Дроссель и дроссель-трансформатор ЖД: описание
25.09.2015Дроссель-трансформатор: назначение
Путевые дроссели и дроссель-трансформаторы на ЖД выполняют функции передатчиков тягового тока между РЦ в обход изолирующих стыков на линиях с автоблокировкой, стыкуя 2 системы электрической тяги.
Устанавливаются дроссели ДГ и дроссель-трансформаторы на ЖД с участками на электротяге постоянного или переменного тока с частотой 50 Гц и электроблокировкой на переменном сигнальном токе частотой 25 Гц и 75 Гц в РЦ.
Дроссель-трансформатор ДТ и дроссель ДГ имеет средний вывод, предназначенный для пропуска двойной силы тока. Так дроссель ДГ-150 и путевой дроссель-трансформатор ДТ-1-150 пропускают переменный ток номиналом в 150 А, средний вывод — 300 А. Соответственно дроссель ДГ-300 и дроссель-трансформатор ДТ-1-300 рассчитаны на пропуск тока силой в 300 А, средний вывод — 600 А.
Чем отличается дроссель от трансформатора
Главное отличие трансформатора от дросселя состоит в количестве обмоток и принципе работы.
Так путевой дроссель обладает одной обмоткой, сглаживает пульсацию постоянного тока за счёт запирания переменной составляющей.
Трансформатор имеет несколько обмоток и изменяет величину напряжения. Дроссель-трансформатор жд рассчитан на передачу через каждую секцию обмотки номинального тока в электрической тяге.
Маркировка ДТ
В обозначении ДТ первая цифра означает величину полного сопротивления основной обмотки переменному току частотой 50 Гц, вторая — значение тягового тока, на который рассчитана каждая полуобмотка дроссель-трансформатора.
Если маркировка ДТ начинается с цифры “2”, это свидетельствует о том, что такой дроссель-трансформатор сдвоенный. Например, путевой дроссель-трансформатор 2ДТ-1-300 в одном корпусе содержит два дроссель-трансформатора ДТ-1-300.
Аббревиатура ДТЕ свидетельствует о том, что данный дроссель-трансформатор не нуждается в обслуживании в процессе эксплуатации. Подробнее с ДТЕ можно ознакомиться тут.
Если же марка ДТ содержит литеры “Г” и “М”, это говорит о том, данный дроссель-трансформатор ДТ имеет залитую герметиком (герметизированную) обмотку и не нуждается в заливке маслом.
Коэффициент трансформации и габариты
Коэффициент трансформации (n) — соотношение напряжений в режиме холостого хода напряжения вторичной обмотки к напряжению первичной обмотки, без учёта падения напряжения. Или, иными словами, коэффициент трансформации n — соотношение между количеством витков первичной и вторичной обмоток.
В НКА-СтройСервис имеются в наличии: дроссели: ДГ-150 и ДГ-300 — 388×514×207 мм дроссель-трансформаторы переменного тока: • ДТ-1МГ1-150 • ДТ-1МГ1-300 • 2ДТ-1МГ1-150 • 2ДТ-1МГ1-300 • ДТ-1МГ-150 — 460×535×208 мм • ДТ-1МГ-300 — 460×535×208 мм • 2ДТ-1МГ-150 — 530×515×208 мм • 2ДТ-1МГ-300 — 530×515×208 мм • ДТ-1-150 — n=3; 535×335×325 мм; 51 кг • ДТ-1-300 — n=3; 500×300×310 мм; 51 кг• 2ДТ-1-150 — n=3; 520×520×310 мм; 88 кг • 2ДТ-1-300 — n=3; 500×500×310 мм; 100 кг дроссель-трансформаторы постоянного тока: • ДТ-0,2-1000 — n=17; 670×460×375 мм; 157 кг • ДТ-0,2-1000 — n=23; 670×460×375 мм; 157 кг • ДТ-0,2-1000 — n=40; 670×460×375 мм; 157 кг • ДТ-0,2-500 — n=17; 670×460×375 мм; 120 кг • ДТ-0,2-500 — n=23; 670×460×375 мм; 120 кг • ДТ-0,2-500 — n=40; 670×460×375 мм; 120 кг • ДТ-0,6-1000 — n=3; 840×475×400 мм; 235 кг • ДТ-0,6-1000 — n=15; 840×475×400 мм; 235 кг • ДТ-0,6-1000 — n=38; 840×475×400 мм; 235 кг • ДТ-0,6-500 — n=3; 845×475×395 мм; 200 кг • ДТ-0,6-500 — n=15; 845×475×395 мм; 200 кг • ДТ-0,6-500 — n=38; 845×475×395 мм; 200 кг Продажа ДТ и ДГ осуществляется по ценам завода-изготовителя. У нас возможно не только купить ДТ с доставкой к месту эксплуатации. По заявке наши специалисты могут установить дроссель-трансформатор или дроссель ДГ на станции или перегоне в полном соответствии со всеми действующими техническими документами и нормативными актами. Звоните нам: (812) 677-97-98.
устройство, принцип работы, назначение, методика расчета
Путевой дроссель-трансформатор – это агрегат, пропускающий ток тяги, обходя изолирующий стык. Устройство напоминает катушку индуктивности, отличающуюся конструкцией, принципом функционирования, техническими характеристиками, методикой расчёта, предназначением и областью применения. Дроссельный трансформатор подразделяется на виды в зависимости от частотности и функций.
Конструкция и принцип работы
Устройство ДТ выглядит, как сердечник формы Ш со стальным остовом. Расположение главной и второстепенной обмотки – средний стержень сердечника. Все составляющие механизма погружены в корпус из чугуна. Он в свою очередь наполнен маслом трансформатора и закрыт крышкой. Уровень масляной жидкости контролируется через пробки, находящиеся на крышке. Конструкция имеет защиту от:
проникновения внутрь ДП лицами, которым не положено вмешиваться в работу прибора;- размещения на выводах главной обмотки ненужных предметов;
- возможности повреждения корпуса.
В данном приборе находится пластина из гетинакса, расположенная посередине сердечника и остова. С её помощью происходит обеспечение воздушного зазора в магнитной цепи ДТ. Главная обмотка необходима для пропускания тягового тока. Она обладает 3 выводами. К линиям рельс присоединяются 2 из них, расположенные по краям, а оставшийся по середине – к среднему выводу дроссельного трансформатора смежной РЦ.
За включение приборов релейного и питающего концов РЦ отвечают дополнительные обмотки. Из-за индуктивного соединения приборов с рельсовой линией на работу РЦ меньше влияет константная составная часть тягового тока.
Дроссель-трансформатор на постоянном токе функционирует, согласно принципу самоиндукции катушки. Это происходит следующим образом:
- Часть тягового тока попадает на одну полуобмотку ДТ, перемещаясь по одной рельсе.
- Остальной ток идёт на вторую полуобмотку ДТ.
- Суммарный ток всех этих частей попадает через перемычку в среднюю точку ОО смежного ДТ. Поделившись надвое, он направляется по нитям рельс соседней РЦ.
Прибор может выдерживать диапазоны колебаний от низких до высоких. Первые могут быть от 20 Гц до 20 кГц. Средние значения составляют 20-100 кГц, а высокие – более 100 кГц. Конструкция дросселей высокой частотности совсем не похожа на конструкции ДТ низкой и средней частотности.
Назначение и область применения устройства
Дроссельный трансформатор используется в области электротехники. Он предназначен для установки на ЖД пути, оснащённые автоматической блокировкой переменного и электротягой постоянного тока. Подобное оборудование используют, чтобы стыковать системы электрической тяги. Также дроссели внедряют в трамваи, поезда метро и современные скоростные дрезины.
Их составляющие специально созданы для суровых условий окружающей среды, возникающих при эксплуатации на ЖД транспорте.
Если рассматривать устройство по назначению, то оно делится на следующие виды:
- Дроссели, совершающие работу на вторичных импульсных источниках питания. В самом начале происходит накапливание катушкой энергии от первоначального источника. Это осуществляется в собственном магнитом поле. После этого энергия возвращается в нагрузку.
- ДТ для запускания двигателей. Здесь устройство выступает в качестве ограничителя токов, отвечающих за пуск и тормоз. Дроссельная конструкция для приводов отличается мощностью не больше 30 кВт, схожа с 3-фазным трансформатором.
- ДТ насыщения. Его используют в стабилизаторах напряжения и ферромагнитных преобразователях. Ещё такой ДТ применяется в магнитных усилителях. Там из-за подмагничивания происходит смена индуктивной резистентности сердечником.
- ДТ для сглаживания. Подобным прибором убирают пульсации выпрямленного тока, если нет конденсаторов в ламповых усилителях.
Помимо прочего, аналогичные устройства распространены в сварке, в блокировочных, сигнализационных и совмещенных централизованных системах.
Основные технические характеристики
В характеристиках содержится информация о количестве витков, полном сопротивлении и показатель трансформации главной обмотки и второстепенных. Показатели дросселя-трансформатора ДТ 500:
- количество витков главной обмотки – 7+7;
- количество витков дополнительной обмотки – 1560, 322, 1238;
- полное сопротивление – 0,2-0,22 Ом;
- коэффициент трансформации – 40,23, 17.
Его масса составляет 132 кг, объём масла – 29 л. Может прослужить не больше 30 лет. Согласно правилам, температура сердечника не должна превысить 95 С. Она определяется по температуре верхних слоёв масла.
Разновидности дроссельных трансформаторов
Чаще всего встречаются следующие разновидности дроссельных трансформаторов:
- Низкочастотный. По внешнему виду он напоминает незамысловатый трансформатор из железа. Единственный отличием от него является сборка с одной обмоткой. Катушка делает так, что при понижении тока в цепи его значение не меняется и остаётся на нужном уровне, а при повышении значение снижается.
- Высокочастотный. Это электрическое устройство создано, чтобы передавать энергию высокой частоты между 2 цепями и больше электромагнитной индукцией. Оно распространено намного больше. Его катушка навивается на ферритовые и стальные сердечники либо на каркас из пластмассы.
Наличие сердечника в дросселе увеличивает его размеры. Без него он весит намного меньше.
Методика расчета
ДТ рассчитывается по методе нечёткой логики, нейронных сетей, резольвента Ла-Гранджа и другим. Разработаны специальные программы, производящие вычисление параметров устройства за считанные минуты. Основные этапы расчёта:
- ввод требуемых данных для расчёта;
- выдача программой значений кривой намагничивания и корректирование ошибок;
- подсчитывание системой геометрических параметров модели сердечника.
Применив особую формулу, можно своими силами рассчитать воздушный зазор в устройстве. Она выглядит следующим образом L*I²/V. индуктивность обмотки дросселя – это L, а сила постоянного тока на обмотке – это I. Буква V обозначает объём сердечника из железа.
Примеры расчетов
Например, можно рассчитать LO² для сердечника Е42х21х20 (B66329-G1000-X127) с воздушным зазором 2 мм, сделанного из материала N27. Известные следующие параметры сердечника, с которыми придётся работать:
- le = 97 мм;
- Ае = 240 мм²;
- B = 300 мТл;
- Ig = 2 мм.
Для начала необходимо найти краевой коэффициент F по формуле. Она выглядит следующим образом:
F=1+ (Ig/ Ае^1/2) *loge *(2Bw/ Ig)
В итоге получается 1,42.
После этого нужно приступить к вычислению µe. Это эффективная проницаемость. Она находится по формуле:
µe= (µo*Ae)/ (le/µi + Ig/F)
Значение будет равно 68.
Теперь потребуется рассчитать AL – коэффициент индуктивного сопротивления. Формула вычисления:
AL= (µo* µe)/(Ie/Ae)
Полученный результат будет равен 208.
Зная все эти данные, можно приступить к расчёту LO². Для этого существует следующая формула:
LO²=(Bmax*Ae*Ie)/ (µo* µe)
Конечный ответ – 16,60.
принцип работы устройства, характеристики, назначение и виды
Одним из наиболее распространённых элементов, использующихся в радиоэлектронной аппаратуре, является дроссель. Эта пассивная радиодеталь имеет большое значение в обеспечении стабильности работы электрических схем. Главной ее характеристикой считается индуктивность — очень важная физическая величина. Конструкция элемента проста, но при этом он может использоваться как в цепях переменного, так и постоянного тока.
Основные понятия в электронике
Родоначальником открытия электричества считается английский физик Уильям Гилберт. В 1600 году он ввёл понятие «янтарность», что в переводе обозначает электричество. Ученым было обнаружено на опытах с янтарем, что если его потереть о шёлк, он приобретает свойства притягивать к себе другие физические тела. Так было открыто статическое электричество. Первая электрическая машина была создана немецким инженером Отто фон Герике. Агрегат выглядел в виде металлического шеста с надетым на его верхушку серным шаром.
Последующие годы ряд физиков и инженеров из различных стран исследовали свойства электричества, открывая новые явления и изобретая приборы. Наиболее выдающимися учёными, которые внесли весомый вклад в науку, считаются Гальвани, Вольт, Эстред, Ом, Фарадей, Герц, Ампер. Признавая важность их открытий, фундаментальные величины, характеризующие различные электрические явления, назывались их именами.
Итогом их экспериментов и теоретических догадок стал труд Максвелла, создавшего теорию электромагнитных явлений в 1873 году. А через двадцать лет англичанин Томсон обнаружил частицу, участвующую в образовании электричества (электрон), положение которой в атомной структуре тела после указал Резерфорд.
Так было обнаружено, что электрический заряд — это способность физических тел создавать вокруг себя особое поле, оказывающее воздействие на другие вещества. Электричество связано с магнетизмом, который влияет на положение электронов, являющихся элементарными частицами тела. Каждая такая частица обладает определённой энергией (потенциалом) и может перемещаться по телу в хаотично.
Придание же электронам направленного движения приводит к возникновению тока. Работа, затраченная на перемещение элементарной частички, называется напряжением. Если ток течёт в замкнутой цепи, то он создаёт магнитное поле, то есть силу, действующую на электроны.
Все вещества разделяются на три типа:
- проводники — это тела, свободно пропускающие через себя ток;
- диэлектрики — в этих телах невозможно появление свободных электронов, а значит, ток через них протекать не может;
- полупроводники — материалы, свойство которых пропускать ток зависит от внешних факторов, например, температуры.
Характеристикой, обозначающей способность тела проводить ток, называется проводимость, а величина обратная ей — сопротивлением.
Активное сопротивление
На прохождение электрического тока в итоге оказывают влияние три физические величины: сопротивление, индуктивность и ёмкость. Каждый радиоэлемент (не исключение и дроссель) обладает ими в какой-то мере.
Активное сопротивление представляет собой величину, препятствующую прохождению тока и равную отношению разности потенциалов к силе тока (закон Ома). Его сущность объясняется тем, что в кристаллической решётке различных физических тел содержится разное число свободных носителей зарядов. Кроме этого, сама структура может быть неоднородной, то есть содержать примеси или дефекты. Электроны, перемещаясь под действием поля, сталкиваются с ними и отдают часть своей энергии кристаллам тела.
В результате таких столкновений частички теряют импульс, а сила тока уменьшается. Рассеиваемая электрическая энергия превращается в тепло. Элементом, использующим естественные свойства физического тела, является резистор.
Что же касается дросселя, то его активное сопротивление считается паразитным, вызывающим нагревание и ухудшение параметров. Зависит оно от типа материала и его физических размеров.
Определяется по формуле R = p * L / S, Ом, где:
- p — удельное сопротивление (справочная величина), Ом*см;
- L — длина проводника, см;
- S — площадь поперечного сечения, см2.
Ёмкостная составляющая
Любой проводник тока в разной мере имеет свойство накапливать электрический заряд. Эта способность называется ёмкостью элемента. Для одних радиодеталей она считается вредной составляющей (в частности, для дросселя), а для других — полезной (конденсатор). Относят это понятие к реактивному сопротивлению. Его величина зависит от вида подаваемого сигнала на элемент и ёмкости материала, из которой он сделан.
Математически реактивное сопротивление описывается выражением Xc = 1/w*C, где:
- w — циклическая частота, скалярная угловая величина, определяющаяся числом колебаний сигнала за единицу времени (2*p*f), Гц;
- C — ёмкость элемента, Ф.
Из формулы видно, что чем больше будет ёмкость и частота тока, тем выше сопротивление элемента, а значит, имеющий большое ёмкостное сопротивление дроссель будет нагреваться. Значение ёмкости в дросселе зависит от размеров проводника и способа его укладки. При спиралевидной намотке между рядом лежащими кольцами возникает ёмкость, также влияющая на протекающий ток.
Паразитная составляющая ёмкости проявляется и в образовании собственного резонанса изделия, так как дроссель на эквивалентной схеме можно представить в виде последовательной цепочки индуктивности и конденсатора. Такое включение создаёт колебательный контур, работающий на определённой частоте. Если частота сигнала будет ниже резонансного значения, то преобладать будет индуктивная составляющая, а если выше — ёмкостная.
Поэтому существенной задачей изготовления дросселя в электронике считается увеличение собственного резонанса конструкции.
Индуктивность и самоиндукция
Электрическое поле неразрывно связано с магнитным. Там, где существует одно, неизменно появляется и второе. Индуктивность — это физическая величина, характеризующаяся накоплением энергии, но в отличие от ёмкости эта энергия является магнитной. Её величина зависит от магнитного потока, образованного силой тока, протекающего через радиоэлемент. Чем больше ток, тем сильнее магнитный поток пронизывает изделие. Интенсивность накопления элементом энергии зависит от этого потока.
Математическая формула нахождения индуктивности — L = Ф/ I, где:
- Ф — магнитный поток, Вб;
- I — сила тока, текущая через элемент, А.
Индуктивность измеряется в генри (Гн). Таким образом, катушка индуктивности в момент протекания через неё тока создаёт магнитный поток равный одному веберу (Вб).
Сопротивление, оказываемое индуктивностью, во многом зависит от частоты приложенного сигнала. Для его расчёта используется выражение XL = w*L. То есть для постоянного тока она равна нулю, а для переменного — зависит от его частоты. Иными словами, для высокочастотного сигнала элемент будет обладать большим сопротивлением.
Физический процесс, наблюдаемый при прохождении переменного тока через индуктивность, можно описать следующим образом: в течение первой декады сигнала (ток возрастает) магнитное поле усиленно потребляет энергию из электрической цепи, а в последней декаде (ток убывает) отдаёт её обратно, поэтому за период прохождения тока мощность не потребляется.
Но эта модель подходит к идеальному элементу, на самом же деле некоторая часть энергии превращается в тепло. То есть происходят потери, характеризующиеся добротностью Q, определяемую отношением получаемой энергии к отдаваемой.
При изменении тока, текущего через проводник в контуре, возникает электродвижущая сила индукции (ЭДСИ) — самоиндукция. Другими словами, переменный ток изменяет величину магнитного потока, который приводит в итоге к появлению ЭДСИ. Проявляется этот эффект в замедлении процессов появления и спадания тока. Амплитуда самоиндукции пропорциональна величине тока, частоте сигнала и индуктивности. Её отставание по фазе от сигнала составляет 90 градусов.
Принцип работы
Термин «дроссель» происходит от немецкого слова drossel, что в переводе на русский язык означает «ограничитель». В электротехнике под ним понимается катушка индуктивности, обладающая большим сопротивлением току переменной частоты и практически не влияющая на постоянный ток.
По своей сути электрический дроссель — это индуктивность. Он способен накапливать энергию, получая её из магнитного поля. При воздействии на элемент напряжения в нём постепенно происходит увеличение тока, при этом если сменить полярность — ток начнёт убывать, т. е. резко изменить значение тока в дросселе невозможно.
Постепенное нарастание величины тока и его спад происходит из-за магнитного поля, которое не может мгновенно изменить своё направление. Другими словами, ток блока питания противодействует наведённому току в сердечнике изделия, поэтому в цепях с током переменой частоты он является своего рода ограничителем из-за индуктивного сопротивления.
По своей конструкции дроссель чем-то похож на трансформатор, но при этом чаще всего у него одна обмотка. А вот их принципы действия полностью отличаются. Если для трансформатора важно передавать всю энергию и гальванически развязывать цепь, то главной задачей стоящей перед дросселем является накапливание энергии в индуктивности. В то же время для трансформатора такое накопление считается паразитным процессом.
Устройство прибора
Выполняется этот элемент из проволочного вида проводника, наматываемого в виде спирали. Этот проводник может быть как многожильным, так и одножильным. Проволока может наматываться на диэлектрический каркас или использоваться без него. Если применяется основание, то оно может быть выполнено круглым, прямоугольным или квадратным сечением. Физически же дроссель состоит из одного или множества витков проводника.
При изготовлении дросселя используются следующие разновидности намотки:
- прогрессивная — шаг витков плавно изменяется по всей длине конструкции;
- универсальная — расстояние между витками одинаковое.
Первый тип используется при создании изделий, предназначенных для работы на высоких частотах, при этом уменьшается значение паразитной ёмкости. Такая намотка может быть однослойной или многослойной, причем даже разного диаметра. В качестве материала для изготовления проводника используется медь.
Увеличение индуктивности достигается путём добавления ферромагнитного сердечника. В зависимости от назначения устройства используют разные его виды, например, для подавления высокочастотных помех — феррит, флюкстрол или карбонил, для фильтрации звуковой частоты — пермаллой. В то же время для дросселя, работающего со сверхвысокими частотами, применяют латунь. Магнитопровод рассчитывается так, чтобы избежать режима насыщения (падения индуктивного сопротивления).
Чтобы избежать насыщения в дросселях, магнитопровод изготавливается с зазором. При изготовлении дросселя стараются обеспечить:
- необходимую индуктивность;
- величину магнитной индукции, исключающую насыщение;
- способность выдерживать необходимый ток.
Для этого обычно сначала рассчитывается зазор и число витков исходя из силы тока и индуктивности, а после определяется максимально возможный диаметр проволоки. В цифровых малогабаритных устройствах дроссель изготавливается в плоском виде. Достигается это путём печатания проводниковой дорожки в виде круговой или зигзагообразной линии.
Виды и характеристики
Главной характеристикой дросселя, безусловно, является индуктивность. Но, кроме неё, существует ряд номинальных параметров, характеризующих элемент как изделие. Именно они определяют возможности использования устройства и его срок службы. Основными из них являются:
Мощность — определяется типом сердечника и поперечным сечением провода. Обозначает величину сигнала, которую может выдержать дроссель. Единицей измерения служит ватт.
- Добротность и угол потерь — характеризуют качество устройства. Чем больше добротность и меньше угол, тем выше качество.
- Частота тока — f, Гц. В зависимости от неё дроссели разделяют на низкочастотные, имеющие границы колебаний 20−20 000 Гц, ультразвуковые — от 20 до 100 кГц и сверхвысокие — больше 100 кГц.
- Наибольшее допустимое значение тока — I, А.
- Сопротивление элемента в неподключенном состоянии — R, Ом.
- Потери в магнитопроводе — P, Вт.
- Вес — G, кг.
Современная промышленность изготавливает электромагнитные дроссели, отличающиеся не только по характеристикам, но и по видам. Они выпускаются цилиндрической, квадратной, прямоугольной и круглой формы. А также они различаются по типу цепи, для которой предназначены, и могут быть однофазными или трёхфазными.
Условно дроссели можно разделить на три типа:
- Сглаживающие. Используются для фильтрации переменной составляющей сигнала, уменьшая её значение. Такие элементы ставятся на входе или выходе выпрямительных или преобразующих части схем.
- Переменного тока. Ограничивают его величину при резком скачке.
- Насыщения. Управляют индуктивным сопротивлением за счёт периодического подмагничивания.
Маркировка и обозначения
В принципиальных схемах и технической документации дроссели обозначаются латинской буквой L, условное графическое обозначение — в виде полуокружностей. Их количество нигде не указывается, но обычно не превышает трёх штук. Жирная точка, ставящаяся в начале полуокружностей, обозначает начало витков. Если индуктивность выполняется на каркасе, сверку изображения чертится прямая линия. Для обозначения номиналов элемента используется код из букв и цифр или цветовая маркировка.
Цифры указывают на значение индуктивности, а буква — на допуск. Например, код 250 J обозначает индуктивность, равную 25 мкГн с погрешностью в пять процентов. Когда на маркировке стоит только число, то это значит, что допуск составляет 20%. Таким образом, первые две цифры обозначают числовое значение в микрогенри, а третья — множитель. Буква D ставится на высокоточных изделиях, их погрешность не превышает 0,3%.
Цветовая маркировка, в принципе, соответствует буквенно-цифровой, но только наносится в виде цветных полос. Первые две указывают на значения в микрогенри, третья — коэффициент для умножения, а четвёртая — допуск. Индуктивность дросселя, на котором изображены две оранжевые полосы, коричневая и белая, равна 33 мкГ с разрешённым отклонением в 10%.
Область применения
Отвечая на вопрос, зачем нужен дроссель, можно с уверенностью сказать, что основное его применение — это фильтры. Ни один качественный источник питания не обходится без этого простого элемента. Его применение позволяет избавиться от пульсаций напряжения, которые вызывают нестабильность в работе многих устройств — материнской платы, видео- и звуковых карт и т. п.
Сглаживание формы сигнала путём устранения его паразитной составляющей обеспечивает стабильную работу микропроцессорных блоков, особо зависящих от качества питающего их напряжения.
Кроме того, используя свойство элемента накапливать энергию, а потом её отдавать в цепь, дроссель нашёл своё применение в люминесцентных лампах. Такие осветители работают на принципе возникновения дугового разряда, поддерживающегося в парах инертного газа. Для того чтобы он возник, между электродами необходимо появление высокого пускового напряжения, способного пробить газовый диэлектрик. Благодаря дросселю такой разряд и создаётся.
Их также используют и в усовершенствованных осветительных приборах — индукционных лампах. Отличие таких светильников от люминесцентных заключается в отсутствии электродов, необходимых для зажигания. Для получения света используются три составляющие — электромагнитная индукция, разряд в газе, свечение люминофора.
Стоит отметить и ещё одно из применений дросселя — сварочный трансформатор. Здесь основное назначение радиоэлемента заключается в стабилизации тока. Сварочный дроссель, установленный в инверторе, смещает фазу между током и напряжением. Такое его использование упрощает розжиг электрода и поддерживает стабильное горение дуги.
Способность элемента создавать магнитное поле зачастую применяется в электромагнитах, отличающихся большой мощностью, а также в различных электромеханических реле, электродвигателях и даже генераторах.
Самостоятельное изготовление
Для самостоятельного изготовления дросселя необходимо правильно рассчитать его конструкцию. Для этого используется простая формула расчёта индуктивности: L=0,01*d*w 2 /(L/d+0,44), где d — диаметр основания (см), L — длина проволоки (см), w — количество витков. При этом если имеется мультиметр с возможностью изменения индуктивности, то точное количество витков можно подобрать, используя его.
Метод намотки при использовании этой формулы предполагает укладку виток к витку. Например, необходимо подобрать магнитопровод для дросселя с индуктивностью один мкГн, рассчитанный на ток I = 4A. Берется сердечник 2000 НМ типоразмера К 16 х 8 х 6. Согласно справочнику коэффициент начальной индуктивности — ALH = 1,36 мкГн, а длина магнитного пути — le= 34,84 мм. Соответственно, число витков будет N= (L/ALH)0,5= (1/1,36)0,5 = 0,86. Если принять N=1, то при заданном токе напряжённость магнитного поля в сердечнике будет равна Н= 4*1/(34,84*10−3)= 114 А/м.
Таким образом, дроссель представляет собой катушку, которая характеризуется индуктивностью. Благодаря своим свойствам он может накапливать магнитную мощность, после отдавая её в цепь в виде электрической энергии. При этом использование элемента позволяет также подавлять переменную составляющую тока в цепи.
Дроссель-трансформатор — Энциклопедия нашего транспорта
Дроссель-трансформатор — устройство для пропуска тягового тока из одной рельсовой цепи в другую в обход изолирующих стыков на электрифицированных линиях с автоматической блокировкой.
Дроссель-трансформаторы устанавливаются на электрифицированных участках у изолирующих стыков: на перегонах — на обочине земляного полотна, на станциях — в междупутьях.
Дроссель-трансформатор представляет собой сердечник, на который наложены основная и дополнительная обмотки. Сердечник с обмотками помещён в чугунный корпус, залитый трансформаторным маслом, и закрыт крышкой с пробками для контроля уровня масла. Основная обмотка, рассчитанная на пропуск тягового тока, имеет три вывода: два крайних вывода подключают к рельсовым нитям, а третий — к среднему выводу дроссель-трансформатора смежной рельсовой цепи (РЦ). Дополнительные обмотки дроссель-трансформатора используют для подключения аппаратуры питающего и релейного концов РЦ. Поскольку эта аппаратура связана с рельсовой линией индуктивно, то уменьшается влияние постоянной составляющей тягового тока на работу РЦ. Обычно дополнительные обмотки имеют большее число витков, чем основные.
Дроссель-трансформаторы являются согласующими трансформаторами, что делает работу РЦ не зависящей от сопротивления соединительных проводов, что особенно важно при длинных РЦ.
Фотогалерея
Схемы и таблицы
Для постоянного тока
Для переменного тока
Литература
- Н. С. Конарев «Железнодорожный транспорт. Энциклопедия», 1995
- В. И. Сороко, Б. А. Разумовский «Аппаратура железнодорожной автоматики и телемеханики. Справочник», 1981
что это такое, разновидности: электронный, дроссель-трансформатор, схема подключения к лампе дневного света, цветовая маркировка, фото и видео
Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

Принцип работы
Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.
По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.

Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:
- Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
- Ультразвуковые частоты: от 20 кГц до 100 кГц.
- Сверхвысокие частоты: свыше 100 кГц.
Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.
Сердечник для дросселя
Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.
Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.
Характеристики
Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:
- Сопротивление. Учитывается при постоянном токе.
- Изменение напряжения (допустимого).
- Ток подмагничивания, применяется номинальное значение.
Разновидность дросселей
Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.
А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.
Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:
- Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
- Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.
Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.
Разделение по назначению
По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.
- Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
- Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.
По месту установки эти приборы делятся также на две группы:
- Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
- Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.

Электронные аналоги
Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.
По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.
Полезные советы
Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.
Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).
Заключение по теме
Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.
3. Дроссель-трансформаторы типов дт-1-150 и 2дт-1-150 выпуска до 1995 г.
Назначение. Дроссель-трансформаторы ДТ-1 и 2ДТ-1 устанавливают на участках железных дорог, оборудованных автоблокировкой с частотой сигнального тока в рельсовой цепи 75 и 25 Гц при электрической тяге на переменном токе частотой 50 Гц. Дроссель-трансформаторы ДТ-1-150 (черт. 20816М.00.00) и 2ДТ-1-150 (черт. 20817.00.00) рассчитаны на пропускание номинального (длительного) тягового тока через каждую секцию основной обмотки 150 А. Средний вывод обмотки рассчитан на 300 А.
Некоторые конструктивные особенности. Дроссель-трансформатор типа ДТ-1-150 (рис. 250) состоит из сердечника 4, собранного из листовой электротехнической стали, основной 3 и дополнительной 5 обмоток и кабельной муфты 6. Сердечник с обмотками помещен в чугунный корпус / и закрыт крышкой 2. Схема соединения основной и дополнительной обмоток дроссель-трансформатора ДТ-1-150 приведена на рис. 251.
Дроссель-трансформатор 2ДТ-1-150 представляет собой сдвоенный дроссель-трансформатор ДТ-1-150, т. е. две основные и две дополнительные обмотки размещены в одном корпусе, средние выводы основных обмоток соединены и одной клеммой выведены наружу (рис. 252).
Магнитная система дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150 без воздушного зазора.
На крышке корпусов дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150 имеется вентиляционная пробка и уплотнитель из резины.
Для охлаждения основной и дополнительной обмоток в корпус дроссель-трансформатора перед установкой в эксплуатацию заливают трансформаторное масло до уровня контрольного отверстия в корпусе. Завод поставляет дроссель-трансформаторы, не залитые маслом.
В комплект поставки дроссель-трансформаторов входит также предохранительная труба для защиты подводимого кабеля. Комплект перемычек в поставку дроссель-трансформаторов не входит. Перемычки поставляются заказчику по отдельному заказу.
При установке дроссель-трансформаторов ДТ-1-150 на перегонах и станциях применяются медные перемычки, типы которых приведены в табл. 232 или их сталемедные и сталеалюминиевые аналоги
При установке дроссель-трансформаторов 2ДТ-1-150 на перегонах и станциях применяются перемычки те же, что и для дроссель-трансформаторов ДТ-1-150. Медная перемычка типа XXI при установке 2ДТ-1-150 используется одна на 6 дросселей или используется ее сталемедный и сталеалюминиевый аналог.
Таблица 232 Типы и количество устанавливаемых медных перемычек
Тип и номер чертежа перемычки | Количество устанавливаемых перемычек | |
на перегонах | на станциях | |
Перемычка дроссельная двухпроводная типа XXI (черт. 20816.14Г.00) | Одна на 12 дросселей | Одна на 12 дросселей |
Перемычка дроссельная двухпроводная типа XXII (черт. 20816.15.00) | Одна на один дроссель | — |
Перемычка дроссельная двухпроводная типа XXIII (черт. 20816.16.00) | То же | — |
Перемычка дроссельная двухпроводная типа XXIV (черт. 20816.25.00) | — | Одна на один дроссель |
Перемычка дроссельная двухпроводная типа XXV (черт. 20816.26.00) | — | То же |
Электрические характеристики. Каждая из основных и дополнительных обмоток сдвоенного дроссель-трансформатора типа 2ДТ-1-150 имеет те же электрические характеристики и обмоточные данные, что и основная и дополнительная обмотки дроссель-трансформатора типа ДТ-1-150.
Разность тяговых токов (асимметрия тока), проте кающих в секциях основной обмотки, А 15 Полное сопротивление основной обмотки А1—А2 переменному току частотой 75 Гц при напря жении 0,5 В и отсутствии подмагничивания, не менее, Ом 1,5 Полное сопротивление основной обмотки перемен ному току частотой 25 Гц при напряжении 0,3 В и отсутствии подмагничивания, не менее, Ом 0,5
Полное сопротивление основной обмотки переменному току частотой 50 Гц при напряжении 0,5 В, не менее, Ом 1,0
Полное сопротивление основной обмотки переменному току частотой 75 Гц при напряжении 10 В и наличии подмагничивания переменным током частотой 50 Гц при напряжении 5 В,
не менее, Ом 2
Полное сопротивление основной обмотки переменному току частотой 25 Гц при напряжении 4 В и наличии подмагничивания переменным током частотой 50 Гц при напряжении 5 В,
не менее, Ом 0,7
Сопротивление основной обмотки постоянному току между выводами А1—А2 при температуре +20°С, не более, Ом 0,003±10%
Дополнительная обмотка дроссель-трансформатора, подключенная выводами Б1—Б2 к напряжению переменного тока 30 В частотой 50 Гц, должна индуктировать в основной обмотке на выводах А1—А2 напряжение, В 10±0,5
Основная обмотка состоит из двух секций по 8 витков в каждой, соединенных между собой. Сечение медной шины основной обмотки 4,1×8 мм, расчетное сечение — 31,92 мм2.
Дополнительная обмотка содержит 48 витков и выполняется из провода марки ПЭЛБО диаметром 1,95 мм в виде плоской катушки без каркаса. Выводные концы выполняются обмоточным проводом и защищаются электроизоляционной трубкой. Длина выводных концов 300 мм. Дополнительная обмотка обматывается одним слоем киперной ленты с последующей пропиткой лаком МЛ-92.
Следует отметить, что основная обмотка дроссель-трансформаторов ДТ-1-150 (черт. 20816), выпускавшихся до 1970 г., имела 12 витков, дополнительная — 36 витков.
При длительном протекании переменного тягового тока 150 А частотой 50 Гц через каждую секцию основной обмотки с выходом суммарного тока 300 А через средний вывод и температуре окружающей среды +35°С установившаяся температура в верхних слоях трансформаторного масла дроссель-трансформатора не должна превышать +60°С сверх температуры окружающей среды (измеряется термометром), а температура обмотки не должна превышать +75°С сверх температуры окружающей среды (измеряется методом сопротивления).
Температура считается установившейся, если за последние 3 ч испытания ее повышение не превосходит 6°С практически неизмененной температуры окружающего воздуха.
Коэффициенты четырехполюсника дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150 при установке их на релейном конце рельсовой цепи, частоте сигнального тока 75 Гц, напряжении на основной обмотке 0,5 В и отсутствии подмагничивания следующие:
Ар=0,334 е ^-j1°37’ ; Др=3,1 е^-j1°17’; Вр=0,177 е^j64°11’; Ср=0,185е^-j76°47’
Коэффициенты четырехполюсника дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150 при установке их на релейном конце рельсовой цепи, частоте сигнального тока 25 Гц, напряжении на основной обмотке 0,3 В и отсутствии подмагничивания следующие: Ар=0,338 е ^j0°37’ ; Вр=0,078 е^j48°; Ср=0,433 е^-j72°13’; Др=3,07е^-j1°13’В августе 1985 г. были внесены изменения и уточнения в некоторые параметры дроссель-трансформаторов типа ДТ-1-150 и 2ДТ-1-150, которые стали следующими:
— сопротивление основной обмотки постоянному току между выводами А1—А2 не должно быть более 0,0035+10% Ом при температуре +20°С;
— дополнительная обмотка дроссель-трансформатора, подключенная выводами Б1—Б2 к напряжению 30 В переменного тока частотой 50 Гц, должна индуктировать в основной обмотке (на выводах А1—А2) напряжение (10^f0) В;
— уточнены коэффициенты четырехполюсников: исключены минуты. Например, было Ар=0,334 е ^-j1°37’‘, стало Ар=0,334 е ^j1°
— сопротивление изоляции дроссель-трансформаторов в нормальных климатических условиях должно быть не менее: 25 МОм — между основной и дополнительной обмотками; между дополнительной обмоткой и корпусом и 5 МОм — между основной обмоткой и корпусом, а в условиях воздействия верхнего значения относительной влажности 95+3% и температуре +30°С должно быть не менее: 2 МОм — между основной и дополнительной обмотками, между дополнительной обмоткой и корпусом и 0,5 МОм — между основной обмоткой и корпусом.
С ноября 1987 г. наряду с горячекатаной сталью для магнитопроводов начали применять и холоднокатаную сталь. В связи с этим дроссель-трансформаторы с магнитопроводом из горячекатаной стали начали маркировать ДТ-1-150 и 2ДТ-1-150, а с магнитопроводом из холоднокатаной стали начали маркировать ДТ-1-150Х и 2ДТ-1-150Х. Это повлекло за собой внесение следующих изменений. Разность тяговых токов (асимметрия тока), протекающих в секциях основных обмоток, принимается равной:
— 15 А — для дроссель-трансформатора типа ДТ-1-150 и 2ДТ-1-150;
— 16,5 А — для дроссель-трансформатора типа ДТ-1-150Х и 2ДТ-1-150Х;
— полное сопротивление дроссель-трансформатора переменному току частотой 75 Гц при напряжении на основной обмотке 10 В и наличии подмагничивания переменным током частотой 50 Гц напряжением 5 В для дроссель-трансформаторов типа ДТ-1-150 и 2ДТ-1-150 и 6,5 В для дроссель-трансформаторов типа ДТ-1-150Х и 2ДТ-1-150Х не должно быть менее 2 Ом;
— полное сопротивление дроссель-трансформатора переменному току частотой 25 Гц при напряжении на основной обмотке 4 В и наличии подмагничивания переменным током частотой 50 Гц напряжением 5 В для дроссель-трансформаторов типа ДТ-1-150 и 2ДТ-1-150 и 6,5 В для дроссель-трансформаторов типа ДТ-1-150Х и 2ДТ-1-150Х не должно быть менее 0,7 Ом.
Все другие параметры и схема соединения обмоток дроссель-трансформаторов типа ДТ-1-150 (ДТ-1-150Х) и 2 ДТ-1-150 (2ДТ-1-150Х) остались прежними (рис. 251 и 252).
Сопротивление основной обмотки постоянному току измеряется методом вольтметра — амперметра при величине тока не ниже 100 А в пересчете к температуре +20°С.
Полное сопротивление основных обмоток дроссель-трансформаторов при отсутствии подмагничивания проверяется по схеме, приведенной на рис. 253, а, в которой использованы: Б — аккумуляторная батарея; L1 — дроссель ДТ-0,6-1000 в схеме; А1 — амперметр на 150 А;
А2 — амперметр – ((~0,5 – 1 A)/(=2,5 – 5a)) VI — ампервольтметр типа Ц-438;
V2 — вольтметр -15 В; V3 — вольтметр -50 В; TV1 — трансформатор ПОБС-220/3 В, 100 ВА; R1 — резистор 0,05 Ом, 200 A; R2 — резистор 0,03 Ом, 200 A; R4 — резистор 80 Ом; 4 A; L2 — испытуемый дроссель-трансформатор; SB — выключатель; TV2 — автотрансформатор ЛАТР-1; SB1 — выключатель двухполюсный на 200 A; SB3, SB6, SB8 — выключатели двухполюсные на 25 A; SB5 — выключатель четырехполюсный на 25 А; Кн2, Кн4 — кнопки с разомкнутыми контактами; SB9 — выключатель; т V — милливольтметр на 150 мВ.
Величина переменного тока регулируется потенциометром R4 так, чтобы напряжение на выводах А1—А2, устанавливаемое по вольтметру VI, было равно 0,5 В при частотах тока 50 и 75 Гц и 0,3 В при частоте тока 25 Гц. Дополнительная обмотка при этом должна быть разомкнута.
Величина полного сопротивления основной обмотки дроссель-трансформатора при наличии подмагничивания определяется по схеме, приведенной на рис. 253, б, в которой использованы: TV1 — автотрансформатор типа ЛАТР-1; TV2 — трансформатор типа ПОБС-2; А1, А2 — амперметры ACT на 5—10 А класса точности 0,5; VI, V2 — вольтметры Ф534; Ы — испытуемый дроссель-трансформатор; L2 — дроссель-трансформатор в схеме ДТ-1-150; SB1, SB2 — выключатели двухполюсные на 25 А.
Подмагничивающее напряжение переменного тока 5 В частотой 50 Гц, приложенное ко всей основной обмотке А1—А2, контролируется вольтметром VI.
Напряжение на дополнительной обмотке дроссель-трансформатора устанавливается по вольтметру V2.
где А2 — показание амперметра А2, А; U2 — показание вольтметра V2, В; n² — квадрат коэффициента трансформации. Для переменного тока частотой 75 Гц:
Для переменного тока частотой 25 Гц:
Проверка напряжения, индуктируемого в основной обмотке, производится по схеме на рис. 253, а. К дополнительной обмотке на зажимы Б1—Б2 подключают напряжение переменного тока 30 В (по вольтметру V3) частотой 50 Гц, а на зажимах А1—А2 основной обмотки измеряют напряжение астатическим вольтметром V2, не реагирующим на форму кривой напряжения, которое должно быть (10+0,5) В-
Электрическая прочность и сопротивление изоляции. Изоляция обмоток относительно корпуса (магнитопровода) и между собой должна выдерживать без повреждений в течение 1 мин испытательное напряжение 2500 В частотой 50 Гц при мощности испытательной установки не менее 1,25 кВА.
Испытание необходимо начинать с напряжения не более 800 В. Время для полного подъема испытательного напряжения до полного значения 2500 В должно быть не менее 10 с. Полное испытательное напряжение выдерживают в течение 1 мин, после чего плавно снижают до 800 В и отключают.
Сопротивление изоляции дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150 между основной и дополнительной обмотками, между дополнительной обмоткой и корпусом при температуре окружающего воздуха от 15 до +25°С и относительной влажности 75% должно быть не менее 25 МОм и 5 МОм — между основной обмоткой и корпусом, а в условиях воздействия верхнего значения относительной влажности 95±3% и температуре +30°С должно быть не менее: 2 МОм — между основной и дополнительной обмотками; между дополнительной обмоткой и корпусом и 0,5 МОм — между основной обмоткой и корпусом.
Сопротивление изоляции проверяют мегаомметром на напряжение 500 В.
Габаритные размеры и масса дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150, а также объем заливаемого трансформаторного масла следующие:
Габаритные размеры, мм | Масса без масла, кг | Объем заливаемого трансформаторного масла, л | |
ДТ-1-150 | 500x300x320 | 51 | 6,5 |
2ДТ-1-150 | 480x480x315 | 88 | 10,0 |
6. Трансформаторы и дроссели.
Трансофматором называют электромагнитное устройство для преобразования основных параметров электрической энергии в цепях переменного тока. Дроссели бывают высокочастотные и низкочастотные . Дросселем называют устройство, которое служит для уменьшения пульсации, получающейся после выпрямления переменного тока и применяется в качестве фильтров и выпрямителей. ВЧ/дроссели — это устройства предназначенное для того, чтобы уменьшить ток высокой частоты, проходящий в какую либо цепь, сохранив возможность прохождения тока низкой частоты или постоянного тока. 6.1 Классификация трансформаторов.
Трансформаторы классифицируются по его мощности, силе тока, рабочей частоте,
напряжению, режиму работы, предназначению и расположению в схеме.
По напряжению трансформаторы делятся на низко и высоковольтные. Рабочее
напряжение, характеризует величину, на которую должна рассчитана изоляция какой
либо одной, нескольких или всех обмоток трансформатора. К высоковольтным
относятся трансформаторы у которых рабочее напряжение в любой обмотке не
превышает 1000 — 1500В.
Такие трансформаторы делят на 2 типа:
1) имеет высокое номинальное напряжение.(свыше 1500В) и надежную изоляцию между отдельными обмотками трансформатора или между каждой обмоткой и корпусом, а так же надежную слоевую изоляцию в высоковольтных обмотках.
2) Имеет невысокое рабочее напряжение в обмотках, но в силу схемных особенностей высокие напряжения существуют между обмотками или между какой то обмоткой или корпусом. В этом случае трансф. считается высоковольтным т.к требуется выполнение высоковольтной изоляции между обмоткой и корпусом. Однако в этом случае применяется низковольтная.
6.2 Область применения трансформаторов.
Силовые трансформаторы служат для получения напряжений питающих выпрямители моторы и других нагрузок (около 70% всех приборов)
Низкочастотные трансформаторы применяются в качестве согласующего элемента между источником сигнала и входом усилителя, между двумя усилителями или между усилителем и нагрузкой.
Особую группу составляют импульсные трансформаторы, которые используются для трансформации или формирования импульсов малой длительности. Они применяются в импульсной технике, гидролокации, в схемах ультразвуковых приборов и установок. В импульсном режиме их мощность достигает больших значений. Дроссели применяют в фильтрах питания (сглаживающие дроссели) в фильтрах выпрямителей, в высокочастотных фильтрах, в различных избирательных цепях, в различных стабилизаторах и регуляторах.
6.3 Элементы конструкций трансформаторов и дросселей. Несмотря на различия функций силовых трансформаторов и низкочастотных, основные физические процессы происходящие в них одни и те же. Поэтому трансформаторы разного схемного назначения имеют однотипную конструкцию : любой трансформатор состоит из сердечника изготовленного из магнитного материала, на котором размещена катушка с обмотками , а так же элементов, служащих для скрепления частей сердечника и закрепления трансформатора. 6.3.1 Магнитопроводы.
Для трансформаторов и дросселей применяют три шипа магнитопроводов: стержневой, броневой т кольцевой.
При использовании броневого магнитопровода все обмотки трансф. размещают на одной катушке, которую надевают на средний стержень магнитопровода.
При использовании стержневого на 2 его стержнях расположены 2 катушки.
В маломощных силовых и низкочастотных трансф. используется броневой сердечник, т.к применение одной катушки упрощает конструкцию и позволяет получить максимальный коофициент усиления , заполнена она медью.
Стержневую конструкцию используют для трансф. средней и большой мощности : наличие двух катушек увеличивает теплопередачи и улучшает тепловой режим обмоток.
Преимуществом стержневой системы конструкции является слабое внешнее магнитное поле, т.к поля от этих катушек направлены навстречу друг — другу. Наименьшее внешнее поле получается при использовании в трансф. кольцевых магнитопроводов. Но они используются редко т.к низка производительность при поломке магнитопровода.
По конструкции броневые и стержневые магнитопроводы подразделяются на собранные из пленочных пластин и пленочные.
Ленточный магнитопровод можно получить наливкой и обмоткой полосы трансформаторной системы. После разрезки получают С -образные сердечники.
Для получения мин. намагниченного зазора в магнитопроводе торцы сердечников после установки в катушку заливают пастой содержащий ферромагнитный материал. Если зазор необходим то в месте слепка двух сердечников устанавливают накладки из бумаги или картона необходимой толщины. Ленточная конструкция сердечников позволяет механизировать процесс изготовления.
При использовании некоммутируемых сталей применение ленточных сердечников позволяет сохранить размеры и массу трансформаторов. Это происходит потому, что в магнитных силовых линий проходит перпендикулярно по направлению потока. При этом можно иметь достаточно большие размеры. В ленточных сердечниках линии расположения поля находятся по всей длине магнитопровода.
К основным параметрам сердечника относятся : средняя длинна магнитной силовой линии 1с, активная площадь поперечного сечения магнитопровода Sc, площадь окна So, и вес магнитопровода Gc.
Площадь поперечного сечения
Sc = kc * 2ab где kc — коофициент заполнения , учитывающий, что часть площади поперечного сечения магнитопровода занял оксид металла и другие намагниченные материалы.
Кс — зависит от толщины материала и лежит в пределах 0.85 <kc< 0.95
Трансформаторы.
ГОСТ 17596 — 72 — трансформаторы согласования, низкочастотные мощностью до 25
Вт.
Основные параметры:
Термины и определения.
Номинальная мощность — расчетная суммарная мощность вторичных обмоток при номинальных напряжениях и сопротивлениях нагрузки в режиме согласования.
Номинальное сопротивление нагрузки — сопротивление на которое рассчитан трансформатор.
Коофициент трансформации отношение числа витков вторичной обмотки к числу витков первичной или напряжение на вторичной обмотке к напряжению на первичной обмотке. В режиме холостого хода будет учтено падение напряжения на трансформаторе.