Дроссель в люминесцентных лампах: назначение и схема подключения люминесцентной лампы с дросселем – Зачем нужен дроссель для люминесцентных ламп устройство схема подключения

Содержание

Дроссель для ламп дневного света

Для пуска люминесцентных ламп применяются специальные автоматические устройства. Их задача – обеспечить источник света питанием. Важная часть пускового устройства – это электромагнитный дроссель (балласт, катушка, индуктивность).

Два дросселя

В схеме он выполняет несколько функций:

  • Играет роль балласта для контроля тока, проходящего через лампу. Это необходимо для нормальной и безопасной работы всего устройства;
  • Служит пусковой индуктивностью, с помощью которой формируется запускающий импульс высокого напряжения;
  • Сглаживает пульсации питающей сети.

Дроссель включается последовательно с люминесцентным источником света, после чего получившаяся цепь присоединяется к сетевым клеммам. При этом параллельно к лампе подключается пускатель.

После подачи сетевого напряжения схема работает так:

  1. На пускатель поступает 220 В из розетки. В нем возникает тлеющий разряд, который подогревает биметаллические электроды. Через некоторое время чувствительные контакты стартера реагируют на тепло и замыкают цепь.
  2. Ток, ограниченный катушкой, начинает подогревать спирали электродов лампы. Вокруг них формируются свободные носители заряда;
  3. Поскольку контакты стартера замкнуты, тлеющего разряда между ними нет – их температура начинает снижаться. Через некоторое время, они полностью остывают и размыкаются;
  4. При отключении контактов стартера накопленная в катушке энергия высвобождается в виде импульса, напряжением 600-1000 В. В результате возникает тлеющий разряд в колбе лампы;
  5. Внутреннее сопротивление люминесцентного источника света резко уменьшается. Лампа шунтирует стартер, и он исключается из работы схемы. Устройство переходит в устойчивый режим работы.

Для регулировки номинального тока люминесцентного источника света необходим балластный элемент: резистор, индуктивность или конденсатор. Преимущества использования дросселя заключаются в следующем:

  • Индуктивность может ограничивать токи значительной величины;
  • Дроссель создает необходимый для запуска люминесцентного источника света импульс напряжения.

Правила выбора

Чтобы правильно выбрать пусковую индуктивность, необходимо обратить внимание на корпус устройства. На нем указывается мощность нагрузки, которую он может запитать. Мощность балласта зависит от сечения обмоточного провода: чем оно больше, тем более значительный ток устройство может выдать.

Мощные катушки имеют значительные габариты и более высокую стоимость, поэтому необходимо оптимально подбирать пусковую индуктивность. Можно использовать одну катушку для питания нескольких ламп – так часто делается в сдвоенных светильниках, которые нередко можно встретить в офисных помещениях.

Дроссель Стартер

Дроссель Стартер

Подключение ламп

Каждый светильник имеет посадочное место, снабженное двумя разъемами для подключения штырей цоколя. Всего для питания люминесцентного источника света необходимо четыре контакта, расположенных на обоих концах колбы.

Они выполняют следующие функции:

  • Каждая пара контактов служит для питания спиралей, служащих для запуска люминесцентного источника света. Когда к ним подключается напряжение, они разогреваются, продуцируя свободные электроны;
  • Облако электронов служит для облечения начала процесса ионизации насыщенного парами ртути инертного газа, которым наполнена колба. Также высокая температура катодов позволяет испарить ту часть ртути, которая конденсировалась;
  • После поступления высоковольтного импульса из дросселя возникает тлеющий разряд, который потом поддерживается сетевым напряжением. В результате тлеющего разряда образуется ультрафиолетовое излучение, которое потом превращается в свет видимого спектра с помощью люминофора, нанесенного на стенки колбы.

Поскольку дроссель – это индуктивность, его подключение приводит к тому, что возникает сдвиг фаз между напряжением и током. Чтобы нивелировать негативное влияние катушки на питающую сеть, параллельно пускающему устройству включается конденсатор соответствующей емкости.

Схема подключения светильника с дросселем

Как запустить лампу с использованием дросселя

Традиционная схема с катушкой широко используется уже более 40 лет. Она проста, но менее надежна, чем другие альтернативы (электронные пускатели).

Чтобы запустить люминесцентный источник с помощью дросселя необходимо собрать схему из стартера, лампы и корректирующего конденсатора:

  1. Параллельно лампе включается стартер: его подсоединяют к верхней или нижней паре отводов по обе стороны колбы;
  2. К одному из оставшихся отводов подключают дроссель питания;
  3. Одна клемма сетевого источника питания присоединяется ко второй клемме катушки, а вторая – подает напряжение на оставшийся свободный отвод лампы.

Схема подключения с дросселем

Как запустить лампу без использования дросселя

Для возникновения тлеющего разряда необходимо кратковременно подать на контакты люминесцентного источника света импульс высокого напряжения. Если нет возможности использовать дроссель, то собирают умножитель напряжения на диодах или стабилитронах.

Схема собирается так:

  1. Сама лампа питается от мостового выпрямителя;
  2. Для ограничения рабочего тока применяют вольфрамовую спираль. Для этих целей можно использовать лампочку накаливания;
  3. Для создания пускающего напряжения используется умножитель на диодах или стабилитронах;
  4. После возникновения тлеющего заряда умножитель отключается. Люминесцентный источник света продолжает светиться, получая питание из сети.

Схема подключения без дросселя

Проверка дросселей

В случае если лампа вдруг перестала работать. Сначала необходимо убедиться в исправности балласта. Для этого дроссель извлекается из корпуса устройства для проведения диагностики.

Неисправности дросселей

Наиболее часто возникают такие поломки:

  • Обрыв обмотки. Нередко такое случается с низкокачественными катушками, выполненными из недостаточно очищенной меди или алюминия;
  • Замыкание витков. Данная поломка возможна, если изоляция проводников выполнена с использованием некачественного лака;
  • Повреждение контактных клемм. Если контакты неплотно прикручены к площадкам, на них может появиться нагар, который будет препятствовать прохождению тока.
Лампа дневного света

Если позволяет конструкция светильника, его рекомендуется демонтировать целиком для последующей диагностики, а не извлекать отдельные неисправные элементы

Проверка дросселей

Обрыв легко определяется с помощью тестера. Для этого щупами измерительного прибора, включенного в режим теста целостности цепи, касаются клемм балласта в режиме. Звуковой сигнал сигнализирует о том, что катушка исправна.

Межвитковое замыкание диагностировать труднее. Необходимо знать индуктивность исправной катушки. Данную информацию можно получить, изучив надписи на балласте, посетив сайт изготовителя или измерив данную величину у заведомо исправного устройства.

Также следует проверить, не пробивает ли обмотка на корпус, что также будет сигнализировать о неисправности катушки. Для этого одним щупом тестера в режиме теста целостности цепи прикасаются к корпусу катушки, а другим – последовательно к обоим контактам катушки. Звуковая индикация должна отсутствовать.

Замена

Чтобы заменить вышедший из строя балласт, его демонтируют из светильника. Для демонтажа необходимо снять декоративную панель и отражатель. Для того чтобы не повредить лампы, их рекомендуется тоже извлечь. Делать это следует аккуратно, чтобы не повредить хрупкие колбы.

Сам балласт закреплен с помощью винтов в корпусе светильника. Работать под потолком не всегда удобно. Если позволяет конструкция светильника, его рекомендуется демонтировать целиком для последующей диагностики, а не извлекать отдельные неисправные элементы.

Блиц-советы

  • Схема подключения без дросселя позволяет использовать неисправные лампы с выгоревшими цепями накала. Но такое подключение требует использования активного балласта, что негативно сказывается на экономичности работы светильника;
  • Современные люминесцентные лампы используют электронную систему питания. Она позволяет значительно увеличить ресурс источника света;
  • Люминесцентные источники света, питающиеся от сети с частотой 50 Гц, могут негативно влиять на зрение (мерцание). Все современные компактные модели используют работающие на высоких частотах электронные источники питания, что позволяет полностью избавиться от мерцания;
  • В случае использования схемы без дросселя колбу люминесцентного источника света рекомендуется переворачивать 1-2 раза в месяц, чтобы избежать появления черного налета на внутренней поверхности стекла;
  • В продаже можно найти люминесцентные лампы любого типа свечения: холодного, белого, теплого. Длина волны видимого излучения зависит от состава люминофора, нанесенного на внутреннюю поверхность колбы.

Дроссель для ламп дневного света

дроссели Дроссель для ламп дневного света – обязательный элемент, который используется с целью безопасности эксплуатации и нормализации функционирования осветительного прибора.

Что такое дроссель и для чего он предназначен?

Вне зависимости от типовых особенностей осветительного электрического прибора, на стадии их запуска появляется очень большое сопротивление.

Розжиг искусственного источника дневного света сопровождается своеобразным электрическим пробоем внутри атмосферы инертных газов, которые насыщены ртутными и натриевыми парами.

В результате образуется разряд, так называемого, тлеющего или дугового типа, а уровень сопротивления снижается в несколько десятков раз, что вызывает рост протекающего электрического тока.

Отсутствие ограничения тока может спровоцировать чрезмерное выделения тепла и резкий перегрев газовых паров, что и становится причиной взрыва лампы дневного света.

Именно по этой причине в цепь добавляется сопротивление, представленное дроссельным устройством.

Чтобы минимизировать расходы электрической энергии на активное сопротивление, используется дроссельное устройство, не потребляющее мощность, а накапливающее и отдающее энергию в цепь.

Как подключить дневную лампу без дросселя?

Достаточно простой вариант схемы подключения может использоваться даже на сгоревших искусственных источниках дневного света. В этом случае отсутствует применение нити накаливания, а питание высоким постоянным напряжением осуществляется посредством диодного моста.

В процессе питания током с постоянными показателями, трубка с течением времени начинает сильно темнеть с одной стороны.

подключение люминесцентных ламп без дросселя

Схема подключения люминесцентных ламп без дросселя и стартера

Самостоятельное подключение без дросселя вполне доступно и предполагает использование сборки GВU-408 в качестве диодного моста и конденсаторов с уровнем емкости в 2нФ и 3нФ. Показатели рабочего напряжения конденсатора не должны быть более 1000В.

Важно помнить, что мощные трубки дневного света нуждаются в конденсаторах высокой емкости, а диоды, используемые для подключения диодного моста, должны быть подобраны с достаточным запасом по показателям напряжения.

Рабочий механизм или дроссельная плата

Цилиндрическое по форме дроссельное устройство заключено в стандартный металлический корпус. Мощность такого устройства должна совпадать с предельно допустимыми показателями рабочей мощности источника света.

Дроссель функционирует совместно со стартером, при запуске которого осуществляется разогрев электродов и подача тока на действующий механизм осветительного прибора. В результате биметаллическая пластина стартера нагревается, а ток поступает и накапливается в дросселе.

подключение лампочки с дросселем

Схема подключения лампы дневного света с дросселем

Наличие в осветительном приборе стартера и стабилизатора способствует максимально равномерному распределению всего напряжения, а подключение источника света без дросселя негативно сказывается на сроке эксплуатации.

лампы дневного светаХотите заменить старые лампы на лампочки дневного света? Принцип работы ламп дневного освещения и критерии выбора рассмотрим подробно.

Виды и способы подключения диммеров для светодиодных ламп описаны тут.

Инструкция по замене светодиодных ламп вместо люминесцентных представлена в этой теме.

Разновидности дросселей для люминесцентного освещения

Ламповые дроссели отличаются основными характеристиками, а при подключении неправильно подобранного элемента становятся основной причиной выхода из строя источника света. В настоящее время существует несколько видов ламповых дросселей:

  • мощность 9 Вт – для энергосберегающих источников света;
  • мощность 11 w — для миниатюрных осветительных приборов и энергосберегающих источников света;
  • мощность 15 w — для настольных и миниатюрных осветительных приборов;
  • мощность 18 w — для настольных осветительных приборов;
  • мощность 36 Вт – для маломощных люминесцентных осветительных приборов;
  • мощность 58 Вт — для потолочных осветительных приборов;
  • мощность 65 Вт — для потолочных многоламповых осветительных приборов;
  • мощность 80 Вт — для мощных люминесцентных осветительных приборов.

Электронные ламповые дроссели могут быть рассчитаны по показателям мощности сразу на два источника света.

Правила выбора дросселя

выбор дросселяДля правильного выбора пусковой индуктивности, требуется выполнить визуальный осмотр корпуса устройства, на котором указываются показатели мощности нагрузки, определяемые сечением обмоточных проводов.

Для устройства с высокими показателями мощности, очень характерными являются большие размеры и достаточно высокая стоимость.

С целью запуска собирается схема, представленная стартером, лампой и корректирующим конденсатором.

Стартер подключается в параллельном положении источнику света. Присоединение элемента осуществляется на верхнюю или нижнюю пару выводов, которые располагаются с двух сторон ламповой колбы. К оставшемуся проводу подключается дроссель. Клемма на сетевом источнике питания соединяется с катушечной клеммой, а вторая клемма используется для подачи напряжения.

При выборе важно обратить внимание на маркировку группы, которая может быть представлена буквами «В», «С» или «D», и позволяет подобрать дроссельное устройство, оптимальное по показателям поглощения мощности.

Проверка при помощи мультиметра

мультиметрКак проверить дроссель лампы дневного света мультиметром?

Проверка дроссельного устройства, как правило, производится посредством контрольного исправного осветительного прибора.

В этом случае пара проводов, идущая от устройства, осторожно отсоединяется и присоединяется к цокольной части контрольной лампочки.

Если после подключения прибор освещения загорается в полную силу, значит, дроссельное устройство является исправным.

Основные неисправности дросселя представлены:

  • обрывом обмотки, который чаще всего встречается на катушках низкого качества, выполненных с использованием плохо очищенного металла;
  • витковым замыканием, которое наблюдается при наличии на проводниковой изоляции лакового покрытия низкого качества;
  • повреждением клеммных контактов, которые прикручены недостаточно плотно, что вызывает скопление нагара, препятствующего перемещению тока.

Обрывы достаточно легко определяются посредством тестера, щупы которого нужно приложить к балластным клеммам. Появление звукового сигнала свидетельствует о исправности устройства. Кроме всего прочего, важно помнить, что «пробив» обмотки на корпусе устройства, всегда сигнализирует о выходе катушки из строя. Определить «пробив» можно, если один щуп такого измерительного прибора приложить поочередно к катушечным контактам. Звуковой сигнал должен отсутствовать.

Сложнее всего самостоятельно определить поломку, представленную межвитковым замыканием, так как в этом случае потребуется выяснить индуктивность рабочей катушки, которая в разных осветительных приборах значительно варьируется.

Выполнение замены неисправного устройства

Производить ремонтные работы по замене неисправного устройства вполне возможно самостоятельно. Важно помнить, что замена дросселя в обязательном порядке должна осуществляться после отключения осветительного прибора от сети электрического питания.

Выполняя ремонт, нужно ориентироваться на стандартную схему подключения, а произвести тестирование отремонтированного источника света можно посредством мультиметра.

Видео на тему

Дроссель для люминесцентных ламп

Содержание:

  1. Общее устройство люминесцентных ламп
  2. Преимущества светильников с люминофором
  3. Роль дросселя в схемах пускорегулирующих устройств
  4. Классификация и разновидности дросселей
  5. Преимущества электронных дросселей
  6. Видео: Проверка дросселя лампы дневного света

На объектах производственного, общественного и бытового назначения широко используются лампы дневного света в качестве основного источника освещения. Они существенно отличаются от обычных ламп накаливания и не могут работать при простом подключении к сети. Для того чтобы осуществить запуск, используется специальный дроссель для люминесцентных ламп, входящий в схему электромагнитного пускорегулирующего устройства.

Данные приборы постепенно выходят из употребления, поскольку им на смену пришла электронная пускорегулирующая аппаратура – более надежная и совершенная. Но до полного отказа от них еще далеко, поэтому для обеспечения нормальной работы ламп следует знать устройство и принцип действия этих дросселей.

Общее устройство люминесцентных ламп

Работу дросселя необходимо рассматривать только в совокупности с общей схемой люминесцентной лампы.

Наибольшее распространение в системах освещения получили устройства линейного типа, изготовленные в цилиндрической форме. Конструкция представляет собой герметичную стеклянную колбу, внутрь которой вместо воздуха закачан аргон или другой инертный газ. В некоторых случаях используются газовые смеси. Внутреннее давление примерно в 250 раз ниже атмосферного, поэтому, когда лампа разбивается, этот процесс сопровождается хлопком. Кроме газа, в колбу помещается определенная порция ртути, находящейся в газообразном виде из-за сильного разрежения.

Торцы трубок заканчиваются стеклянными ножками с электродами, впаянными внутрь. Они устанавливаются попарно с каждой стороны. Каждая пара соединена вольфрамовой спиралью, покрытой специальным составом, включающим в себя оксиды бария, стронция и кальция, а также тугоплавкую циркониевую присадку. После разогрева данного химического состава, начинается разгон свободных электронов, попадающих в свободное пространство из своей кристаллической решетки. За счет этого происходит термоэлектронная эмиссия, без которой невозможна работа люминесцентных ламп.

Снаружи концы трубок оборудованы цоколями для контактных штырьков, используемых при подключении лампы, вставленной в светильник. Стеклянная поверхность лампы изнутри покрыта слоем люминофора, состоящего из галофосфатов кальция или ортофосфатов цинка-кальция. При попадании на него ультрафиолетового излучения, невидимого обычным зрением, начинается испускание видимого светового потока. Химический состав люминофора оказывает влияние на цветовую температуру, цветопередачу и спектр различных люминесцентных ламп.

Преимущества светильников с люминофором

Благодаря своим конструктивным особенностям, лампы дневного света обладают многими положительными качествами, что дает возможность применять их в различных областях.

Среди плюсов, в первую очередь можно отметить следующие:

  • Испускание светового потока с высокой интенсивностью.
  • Свечение может производиться в широком диапазоне.
  • Освещение такими лампами отличается повышенной надежностью.
  • Широкий температурный диапазон рабочих режимов, благодаря которому люминесцентные светильники могут использоваться в уличном освещении.
  • Во время работы корпус светильника нагревается незначительно.
  • Строго определенный спектр и режим излучения, при котором свечение считается наиболее приближенным к естественному дневному освещению.
  • Высокие эксплуатационные характеристики и устойчивость к износу. В среднем, такие лампы способны нормально функционировать в течение 18-20 тыс. часов.

Главная особенность люминесцентных ламп заключается в невозможности их прямого подключения к обычной электрической сети. Это связано со следующими причинами:

  • Схема предполагает создание устойчивого разряда лишь после предварительного разогрева электродов. На них должен поступить стартовый импульс.
  • Необходимость в ограничении возрастающей силы тока после выхода светильника из рабочего режима.

Для преодоления имеющихся ограничений в конструкцию люминесцентных ламп включена пускорегулирующая аппаратура, обеспечивающая их нормальную работу. К важнейшим компонентам данной схемы относится дроссель для люминесцентной лампы, без которого светильники не будут функционировать.

Роль дросселя в схемах пускорегулирующих устройств

Основная задача дросселя для люминесцентных ламп заключается в образовании импульса, способного пробить среду, наполненную газом. Кроме того, он должен поддерживать установленное значение тока и напряжения на контактах и во всей схеме работающего светильника. Принцип действия этого устройства связан с работой катушки индуктивности, извлекающей энергию из сети и превращающей ее в магнитное поле.

Точно такая же катушка входит в устройство дросселя. При замыкании контактов происходит постепенный рост тока на катушке, а после размыкания он на короткое время многократно возрастает, а потом начинает плавно снижаться. Дроссель-трансформатор, применяемый в люминесцентных светильниках, по своей сути является такой же катушкой, внутри которой установлен ферромагнитный сердечник. Он подходит лишь для электрических цепей, где применяется электромагнитная пускорегулирующая аппаратура.

Теперь рассмотрим не только, для чего нужен дроссель, но и как он работает

При подаче напряжения ток вначале попадает на дроссель-трансформатор, затем он поступает к первой паре электродов лампы, далее – на стартер и на вторую пару электродов, после чего возвращается в сеть. Этого тока недостаточно для того чтобы зажечь лампу, однако, он способен разогреть электроды стартера и создать тлеющий разряд. Он обладает напряжением, более низким чем в сети, но превышающим это значение у работающего светильника.

После разогрева в стартере биметаллического электрода, происходит его замыкание со вторым электродом, после чего в схеме происходит стремительный скачок тока и электроды в торцах лампы начинают разогреваться. Одновременно, под действием самоиндукции, в дросселе размыкается цепь, что приводит к скачку напряжения. К нему прибавляется входное напряжение, и в совокупности они создают условия, необходимые для запуска лампы.

К этому времени электроды разогреваются до температуры, обеспечивающей начало эмиссии, а в самом дросселе образуется высоковольтный импульс. Тлеющий разряд вначале появляется в аргоне, а после перехода ртути в состояние пара он продолжается уже в ртутных парах, после чего схема начинает стабильно работать в обычном режиме. Напряжение на дросселе падает и соответственно уменьшается в самой лампе. Таким образом, обеспечивается защита от возникновения повторного разряда.

Непосредственное включение света происходит при совпадении фаз напряжения и импульса дросселя. Чаще всего они не совпадают по времени, поэтому стартер срабатывает насколько раз перед входом лампы в рабочий режим. В этот момент она начинает мигать, а в стартере возникают радиопомехи, подавляемые конденсатором, установленным в общем корпусе.

Таким образом, кроме зажигания люминесцентной лампы, дроссель-трансформатор ограничивает возрастающий ток до предела, после которого осветительный прибор может выйти из строя.

Классификация и разновидности дросселей

Схема люминесцентных ламп включает в себя дроссель, выполняющий ограничивающую функцию и поэтому относящийся к балласту или дополнительной нагрузке. Поскольку в этом устройстве имеют место определенные потери мощности, то все они разделяются на категории в соответствии с уровнем этих потерь. Обычный уровень соответствует классу D, пониженный – классу С, особо низкий – классу В.

Одним из физических свойств дросселя в люминесцентных лампах, является сдвиг по фазам, образующийся между током и напряжением. Отставание тока от напряжения составляет величину, обозначаемую как cos φ. С ростом этого значения приборы становятся более экономичными и эффективными.

К основным типам дросселей можно отнести следующие:

  • Электромагнитные устройства, представляющие собой трансформатор, соединяемые с лампой в последовательную цепь и работающие совместно со стартером. Они отличаются простой конструкцией и низкой ценой. Серьезными недостатками в работе считаются мерцание и шум при пуске и эксплуатации, длительное включение, необходимость использования конденсатора, снижающего потери мощности.
  • Электронный дроссель, не требующий стартера. Эти устройства включаются намного быстрее, с ними лампа работает ровно, без миганий и шума. Обладают компактными размерами и небольшим весом.

Люминесцентные лампы могут эксплуатироваться в разных электрических сетях. Соответственно и дроссели разделяются на однофазные, применяемые в бытовых сетях на 220 вольт, и трехфазные, устанавливаемые в светильники, освещающие промышленные предприятия, улицы и другие подобные объекты.

Дроссели могут устанавливаться в разных местах и также условно делятся на две части. Приборы открытого типа встраиваются внутрь корпуса светильника, который защищает их от всех внешних воздействий. Закрытые дроссели помещаются в герметичный влагозащищенный короб. Они используются для установки на улицах и могут выдерживать любые погодные условия.

Преимущества электронных дросселей

По сравнению с электромагнитными устройствами, электронные дроссели считаются более совершенными и эффективными. Они используются в электронной пускорегулирующей аппаратуре, обеспечивающей включение люминесцентных ламп. Массовое применение эти приборы получили сравнительно недавно и уже практически полностью заменили собой старый балласт.

Популярность и широкое применение этих изделий объясняются многими преимуществами, выявленными в процессе эксплуатации:

  • Разряд высокой частоты обеспечивает повышенную световую отдачу.
  • Эффект стробирования сведен до минимума, что значительно расширило сферу использования люминесцентных светильников.
  • Отсутствие фальстартов и посторонних шумов, которыми страдает дроссель-трансформатор.
  • Увеличенный срок службы и КПД, достигающий 97%.
  • Снижение энергопотребления примерно на 30%.
  • Возможность регулировки частоты, позволяет изменять мощность светильников до нужных параметров.

описание, конструкция, виды, как выбрать

Пользовательским недостатком конструкции первых ламп дневного света (так тогда называли такие светильники) было неприятное гудение балластного реостата. Со временем уровень шума удалось снизить, но необходимость в трансформаторе осталась. Разберёмся в том, что такое трансформатор для питания люминесцентных ламп, и как его правильно выбрать.

Конструкция и принцип действия люминесцентной лампы

Существует три основных типа люминесцентных ламп: с холодным катодом, с горячим катодом и электролюминесцентные. Все они для создания света используют люминофоры, возбуждаемые электронами.

люминесцентная лампа

Эксплуатационные показатели:

  1. Цветовая температура – 5600 К.
  2. Светоотдача – 46… 105 лм/Вт.
  3. Сроки службы – 10 000 … 45 000 часов (без учета балластного реостата).

Данные устройства работают путем ионизации паров ртути в стеклянной трубке. Движущийся в газе поток электронов испускает фотоны.

Люминофорным покрытием ультрафиолетовый свет преобразуется в стандартный видимый.

Лампа состоит из стеклянной трубки, заполненной инертным газом (обычно аргоном) при низком давлении. На каждой стороне трубки имеется вольфрамовый электрод. При подаче напряжения в межэлектродном промежутке возбуждается тлеющий разряд, вызывающий свечение газа.

Трансформатор Feron 300 W

Назначение балласта

Обязательные электрические характеристики светильника дневного света:

  1. Потребляемый ток.
  2. Пусковое напряжение.
  3. Частота тока.
  4. Коэффициент амплитуды тока.
  5. Уровень освещённости.

Дроссель обеспечивает высокое начальное напряжение для инициирования тлеющего разряда, а затем быстро ограничивает ток для безопасного поддержания нужного уровня напряжения.

Основные функции балластного трансформатора рассматриваются далее.

балласт для люминесцентных ламп

Безопасность

Балласт регулирует мощность переменного тока для электродов. При прохождении переменного тока через дроссель напряжение повышается. Одновременно ограничивается сила тока, чем предотвращается короткое замыкание, которое приводит разрушению люминесцентного светильника.

Подогрев катодов

Для работы светильника необходим всплеск высокого напряжения: именно тогда происходит пробой межэлектродного промежутка, и загорается дуга. Чем холоднее лампа, тем выше необходимое напряжение. Напряжение «проталкивает» ток через аргон. Но у газа есть сопротивление, которое тем выше, чем холоднее газ. Поэтому требуется создать более высокое напряжение при максимально низких температурах.

Для этого требуется реализовать одну из двух схем:

  • с помощью пускового выключателя (стартёра), содержащего небольшую неоновую или аргоновую лампу мощностью 1 Вт. Она нагревает биметаллическую полосу в стартёре и облегчает инициирование газового разряда;
  • вольфрамовыми электродами, через которые проходит ток. При этом электроды нагреваются и ионизируют газ в трубке.

Подогрев катодов

Обеспечение высокого уровня напряжения

При разрыве цепи магнитное поле прерывается, импульс высокого напряжения посылается через светильник, и возбуждается разряд. Используются следующие схемы создания высокого напряжения:

  1. Предварительный подогрев. В этом случае электроды нагреваются до инициирования разряда. Пусковой выключатель замыкается, позволяя току протекать через каждый электрод. Переключатель стартера быстро охлаждается, размыкая переключатель и запуская напряжение питания на дуговой трубке, в результате чего и возникает разряд. Во время работы вспомогательное питание на электроды не подаётся.
  2. Быстрый запуск. Электроды нагреваются постоянно, поэтому балластный трансформатор включает две специальные вторичные обмотки, которые обеспечивают низкое напряжение на электродах.
  3. Мгновенный запуск. Электроды перед началом работы не нагреваются.  Для устройств мгновенного пуска трансформатор обеспечивает относительно высокое пусковое напряжение. Вследствие этого разряд легко возбуждается между «холодными» электродами.

схемы создания высокого напряжения

Ограничение электрического тока

Необходимость в этом возникает тогда, когда нагрузка (например, дуговой разряд) сопровождается падением напряжения на клеммах при увеличении тока.

Стабилизация процесса

К люминесцентным светильникам предъявляются два требования:

  • чтобы запустить источник света, для создания дуги в парах ртути необходим скачок высокого напряжения;
  • как только лампа запускается, газ оказывает уменьшающееся сопротивление.

Эти требования варьируются в зависимости от мощности источника.

Лампа

Конструкция дросселя лампы дневного света

Проволока

Проводники представляют собой нити, изготавливаемые из вольфрама, который дополнительно легируется высокотемпературными силикатами калия или алюминия. Минимальная температура рекристаллизации проводника – не менее 2100С.

Сердечник

Один из электродов представляет собой биметаллическую полосу, которая изгибается при нагревании, вызывая контакт с другим электродом. Когда два электрода соприкасаются друг с другом, ток становится постоянным.

Дроссел

Заливочная масса

В колбы люминесцентных светильников бытового предназначения закачивается аргон. Инертные свойства аргона исключают корродирующее действие кислорода, особенно в источниках с горячей вольфрамовой нитью. Использование аргона предотвращает испарение проводников.

Корпус

Стеклянная трубка содержит небольшое количество ртути и аргон, находящийся под очень низким давлением. Трубка также содержит люминофорный порошок, который наносится на внутреннюю часть стекла. Стекло корпуса должно иметь высокую механическую и диэлектрическую прочность.

Дроссели

Разновидности и сравнительный анализ дросселей

Важно! На практике используются три типа электронного балласта: магнитные, полупроводниковые и электронные.

Электромагнитный дроссель

Магнитные трансформаторы не содержат печатных плат, и используются в газоразрядных лампах высокой интенсивности. Они работают при частоте переменного тока 50 Гц.

Конструктивно трансформатор магнитного типа представляет собой сердечник, выполненный из толстой проволоки с хорошей магнитной проводимостью, и катушечные обмотки, при помощи которых создаётся высокое напряжение.

Электромагнитный дроссель

Электронный дроссель

Электронные балластные трансформаторы собраны на pnp-транзисторах, которые включаются в электронный полумост.

Электронные балласты меньше и легче, чем магнитные, они могут действовать и при переменных значениях частоты тока.

Электронный дроссель

Полупроводниковый дроссель

Преимущество схемы заключается в том, что возможна передача значительной мощности, при нечувствительности к изменениям частоты питающего тока. Коммутация происходит быстрее, а величина магнитного поля уменьшается.

Полупроводниковый дроссель

Разнообразие дросселей по мощности в ваттах

Различают дроссели малой, средней и большой мощности. Первые (мощностью до 11…15 Вт) используются в миниатюрных и энергосберегающих светильниках, вторые (до 30…40 Вт) – в офисных лампах, а более мощные – для освещения залов, гостиных, холлов и прочих помещений значительной площади.

Различие по условиям пуска

Например, для люминесцентных ламп мощностью до 40 Вт самым распространённым режимом работы является режим быстрого запуска. Преимущества быстрого запуска заключаются в плавном нарастании напряжения, увеличении срока службы и возможности диммирования – плавного изменения яркости испускаемого светового потока.

Для ламп меньшей мощности (менее 30 Вт) характерен режим предварительного нагрева. Источники света, работающие в этом режиме, лучше, поскольку для непрерывного нагрева электродов не требуется дополнительная мощность. Однако такие лампы мерцают во время запуска и характеризуются коротким сроком службы.

люминесцентных ламп мощностью до 40 Вт

Маркировка дросселей по степени потери мощности

Общеприняты маркировки В, С и D. Наименьшей потерей мощности характеризуются дроссели В, сниженным уровнем потерь – С, обычным уровнем – D.

Как подобрать нужную модель по техническим характеристикам и производителю

Любой трансформатор рассчитан для использования с люминесцентными лампами определённой мощности. Выбор проводится с учётом следующих факторов:

  1. Количества обслуживаемых светильников.
  2. Суммарно потребляемой мощности.
  3. Качества поставляемой электроэнергии (амплитуды скачков по току, напряжению и частоте).
  4. Габаритных размеров устройства.
  5. Функциональных возможностей.

Программируемые трансформаторы обладают очевидными преимуществами:

  • возможностью обеспечения параллельной работы всех источников света, которые установлены в помещении;
  • малым временем запуска (не более 700 мс). Поэтому, если одна лампа выходит из строя, другие остаются зажжёнными;
  • регулируемой продолжительностью задержки при включении;
  • возможностью использования и в других приложениях (например, для работы датчиков присутствия).

Дроссель

Важно! Программируемые трансформаторы гарантируют пониженные значения энергопотребления, быстрый предварительный нагрев катодов ламп до оптимальной стартовой температуры и быстрое зажигание светильников. Они допускают кратковременную перегрузку и, следовательно, могут использоваться для временного повышения светового потока.

Добротная схема балласта должна сохранять свою работоспособность при нагреве корпуса до 90С (с гарантией не менее трёх лет).

При выборе учитывают максимальный ток, потребляемый светильником. Например, трансформатор, который рассчитан на ток 200 мА, нельзя применять в схемах пуска с токами более 250 мА.

Конструкция трансформатора предусматривает регулирование светового потока в диапазоне, который установлен санитарно-гигиеническими требованиями. Они определяются по ГОСТ Р 55710-2013.

Дроссель

Основные неполадки и способы ремонта

Нет зажигания лампы

Убедитесь, что настенный выключатель в порядке. Выключите переключатель, выньте трубки и вновь вставьте, чтобы убедиться, что они полностью зафиксированы. Если лампа действует прерывисто, это обычно указывает на перегрев балласта.

Проблемы с изоляцией

Возникают, если температура превышает 90С. Изоляция должны быть такой, чтобы обеспечивалась хорошая циркуляция воздуха. Для этого между всеми компонентами светильника и смежными элементами помещения должен быть зазор не менее 7…8 мм.

Лопнувшая изоляция сетевого провода

Концы чернеют

Конец трубки становится черным, если у светильника слишком быстрый цикл переключения или, если неисправен катод. Поэтому лучше оставлять лампы включенными, а не быстро их выключать и снова включать. Каждое переключение вызывает постепенную эрозию электронно-эмиссионных материалов, покрывающих электроды.

Полосы внутри лампы

Дефект связан с потерей герметичности корпуса. Такую лампу необходимо заменить.

Обзор популярных моделей

Schwabe Hellas

Популярный немецкий бренд, продукция которого сертифицирована соответственно требованиям ISO 9001: 2000 и ISO 14001: 2005.   Знаки качества применяются ко всем стандартным балластам Schwabe Hellas, которые отвечают европейским нормам напряжения и электромагнитной совместимости.

Schwabe Hellas

Helvar 65W, Helvar 85W

Производство сосредоточено в Шотландии и Северной Ирландии.  Выпускаются магнитные балласты Многолетний опыт разработки балласта и превосходные производственные знания гарантируют высокое и равномерное качество продукции. Магнитные балласты Helvar имеют классы энергоэффективности B2 и B1.

Helvar 65W

Правила эксплуатации

При обслуживании устройств необходимо придерживаться определённых правил. Предварительно (до отсоединения балласта) производится маркировка проводов. Это сэкономит время монтажа. Неправильное подсоединение приводит к перегреву проводов, а часто светильник вообще не включается.

Важно! При регулировке учитываются исходные требования к работе светильников, которые управляются трансформатором.

В частности, необходимо установить, что приоритетнее – максимальная светоотдача, минимальное время пуска или отсутствие перегрева корпуса.

При установке балластов следует учесть, что каждый трансформаторов способен питать до четырёх светильников (конкретное количество указывается в инструкции пользователя).

балласт для люминесцентных ламп

Важный параметр трансформатора – коэффициент балласта. Его значение определяет светоотдачу конкретной системы светильников.  Для стандартных 40-ваттных ламп значение балластного коэффициента должно быть не ниже 0,95; с уменьшением мощности значение снижается, но не должно быть ниже 0,87. В продаже встречаются трансформаторы и с более низким балластным фактором (от 0,70 до 0,75), но их можно применять лишь с лампами, работающими в режиме быстрого запуска.

Важно! Более низкий балластный коэффициент уменьшает выходной сигнал, и гарантирует потребление пропорционально меньшей мощности.

Тщательный выбор трансформатора к светильникам с определенным балластным фактором оптимизирует потребление энергии, и позволяет точнее настроить уровни освещения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *