Двигатель асинхронный двухфазный: Асинхронный двигатель — технические характеристики и принцип работы – какие они бывают / НПФ ВЕКТОР corporate blog / Habr

Содержание

Асинхронный двигатель — технические характеристики и принцип работы

Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.

асинхронный трехфазный двигатель

Содержание:

  1. Асинхронный двигатель: что это такое
  2. Трехфазный асинхронный двигатель. Принцип работы
  3. Однофазный асинхронный двигатель
  4. Двухфазный асинхронный двигатель
  5. Схемы подключения
  6. Функциональные и эксплуатационные особенности
  7. Как производятся расчеты

Асинхронный двигатель: что это

Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.

Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.

Статор асинхронной машины состоит из следующих частей:

  1. Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
  2. Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов. В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
  3. Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.

Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:

  1. Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
  2. Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо. Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.

беличье колесо

Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.

Трехфазный асинхронный двигатель. Принцип работы

Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.

(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

Однофазный асинхронный двигатель

Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.

Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.

Двухфазный асинхронный двигатель

Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.

Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.

На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.

Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.

Схемы подключения

Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

Треугольник

Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

схема подключения «треугольник»

В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.

Звезда

Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

схема подключения «звезда»

Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

Асинхронный двигатель, треугольник в сборе.

Асинхронный двигатель, звезда в сборе

В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

Функциональные и эксплуатационные особенности

Характерные преимущества асинхронных двигателей:

  • В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
  • Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
  • Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.

Среди недостатков можно отметить:

  • Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
  • Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
  • Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.

Как производятся расчеты

Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

И выразить из нее скорость вращения ротора:

В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

Таким образом, величина скольжения электродвигателя составляет:

И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

§82. Однофазные и двухфазные асинхронные двигатели

Однофазные и двухфазные асинхронные двигатели.

Принцип действия однофазного двигателя. В однофазном асинхронном двигателе обмотка статора расположена в пазах, занимающих примерно 2/3 окружности, соответствующей паре полюсов (рис. 270, а). По этой причине мощность однофазного двигателя также составляет около 2/3 мощности трехфазного двигателя с теми же габаритными размерами.

Однофазная обмотка статора 2 создает пульсирующее магнитное поле, которое можно представить в виде двух полей, вращающихся в разные стороны с частотой n1 (рис. 270,б). Поле 5, которое вращается в том же направлении, что и ротор 3, называется прямым полем; поле 6, вращающееся в противоположном направлении,— обратным полем. Эти поля, воздействуя на ротор, создают два противоположно направленных электромагнитных момента Мпр и Мобр. Следовательно однофазный асинхронный

Рис. 270. Разрез однофазного асинхронного двигателя (а), прямое и обратное вращающиеся магнитные поля (б)

Рис. 271. Зависимости М(s) однофазного двигателя от прямого и обратного вращающихся полей

двигатель может быть представлен в виде двух совершенно одинаковых трехфазных двигателей, роторы которых тесно связаны друг с другом, а обмотки подключены к трехфазной сети так, что их магнитные поля вращаются в противоположных направлениях.

Однако если ротор раскрутить в каком-либо направлении, то моменты Мпр и Мобр не будут равны. В этом случае на вал двигателя будет действовать некоторый результирующий момент Mрез, который обеспечит его дальнейшее вращение в заданном направлении. Объясняется это тем, что ток в обмотке ротора, созданный обратным полем, оказывает сильное размагничивающее действие и существенно ослабляет обратное поле.

Из анализа кривых М (s), показанных на рис. 271, следует, что:

однофазный двигатель не имеет начального пускового момента так как при s=1, т. е. при неподвижном роторе, результирующий момент Мрeз = 0;

частота вращения однофазного двигателя при холостом ходе меньше, чем у трехфазного двигателя, из-за наличия тормозящего момента Мобр. По этой же причине однофазный двигатель имеет худшие рабочие характеристики: меньший к. п. д., меньшую перегрузочную способность, повышенное скольжение при номинальной нагрузке.

Пусковые устройства. Чтобы получить пусковой момент, однофазные двигатели снабжают пусковой обмоткой Я, расположенной со сдвигом на 90° по отношению к основной рабочей обмотке Р (рис. 272,а и б). На период пуска пусковую обмотку присоединяют к сети через фазосдвигающие элементы — конденсатор или резистор. После окончания разгона двигателя пусковую обмотку отключают, и двигатель продолжает работать как однофазный. Поскольку пусковая обмотка работает лишь короткое время, ее изготовляют из провода меньшего сечения по сравнению с рабочей обмоткой и укладывают в меньшее число пазов.

Если использовать в качестве фазосдвигающего элемента конденсатор С (рис. 273, а), то можно получить режим работы при пуске, близкий к симметричному, т. е. получить круговое вращающееся поле.

При легких условиях пуска (небольшой нагрузочный момент в пусковой период) применяют двигатели с пусковым резистором R (рис. 273,б). Наличие резистора в цепи пусковой обмотки обеспечивает меньший сдвиг фаз ?1 между напряжением и током в этой обмотке, чем сдвиг фаз ?2 в рабочей обмотке. В связи с этим

Рис. 272. Расположение обмоток статора в двухфазной двухполюсной машине

токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол ?1 – ?2 и образуют несимметричное (эллиптическое) вращающееся поле, благодаря чему и возникает пусковой момент. Однофазные двигатели с конденсаторным пуском и двигатели с пусковым резистором имеют высокую эксплуатационную надежность.

Поскольку включение второй обмотки существенно улучшает характеристики двигателя, в некоторых случаях применяют двухфазные двигатели, в которых обе обмотки включены постоянно. Если сдвиг по фазе 90° между токами в фазах А и В (рис. 274) осуществляется путем включения в одну из них конденсаторов, то такие двигатели называются конденсаторными.

В двухфазных двигателях обе обмотки А и В занимают, как правило, одинаковое число пазов и имеют равную мощность. При пуске конденсаторного двигателя рационально иметь увеличенную емкость Ср + Сп. После разгона двигателя и уменьшения тока часть конденсаторов Сп отключают, чтобы увеличить емкостное сопротивление и при номинальном режиме (когда ток двигателя становится меньшим, чем при пуске) обеспечить режим работы дви-

Рис. 273. Схемы пуска однофазного асинхронного двигателя при использовании конденсатора (а) и резистора (б)

Рис. 274. Схема конденсаторного асинхронного двигателя

Рис. 275. Устройство однофазного асинхронного двигателя с беличьей клеткой на роторе (а) и с полым немагнитным ротором (б): 1-обмотка статора; 2 – корпус; 3 – внешний статор; 4 – ротор; 5 — подшипниковый щит; 6 — вал; 7 — внутренний статор

гателя в условиях, близких условиям работы при круговом вращающемся поле.

Устройство. Однофазные и двухфазные асинхронные двигатели устроены также, как и трехфазные: в них имеются однофазные или двухфазные обмотки статора и короткозамкнутый ротор с беличьей клеткой (рис. 275, а). Широкое распространение получили однофазные двигатели с полым немагнитным ротором (рис. 275, б) и внешним статором, на котором расположены две обмотки, сдвинутые в пространстве на 90°. Ротор выполнен в виде тонкостенного полого цилиндра из алюминия. Для уменьшения магнитного сопротивления магнитопровода двигателя имеется внутренний статор, набираемый из листов электротехнической стали, так же, как и внешний статор.

Полый ротор можно представить в виде совокупности элементарных проводников. Вращающееся магнитное поле, создаваемое обмоткой статора, индуцирует в каждом элементарном проводнике полого ротора э. д. с, под действием которой по ним протекают вихревые токи. В результате взаимодействия этих токов с вращающимся полем возникают электромагнитные силы и вращающий момент.

Двухфазный двигатель — это… Что такое Двухфазный двигатель?

Двухфазный двигатель — электрический двигатель с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного напряжения, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор двигателя обычно изготавливается в виде «беличьего колеса». Обычно число стержней короткозамкнутого ротора не связано с числом пар полюсов статора, то есть при двух парах полюсов статора число стержней ротора может быть например 14 штук. Есть некие соображения, по которым число стержней ротора должно быть связано с числом полюсов ротора.

Асинхронный однофазный электродвигатель.

Если прервать один из трех питающих проводов вращающегося асинхронного трехфазного электродвигателя, то при небольшой нагрузке он будет продолжать работу на одной фазе. В двигателе остается вращающееся поле. Однако при однофазном включении в состоянии покоя такой двигатель не будет работать даже без нагрузки. Если третью фазу обмотки подключить через конденсатор к одному из двух питающих проводов, то трехфазный двигатель, подсоединенный к сети однофазного тока, начнет работать и его рабочие характеристики будут сходны с характеристиками обычного трехфазного асинхронного двигателя.


Асинхронный двухфазный электродвигатель.

  • Рис. 1. Двухфазные асинхронные двигатели:

  • А — с короткозамкнутым ротором; б — с полым ротором

Вращающиеся магнитные поля могут быть созданы и двухфазными обмотками, если обе фазы этих обмоток пространственно смещены на 90° друг относительно друга. Если фазы обмотки питать двумя токами, смещенными на 90° по фазе, то получается, как и в трехфазном электродвигателе, вращающееся магнитное поле.

В двухфазном электродвигателе создается вращающий момент, обусловленный токами, вызванными вращающимся магнитным полем в стержнях ротора электродвигателя. Ротор получает ускорение до тех пор, пока он — как и в трехфазном асинхронном двигателе — не достигнет определенной конечной частоты вращения, которая ниже частоты вращения поля.

Если обе фазы обмотки ротора питать от одной и той же сети однофазного тока, то сдвиг фаз в одной из обмоток, необходимый для получения вращающегося поля, может быть реализован путем подключения конденсатора с достаточной емкостью. На рис.1, а показана схема двухфазного асинхронного двигателя с конденсатором при питании от сети переменного тока.

В настоящее время расширилась сфера применения двухфазного асинхронного двигателя в виде электродвигателя с полым ротором. В таком электродвигателе вместо обычного короткозамкнутого ротора применяется алюминиевый цилиндр, который может вращаться в воздушном зазоре между внешним и внутренним статорами.

Вращающееся поле вызывает в алюминиевом цилиндре вихревые токи, которые, взаимодействуя с магнитным полем в воздушном зазоре, создают вращающий момент. Цилиндр достигает конечной асинхронной частоты вращения, которая соответствует нагрузке на валу.

Небольшой момент инерции ротора электродвигателя обусловливает благоприятные рабочие характеристики. Электродвигатели с полым ротором рассчитаны прежде всего на небольшие мощности и применяются для автоматического регулирования в компенсационных и мостовых схемах. Одна из обмоток вместе с конденсатором подключается к сети с напряжением, а на вторую обмотку подается управляющее напряжение.

Серийные конденсаторные двухфазные двигатели

  • КДП-2
  • КДП-4
  • КД-5
  • КД-6-4 лицензионный японский двигатель

См. также

Литература

к.т.н., профессор Шишкин В.П. ЭЛЕКТРИЧЕСКИЕ МИКРОМАШИНЫ  (рус.) (2001). — ЭЛЕКТРИЧЕСКИЕ МИКРОМАШИНЫ АВТОМАТИЧЕСКИХ УСТРОЙСТВ.(недоступная ссылка — история) Проверено 6 февраля 2009. Однофазный и двухфазный асинхронный двигатель http://techno.x51.ru/index.php?mod=text&uitxt=948

Двухфазный двигатель — Википедия. Что такое Двухфазный двигатель

Двухфа́зный дви́гатель — электрический двигатель переменного тока с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного тока, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор двигателя обычно изготавливается в виде «беличьего колеса». Обычно число стержней короткозамкнутого ротора не связано с числом пар полюсов статора, то есть при двух парах полюсов статора число стержней ротора может быть, например, 14 штук. Есть некие соображения, по которым число стержней ротора должно быть связано с числом полюсов ротора.

Асинхронный однофазный электродвигатель

Если прервать один из трех питающих проводов вращающегося асинхронного трехфазного электродвигателя, то при небольшой нагрузке он будет продолжать работу на одной фазе. В двигателе остается вращающееся поле. Однако при однофазном включении в состоянии покоя такой двигатель не будет работать даже без нагрузки. Если третью фазу обмотки подключить через конденсатор к одному из двух питающих проводов, то трёхфазный двигатель, подсоединенный к сети однофазного тока, начнет работать и его рабочие характеристики будут сходны с характеристиками обычного трехфазного асинхронного двигателя.

Асинхронный двухфазный электродвигатель

Двухфазные асинхронные двигатели:
а — с короткозамкнутым ротором;
б — с полым ротором Схема подключения второй обмотки через резистор

Вращающиеся магнитные поля могут быть созданы и двухфазными обмотками, если эти обмотки пространственно смещены на 90° друг относительно друга. Если эти обмотки питать двумя токами, смещёнными на 90° по фазе, то получается, как и в трехфазном электродвигателе, вращающееся магнитное поле.

В двухфазном электродвигателе создается вращающий момент, обусловленный токами, вызванными вращающимся магнитным полем в стержнях ротора электродвигателя. Ротор получает ускорение до тех пор, пока он — как и в трёхфазном асинхронном двигателе — не достигнет определенной конечной частоты вращения, которая ниже частоты вращения поля.

Если обе обмотки статора питать от одной и той же сети однофазного тока, то сдвиг фазы в одной из обмоток, необходимый для получения вращающегося поля, может быть реализован последовательным включением конденсатора с достаточной емкостью[1]. На рисунке показана схема двухфазного асинхронного двигателя с конденсатором при питании от сети переменного тока.

Сдвиг фазы в одной из обмоток можно получить и последовательным включением резистора, но в этом случае увеличиваются потери активной мощности. Также сдвиг фазы получается, если взамен внешнего резистора на полюсе (или полюсах) одной из обмоток размещается короткозамкнутый виток. В этом случае увеличиваются потери активной мощности в соответствующей обмотке, зато исключается внешний резистор. Такие двигатели обычно имеют небольшую мощность и используются, например, в бытовых вентиляторах[2].

В настоящее время расширилась сфера применения двухфазного асинхронного двигателя в виде электродвигателя с полым ротором. В таком электродвигателе вместо обычного короткозамкнутого ротора применяется алюминиевый цилиндр, который может вращаться в воздушном зазоре между внешним и внутренним статорами.

Вращающееся поле вызывает в алюминиевом цилиндре вихревые токи, которые, взаимодействуя с магнитным полем в воздушном зазоре, создают вращающий момент. Цилиндр достигает конечной асинхронной частоты вращения, которая соответствует нагрузке на валу.

Небольшой момент инерции ротора электродвигателя обусловливает благоприятные рабочие характеристики. Электродвигатели с полым ротором рассчитаны прежде всего на небольшие мощности и применяются для автоматического регулирования в компенсационных и мостовых схемах. Одна из обмоток вместе с конденсатором подключается к сети с напряжением, а на вторую обмотку подается управляющее напряжение.

Серийные конденсаторные двухфазные двигатели

  • КДП-2
  • КДП-4
  • КД-5
  • КД-6-4 — лицензионный японский двигатель

См. также

Литература

к. т. н., профессор Шишкин В.П. Электрические микромашины (рус.)  (недоступная ссылка — история) (2001). — Электрические микромашины автоматических устройств. Проверено 6 февраля 2009. (недоступная ссылка)

Примечания

Ссылки

Конденсаторный двигатель

Конденсаторный двигатель или конденсаторный асинхронный электродвигатель — двухфазный асинхронный электродвигатель одна фаза которого постоянно подключена к сети переменного тока через конденсатор.

В ГОСТ 27471-87 [1] дано следующее определение:
Конденсаторный двигатель — двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор.

Конденсаторный двигатель, хотя и питается от однофазной сети, по существу является двухфазным.

Схема конденсаторного двигателя

Ёмкостной сдвиг фаз с рабочим конденсатором

Схема конденсаторного двигателя с пусковым конденсатором

Ёмкостной сдвиг фаз с пусковым и рабочим конденсатором

Конструктивно конденсаторный асинхронный двигатель представляет из себя двухфазный двигатель. На статоре располагают две обмотки фаз, оси которых смещены относительно друг друга на 90 электрических градусов. Обе обмотки занимают равное число пазов. Питание электродвигателя осуществляется от однофазной сети переменного тока, при этом одна обмотка подключается непосредственно к сети, а другая через конденсатор. Таким образом, в отличии от однофазного двигателя, который после пуска работает с пульсирующим магнитным потоком, конденсаторный электродвигатель работает с вращающимся магнитным потоком.

Емкость рабочего конденсатора, требуемая для получения кругового вращающегося поля, определяется по формуле [2]

Cраб=,

  • где Сраб – емкость рабочего конденсатора, Ф,
  • IA — ток обмотки A, А,
  • IB — ток обмотки B, А,
  • fiA — угол фазового сдвига между током IA и напряжением питания U при круговом вращающемся поле, градусов,
  • U — напряжение питания сети, В,
  • f — частота сети, Гц,
  • k — коэффициент, определяемый отношением эффективных чисел витков в обмотках фаз статора B и A.

fiA,

  • где wA и wB – число последовательно соединенных витков в обмотки фазы А и B статора,
  • kобА и kобВ — обмоточный коэффициент обмоток фаз статора А и B

Для повышения пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Cп. Для создания пускового момента, равного номинальному, требуется пусковой конденсатор Cп в 2 — 2,5 раза больше рабочего Cр.


Однофазные и двухфазные асинхронные двигатели

Предназначение, устройство и принцип деяния однофазовых асинхронных движков

Однофазовые асинхронные движки — машины маленький мощности, которые по конструктивному выполнению напоминают подобные трехфазные электродвигатели с короткозамкнутым ротором.

Однофазовые асинхронные движки отличаются от трехфазных движков устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, либо рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, либо пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).

Магнитные оси этих фаз обмотки сдвинуты относительно друг дружку па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, потому что ток ее возбуждает переменное магнитное поле с недвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.

Рис. 1. Схема включения однофазового асинхронного мотора с короткозамкнутым ротором.

Это поле можно представить 2-мя составляющими — схожими радиальными магнитными полями прямой и оборотной последовательностей, вращающимися с магнитными индукциями, вращающимися в обратные стороны с одной и той же скоростью. Но при подготовительном разгоне ротора в нужном направлении он при включенной рабочей фазе продолжает крутиться в том же направлении.

По этой причине запуск однофазового мотора начинают с разгона ротора методом нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые смещены по фазе на величину, зависящую от характеристик фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки либо конденсатора, и частей электронных цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине крутящееся магнитное поле с магнитной индукцией в воздушном зазоре, которая временами и однообразно меняется в границах наибольшего и малого значений, а конец ее вектора обрисовывает эллипс.

Это. эллиптическое крутящееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазового мотора в направлении вращения поля, и он в.течение нескольких секунд добивается практически номинальной скорости.

Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазовый, поддерживаемый в предстоящем соответственной составляющей переменного магнитного поля, которая при собственном вращении несколько опережает крутящийся ротор из-за скольжения.

Своевременное отключение пусковой фазы обмотки статора однофазового асинхронного мотора от питающей сети нужно в связи с ее конструктивным исполнением, предусматривающим краткосрочный режим работы — обычно до 3 с, что исключает долгое пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.

Увеличение надежности эксплуатации однофазовых асинхронных движков обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и термического реле с подобными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).

Центробежный выключатель автоматом отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а термическое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.

Перемена направления вращения ротора достигается конфигурацией направления тока в одной из фаз обмотки статора при пуске методом переключения пусковой кнопки и перестановки железной пластинки на зажимах электродвигателя (рис. 2, а, б) либо только перестановкой 2-ух подобных пластинок (рис. 2, в, г).

Рис. 2. Маркировка зажимов фаз обмотки статора однофазового асинхронного мотора с короткозамкнутым ротором и их соединение для вращения ротороа: а, в — правого, б, г — левого.

Сопоставление технических черт однофазовых и трехфазных асинхронных движков

Однофазовые асинхронные движки отличаются от подобных по номинальной мощности трехфазных машин пониженной кратностью исходного пускового момента kп = Mп / Mном и завышенной кратностью пускового тока ki = Mi / Mном которые для однофазовых электродвигателей с пусковой фазой обмотки статора, имеющей завышенное сопротивление неизменному току и. наименьшую индуктивность, чем рабочая фаза, имеют значения kп — 1,0 — 1,5 и ki = 5 — 9.

Пусковые свойства однофазовых асинхронных движков ужаснее подобных черт трехфазных асинхронных движков в связи с тем, что возбуждаемое при пуске однофазовых машин с пусковой фазой обмотки статора эллиптическое крутящееся магнитное поле, эквивалентное двум неодинаковым радиальным вращающимся магнитным полям — прямому и оборотному, вызывает возникновение тормозного эффекта.

Подбором характеристик частей электронных цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение радиального вращающегося магнитного поля, что может быть при фазосдвигающем элементе, выполненном в виде конденсатора соответственной емкости.

Потому что разгон ротора вызывает изменение характеристик цепей машины, крутящееся магнитное поле из радиального перебегает в эллиптическое, ухудшая этим пусковые свойства мотора. Потому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную либо автоматом, в итоге чего движок перебегает на однофазовый режим работы.

Однофазовые асинхронные движки с пусковым конденсатором имеют кратность исходного пускового момента kп = 1,7 — 2,4 и кратность исходного пускового тока ki = 3 — 5.

Двухфазные асинхронные движки

В двухфазных асинхронных движках обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они размещены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только лишь числом витков, да и номинальными напряжениями и токами, хотя при номинальном режиме мотора полные мощности их схожи.

В одной из фаз обмотки статора повсевременно находится конденсатор Ср (рис. 3, а), который в критериях номинального режима мотора обеспечивает возбуждение радиального вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:

Cр = I1sinφ1 / 2πfUn2

где I1 и φ1— соответственно ток и сдвиг фаз меж напряжением и током цепи фазы обмотки статора без конденсатора при радиальном вращающемся магнитном поле, I и U — соответственно частота переменного тока и напряжение питающей сети, n— коэффициент трансформации — отношение действенных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле

n = kоб2 w2 / kоб1 w1

где kоб2 и kоб1 — обмоточные коэффициенты соответственных фаз обмотки статора с числом витков w2 и w1.

Напряжение на зажимах конденсатора Uc, включенного поочередно с фазой обмотки статорадвухфазного асинхронного мотора, при радиальном вращающемся магнитном поле выше напряжения сети U и определяется так:

Uc = U √1 + n2

Переход к нагрузке мотора, хорошей от номинальной, сопровождается конфигурацией вращающегося магнитного поля, которое заместо радиального становится эллиптическим. Это усугубляет рабочие характеристики мотора, а при пуске понижает исходный пусковой момент до Мп Mном, ограничивая этим применение движков с повсевременно включенным конденсатором исключительно в установках с легкими критериями запуска.

Для увеличения исходного пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и находится в зависимости от кратности исходного пускового момента, которая может быть доведена до 2-ух и поболее.

Рис. 3. Схемы включения двухфазных асинхронных движков с короткозамкнутым ротором: а — спостоянно присоединенным конденсатором, б — с рабочим и пусковым конденсаторами.

После разгона ротора до скорости 0,6 — 0,7 номинальной пусковой конденсатор отключают для избежания перехода радиального вращающегося магнитного поля в эллиптическое, ухудшающее рабочие свойства мотора.

Пусковой режим таких конденсаторных движков характеризуется такими показателями: kп = 1,7 — 2,4 и ki = 4 — 6.

Конденсаторные движки отличаются наилучшими энергетическими показателями, чем однофазовые движки с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных движков схожей мощности.

Универсальные асинхронные движки

В установках автоматического управления используют универсальные асинхронные движки — трехфазные машины малой мощности, которые присоединяют к трехфазной либо однофазовой сети. При питании от однофазовой сети пусковое и рабочие свойства движков несколько ужаснее, чем при использовании их в трехфазном режиме.

Универсальные асинхронные движки серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазовом режиме — от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η= 0,09 — 0.65.

Однофазовые асинхронные движки с расщепленными либо экранированными полюсами

В однофазовых асинхронных движках с расщепленными либо экранированными полюсами, каждый полюс расщеплен глубочайшим пазом па две неравные части и несет на для себя однофазовую обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его наименьшей части.

Ротор у этих движков имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с недвижной осью симметрии, которое наводит в короткозамкнутых витках надлежащие эдс и токи.

Под воздействием токов короткозамкнутых витков соответственная им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных нередких полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое крутящееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.

Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает возникновение исходного пускового момента Мп = (0,2 — 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу мотора, не превосходит исходный пусковой момент.

С целью роста исходного пускового и наибольшего моментов однофазовых асинхронных движках с расщепленными либо экранированными полюсами меж их полюсами располагают магнитные шунты из листовой стали, что приближает крутящееся магнитное поле к радиальному.

Движки с расщепленными полюсами являются нереверсивными устройствами, допускающими нередкие запуски, неожиданную остановку и могут долгое время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при улучшенной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд ηном = 0,20 — 0,40.

10.11. Однофазные и двухфазные асинхронные двигатели

2.Укажите достоинства и недостатки регулирования скорости вращения изменением напряжения питания.

3.Укажите достоинства и недостатки регулирования скорости вращения изменением сопротивления в цепи ротора.

4.Почему при частотном управлении ниже номинальной скорости вращения нужно одновременно регулировать частоту и напряжение питания?

5.Почему при частотном управлении выше номинальной скорости вращения нужно сохранять напряжение питания номинальным?

6.Почему при частотном управлении по закону U / f = const с уменьшением частоты уменьшается максимальный момент?

7.Как можно сохранить перегрузочную способность двигателя при частотном управлении?

8.Укажите достоинства и недостатки частотного регулирования скорости вращения.

10.11.1. Однофазные двигатели.

В тех случаях, когда мощность механизма приводимого в движение невелика или когда у пользователя нет трёхфазного источника питания используют асинхронные однофазные двигатели. Обычно их мощность не превышает 3…5 кВт и основной областью применения является бытовая аппаратура и электроинструмент.

Статор двигателя имеет однофазную обмотку, а ротор короткозамкнутую обмотку типа «беличья клетка», аналогичную обмотке трёхфазных двигателей.

Однофазный ток статора создаёт пульсирующее магнитное поле, которое можно представить суммой двух круговых полей вращающихся в противоположные стороны. Для вращающих моментов M+и M− , создаваемых ка-

ждым полем, можно построить механические характеристики n(M+), n(M−) и получить результирующую механическую характеристику n(M ) , суммируя

абсциссы точек характеристик отдельных моментов (рис. 10.24, а).

При неподвижном роторе поля прямого и обратного вращения создают одинаковые вращающие моменты, действующие в противоположные стороны, поэтому пусковой момент однофазного двигателя равен нулю и самостоятельно такой двигатель запуститься не может. Механическая характеристика его симметрична относительно начала координат и, будучи приведённым во вращение в любом направлении, он работает одинаково.

Для создания пускового момента нужно усилить поле прямого вращения и ослабить поле обратного вращения. Это делается с помощью обмотки, подключаемой к сети во время пуска и называемой пусковой (ПО на рис. 10.24, б). Пусковая обмотка расположена на статоре и смещена относительно рабо-

27

Рис. 10.25

Рис. 10.24

чей РО на угол 90°. Фазовый сдвиг тока пусковой обмотки, необходимый для формирования кругового магнитного поля, получают включением последовательно с ней пускового конденсатора C.

После включения рабочей обмотки к сети подключают пусковую. При этом в двигателе создаётся магнитное поле близкое к круговому, и он начинает разгон с пусковым моментом, соответствующим точке a рис. 10.24, в. В точке b оператором или сигналом какого-либо автоматического устройства (реле времени, токового реле, центробежного выключателя и т.п.) пусковая отмотка отключается, и двигатель переходит в режим работы с пульсирующим полем, создаваемым рабочей обмоткой.

Более простая конструкция у однофазных двигателей с экранированными (расщеплёнными) полюсами (рис. 10.25). Они имеют на статоре явно выраженные полюсы 1, на которых расположена обмотка 2. Часть каждого полюсного наконечника охвачена (экранирована) короткозамкнутым витком 3, уложенным в паз. Ток статора создаёт в экранированной и неэкранированной частях полюсов переменные магнитные потоки. Поток, проходящий через

экранированную часть, наводит в витке ЭДС и в нём возникает ток, возбуждающий собственный магнитный поток. Магнитный поток короткозамкнутого витка сдвигает фазу потока в экранированной части полюса. В результате под полюсом образуются два магнитных потока, смещённых по фазе друг относительно друга и сдвинутых в пространстве. Смещение этих потоков в пространстве и по фазе недостаточно для формирования кругового магнитного поля, тем не ме-

28

нее, в двигателе создаётся момент Mп =0,2…0,5Mном, достаточный для пуска двигателя вхолостую.

Коэффициент мощности и КПД двигателей с экранированными полюсами крайне низкие, поэтому они выпускаются на мощности до нескольких десятков ватт. Низкие энергетические показатели характерны вообще для всех однофазных двигателей. Кроме того, они в 1,5…2,0 раза больше по массе и габаритам, чем трёхфазные двигатели той же мощности.

10.11.2. Двухфазные двигатели.

Двухфазные асинхронные двигатели относятся к классу исполнительных двигателей, предназначенных для работы в системах автоматического управления. Поэтому к ним предъявляются особые требования: 1) устойчивая работа во всём диапазоне скоростей вращения; 2) широкий диапазон регулирования скорости; 3) близкие к линейным механические характеристики; 4) большое значение пускового момента; 5) малая мощность управления; 6) высокое быстродействие; 7) высокая надёжность; 8) малые габариты и вес. Энергетические характеристики для исполнительных двигателей не имеют столь существенного значения, как для двигателей общего применения, т.к. мощность их обычно не более 500 ватт.

Двухфазные двигатели имеют на статоре две обмотки, оси которых смещены в пространстве на 90°. При питании обмоток токами одинаковой амплитуды и сдвинутыми по фазе относительно друг друга на 90° в двигателе возбуждается круговое магнитное поле. Любая асимметрия питания обмоток в виде разных амплитуд и/или фазового смещения на угол, отличающийся от 90°, приводит к искажению магнитного поля, и оно становится эллиптическим, т.е. появляется магнитное поле с обратным направлением вращения, изменяющее развиваемый двигателем вращающий момент. Таким образом, путём регулирования амплитуды и/или фазового сдвига тока одной из обмоток можно сформировать в двигателе магнитное поле от кругового до пульсирующего и получить вращающий момент от максимального до нулевого.

Ротор двигателя представляет собой полый цилиндр из алюминиевого сплава, имеющий очень малый момент инерции и большое активное сопротивление. Малый момент инерции позволяет получить высокое быстродействие, а за счёт большого активного сопротивления ротора обеспечивается высокая линейность механических характеристик, т.к. при этом критическое скольжение составляет величину порядка 4,0…5,0 и двигатель работает на участке механической характеристики близком к режиму холостого хода, где нелинейность её минимальна.

Двухфазные двигатели питаются, как правило, от однофазной сети (рис. 10.26). Одна из обмоток, называемая обмоткой возбуждения ОВ, подключается к сети непосредственно, а вторая, называемая обмоткой управления ОУ, через регулирующее устройство. На рис. 10.26, а показана схема включения двигателя при амплитудном управлении. Фазосдвигающее устройство ФСУ

29

создаёт на входе регулятора напряжения в виде потенциометра фазовый сдвиг в 90°. Изменением положения движка потенциометра напряжение обмотки управления можно изменять от нуля до напряжения питания обмотки возбуждения. Обычно для анализа процессов при амплитудном управлении используют понятие коэффициента сигнала 0 ≤ α =Uоу /Uов ≤1,0 , где

Uоу, Uов – напряжения обмотки управления и обмотки возбуждения. При

α = 0 магнитное поле в двигателе будет пульсирующим, а при α =1 – круговым.

Рис. 10.26

На рис. 10.26, в показана схема включения двигателя при фазовом управлении. Здесь обмотка управления подключена к сети через фазовращатель ФВ, управляемый сигналом uβ . Фазовое смещение напряжения на выхо-

де фазовращателя может изменяться от нуля до 90°, изменяя характер магнитного поля от пульсирующего до кругового. При анализе процессов в двигателе с фазовым управлением в качестве коэффициента сигнала используют sinβ, где β – угол сдвига фаз между напряжениями обмоток возбуждения и

управления. При sin β= 0 магнитное поле в двигателе будет пульсирующим, а при sin β=1 – круговым.

Фазосдвигающее устройство и фазовращатель являются довольно сложными элементами системы управления двигателем. Часто задачу фазового смещения решают простым включением конденсатора в цепь обмотки возбуждения (рис. 10.26, б). В этом случае при изменении напряжения обмотки управления и нагрузки двигателя меняется также фазовый сдвиг между напряжениями обмоток. Такое управление называется амплитудно-фазовым.

Рис. 10.27 Из трёх рассмотренных способов наилучшие характеристики обеспечивает фазо-

30

вое управление. Однако из-за сложности реализации оно практически не применяется. Из двух других способов лучшим является амплитудное управление, реализуемое выпускаемыми промышленностью усилителями. Типичные механические характеристики в относительных единицах для амплитудного способа показаны на рис. 10.27. Они имеют хорошую линейность и двигатель при амплитудном управлении удовлетворяет большинству требований к подобным устройствам.

Вопросы для самопроверки

1.Как устроен однофазный асинхронный двигатель?

2.Какое магнитное поле формируется в однофазном двигателе?

3.Как создаётся вращающий момент в однофазном двигателе?

4.Как запускается однофазный двигатель?

5.Как устроен двигатель с экранированными (расщеплёнными) полюсами?

6.Укажите достоинства, недостатки и область применению однофазных двигателей.

7.Укажите требования, предъявляемые к исполнительным двигателям?

8.Как устроен двухфазный исполнительный двигатель?

9.Какие существуют способы управления двухфазными исполнительными двигателями?

10.Какой вид имеют механические характеристики двухфазного исполнительного двигателя при амплитудном управлении?

31

Добавить комментарий

Ваш адрес email не будет опубликован.