угловой скорости от линейной в том, что она фиксирует изменение угла, а не расстояния в единицу времени. В физике угловую скорость принято обозначать буквой греческого алфавита «омега» — ω.

Классическая формула угловой скорости вращения рассматривается так.

формула угловой скорости

Представим, что вокруг некоторого центра А вращается физическое тело с постоянной скоростью. Его положение в пространстве относительно центра определяется углом φ. В некоторый момент времени t1 рассматриваемое тело находится в точке В. Угол отклонения тела от начального φ1.

Затем тело перемещается в точку С. Оно находится там в момент времени t2. Время, понадобившееся для данного перемещения:

∆t = t2 – t1.

Меняется и положение тела в пространстве. Теперь угол отклонения равен φ2. Изменение угла за период времени ∆t составило:

∆φ = φ2 – φ1.

Теперь формула угловой скорости формулируется следующим образом: угловая скорость определяется как отношение изменения угла ∆φ за время ∆t.

Единицы измерения угловой скорости

Скорость движения тела линейная измеряется в разных величинах. Движение автотранспорта по дорогам привычно указывают в километрах в час, морские суда делают узлы – морские мили в час. Если же рассматривать движение космических тел, то тут чаще всего фигурируют километры в секунду.

Угловая скорость в зависимости от величины и от предмета, который вращается, также измеряется в разных единицах.

Радианы в секунду (рад/с) – классическое мерило скорости в международной системе единиц (СИ). Показывают – на сколько радиан (в одном полном обороте 2 ∙ 3,14 радиан) успевает повернуться тело за одну секунду.

Обороты в минуту (об/мин) – самая распространённая единица для обозначения скоростей вращения в технике. Валы двигателей как электрических, так и автомобильных выдают именно (достаточно посмотреть на тахометр в своём автомобиле) обороты в минуту.

Обороты в секунду (об/с) – используется реже, прежде всего в образовательных целях.

Период обращения

Иногда для определения скорости вращения удобнее пользоваться другим понятием. Периодом обращения принято называть время, за которое некое тело делает оборот 360° (полный круг) вокруг центра вращения. Формула угловой скорости, выраженная через период обращения, принимает вид:

ω = 2П / Т.

Выражать периодом обращения быстроту вращения тел оправдано в случаях, когда тело вращается относительно медленно. Вернёмся к рассмотрению движения нашей планеты вокруг светила.

линейная и угловая скорость формула

Формула угловой скорости позволяет вычислить её, зная период обращения:

ω = 2П/31536000 = 0,000000199238499086111 рад/с.

Глядя на полученный результат, можно понять, почему, рассматривая вращение небесных тел, удобнее пользоваться именно периодом обращения. Человек видит перед собой понятные цифры и наглядно представляет себе их масштаб.

Связь угловой и линейной скоростей

В некоторых задачах должны быть определены линейная и угловая скорость. Формула трансформации проста: линейная скорость тела равняется произведению угловой скорости на радиус вращения. Как это показано на рисунке.

угловая скорость формула через скорость

«Работает» выражение и в обратном порядке, с его помощью определяется и угловая скорость. Формула через скорость линейную получается путём несложных арифметических манипуляций.

Угловая и линейная скорости, формулы и примеры

В системе СИ угловая скорость измеряется в рад/с.

Основные характеристики и формулы

Так как за период угловое перемещение рад, угловая скорость связана с периодом и частотой вращения:

   

   

Рис.1. Линейное и угловое перемещение при равномерном движении точки по окружности

Наряду с понятием угловой скорости для характеристики равномерного движения по окружности сохраняет смысл привычное для нас понятие скорости движения точки вдоль траектории, которое в данном случае называется линейной скоростью.

Модуль линейной скорости равен отношению длины дуги окружности к промежутку времени, за который эта дуга пройдена.

Линейная скорость тела, которое движется по окружности, не изменяется по модулю, а все время изменяется по направлению, и в любой точке траектории направлена по касательной к дуге этой окружности (рис.1).

Угловая и линейная скорости связаны между собой соотношением:

   

где радиус окружности.

Кинематическое уравнение или закон движения точки по окружности:

   

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Скорость единицы измерения — Справочник химика 21

    Скоростью (м ) называется путь (5), пройденный телом в единицу времени. Эта скорость носит название средней линейной скорости. Единицей измерения скорости является [c.16]

    Скорость реакции, выраженная в различных единицах измерения [c.63]

    Если константа скорости реакции и коэффициент массоотдачи имеют одинаковые единицы измерения и значения их соизмеримы, например в некотором диапазоне температур, то ни один из этапов не оказывает решающего влияния на скорость превращения. В этом случае используется уравнение (УП1-172), а область, в которой проходит процесс, называется смешанной, диффузионно-кинетической. [c.249]


    На основе теории групп было введено понятие размерности. С помощью уравнений (3-3) и (3-4), независимо от единиц измерения, можно установить соотношение между основными и каждой из производных величин (скоростью, ускорением и т. д.). Символическое (буквенное) обозначение этой связи называют размерностью. 
[c.20]

    В единице измерения скорости реакции и других подобных ей единицах могут быть использованы также моль, кг, и сек. — Прим. ред. [c.196]

    Скоростью (ш) называется путь, пройденный телом в единицу времени. Эта скорость носит название средней линейной скорости. Единицей измерения скорости является метр в секунду (м/сек). В связи с тем что линейная скорость газа или жидкости в трубопроводе в различных точках одного и того же сечения трубопровода неодинакова (см. рис. 2), среднюю скорость потоков определяют как объем жидкости или газа, проходящего через единицу поперечного сечения трубопровода (ап-парата) в единицу времени сек = м сек). 

[c.17]

    Под размерностью обычно понимают произведение основных величин, показатели степеней которых представляют собой положительные или отрицательные числа (или нуль). Размерность можно считать обобщенной единицей измерения. Например, длина Ь может быть выражена в км, м, см, ярдах, дюймах или других единицах измерения, но если в задаче интересуются не конкретным числовым значением, а лишь качественной зависимостью, то следует оперировать с размерностями. Таким образом, размерность и единица измерения не являются тождественными понятиями. Так, единицами измерения линейной скорости могут быть км/ч, м/сек и т. д.. 

[c.20]

    Таким образом, если константы скоростей отдельных этапов имеют одинаковые единицы измерения, то этапом, по которому определяется скорость последовательной реакции, будет тот, значение константы скорости которого меньше. [c.224]

    Константы скорости к в этих уравнениях отличаются единицами измерения и видом зависимости от температуры и давления. Единицы измерения к для реакций первого порядка сопоставлены в табл. 2. Так как для идеальных газов [c.25]


    При помощи этих соотношений можно преобразовать уравнение скорости и выразить входящие в него величины в любых единицах измерения. Ниже приведено несколько преобразованных таким образом уравнений  
[c.53]

    Основные типы кинетических уравнений и единицы измерения удельной скорости приведены в табл. 1 (х—концентрация t — время, а и Ь — начальные концентрации реагентов А и В). [c.23]

    Единица измерения сопротивления течению жидкости, т. е. вязкость, определяемая как напряжение сдвига (в динах на квадратный сантиметр), необходимое для перемещения одного слоя жидкости относительно другого, при расстоянии между слоями в один сантиметр со скоростью один сантиметр в секунду Эта вязкость не зависит от плотности жидкости и прямо связана с сопротивлением течению. 

[c.13]

    Чтобы получить представление о величине джоуля, укажем, что бейсбольный мяч массой около 150 г, летящий после подачи со скоростью около 150 км ч (40 м с ), обладает кинетической энергией в 120 Дж. Широко распространенная в прошлом единица измерения тепла-калория (кал)-приблизительно в четыре раза больше джоуля (точнее, 1 кал = = 4,184 Дж). [c.101]

    При этих допущениях математическую модель рассматриваемого процесса можно представить системой уравнений материального и теплового балансов для элементарного объема трубчатого реакторного устройства. С этой целью выделим элементарный объем трубы, заполненный катализатором, на расстоянии от I до / + (И. Обозначим массовый поток кислородсодержащего газа с плотностью у г и теплоемкостью через Fo, текущую концентрацию кислорода в нем — С, содержание кокса на катализаторе — р, насыпную плотность катализатора — у, теплоемкость его —с,,, долю свободного объема в слое — е, сечение трубы — 8, температуру процесса — Т, скорость реакции, измеренную по кислороду и отнесенную к единице реакционного объема — ю, соотношение скоростей реакции по кислороду и коксу — Р, тепловой эффект реакции (положителен для эндотермического процесса) — д, коэффициент теплопередачи через стенку — к- , поверхность трубы на единицу длины ее слоя — 5 01 температуру наружного воздуха — Гн. [c.306]

    Основными единицами измерения служат единицы длины Ь, единицы времени Т, единицы силы и т. п. Таким образом, например размерность скорости w может быть представлена в виде формулы размерности [c.126]

    Основным показателем при оценке работы реактора является его производительность, выражаемая количеством продукта, образованным в единице объема реактора за единицу времени. Производительность определяется прежде всего скоростью, с которой развивается процесс. Обычно химическая реакция, проводимая в реакторе, сопровождается физическими явлениями массопередачи. Поэтому в отличие от скорост химической реакции пользуются понятием общей (глобальной) скорости процесса. Общую скорость получают суммированием скоростей всех химических и физических этапов процесса по определенным законам. Скорость реакции, общая скорость процесса и производительность реактора могут иметь одинаковые единицы измерения. [c.17]

    Чтобы показать относительные скорости процесса, мы приняли за единицу измерения время гидрогенолиза дифенилсульфида на 50%, и для исследованных сераорганических соединений получили данные, приведенные в табл. 89. [c.400]

    Массовая скорость равна массе сырья, поступающего в I ч на единицу массы катализатор

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *