Добыча электроэнергии – Производство электроэнергии в России. Производство, передача и использование электроэнергии :: SYL.ru

Содержание

Как производят и передают электроэнергию: от электростанций до дома

Электричество, как основополагающий двигатель развития цивилизации, вошло в жизнь человечества сравнительно недавно. Активное использование электроэнергии началось чуть более ста лет назад.

Производство электроэнергии

Производство электроэнергии

История мировой электроэнергетики

Электроэнергетика – стратегическая отрасль экономической системы любого государства. История возникновения и развития ЭЭ берёт своё начало с конца XIX столетия. Предтечей появления промышленной выработки электроэнергии являлись открытия основополагающих законов о природе и свойствах электрического тока.

Отправной точкой, когда возникли производство и передача электроэнергии, считают 1892 год. Именно тогда была построена первая электростанция в Нью-Йорке под руководством Томаса Эдисона. Станция стала источником электрического тока для ламп уличного освещения. Это был первый опыт перевода тепловой энергии от сгорания угля в электричество.

С тех пор началась эра массового строительства тепловых электростанций (ТЭС), работающих на твёрдом топливе – энергетическом угле. С развитием нефтяной промышленности появились огромные запасы мазута, которые образовывались в результате переработки нефтепродуктов. Были разработаны технологии получения носителя тепловой энергии (пара) от сжигания мазута.

С тридцатых годов прошлого века получили широкое распространение гидроэлектростанции (ГЭС). Предприятия стали использовать энергию ниспадающих потоков воды рек и водохранилищ.

В 70-е годы началось бурное строительство атомных электростанций (АЭС). Одновременно с этим стали разрабатываться и внедряться альтернативные источники электроэнергии: это ветровые установки, солнечные батареи, щелочно-кислотные геостанции. Появились мини установки, использующие тепло для получения электричества в результате химических процессов разложения навоза и бытового мусора.

История российской электроэнергетики

Мощным толчком развития производства электрической энергии стало принятие молодым государством СССР плана ГОЭЛРО в 1920г. Было принято решение о строительстве 10 электростанций общей мощностью 640 тыс. кВт в течение 15 лет. Однако уже к 1935 году было введено в строй 40 государственных районных электростанций (ГРЭС). Была создана мощная база индустриализации России и союзных республик.

В 30-х годах началось массовое строительство гидроэлектростанций (ГЭС) на территории СССР. Осваивались реки Сибири. На Украине была возведена знаменитая Днепрогэс. В послевоенные годы государством уделялось внимание строительству ГЭС.

Важно! Появление в России дешевого электричества решило проблему городского транспорта в крупных областных центрах. Трамваи и троллейбусы не только стали экономическим стимулом использования электроэнергии в транспорте, но и принесли значительное сокращение потребления жидкого топлива. Дешёвый энергоресурс привёл к появлению на железных дорогах электровозов.

В 70-е годы в результате мирового энергетического кризиса произошло резкое повышение цен на нефть. В России стал внедряться план развития атомной энергетики. Практически во всех республиках Советского Союза стали строить АЭС. Лидером в этом отношении стала нынешняя Россия. На сегодняшний день на территории Российской Федерации действуют 21 АЭС.

Территориальная структура производства электроэнергии

Территориальная структура производства электроэнергии

Основные технологические процессы в электроэнергетике

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

ЭлектростанцияТопливоГенерация
ТЭСУголь, мазутПолучение пара от сгорания топлива, который движет турбины генераторов
ГЭСПотенциальная энергия потока водыДвижение турбин под напором воды
АЭСУрановые сердечникиПолучение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Отрасли промышленности электроэнергетики

Список промышленных источников производства электрической энергии состоит из 4 отраслей энергетики:

  • атомная;
  • тепловая;
  • гидроэнергетика;
  • альтернативная.

Атомная энергетика

Эта отрасль энергодобычи является на сегодня самым эффективным способом получения электричества за счёт ядерной реакции. Для этого используют очищенный уран. Сердцем станции является атомный реактор.

Схема работы ядерного реактора

Схема работы ядерного реактора

Источниками тепла являются ТВЭЛы (тепловыделяющие элементы). Они представляют собой тонкие длинные циркониевые трубки, в которых помещены урановые таблетки. Их объединяют в группы – ТВС (тепловыделяющая сборка). Ими загружают корпус реактора, в теле которого размещены трубы с водой. Во время ядерного распада урана происходит выделение тепла, которое нагревает воду в первичном контуре до 3200.

Пар поступает на лопасти турбин, которые вращают генераторы переменного тока. Электричество через трансформаторы попадает в общую энергетическую систему.

Обратите внимание! Помня о трагедии Чернобыля, учёные всего мира совершенствуют систему безопасности работы АЭС. Последние разработки в атомной энергетике обеспечивают практически 100% безвредность атомных электростанций.

Вид на АЭС

Вид на АЭС

Тепловая энергетика

Тепловые электростанции работают по принципу сжигания природного топлива: угля, газа и мазута. Вода, проходящая по трубопроводам через котлы, превращается в пар и в дальнейшем подаётся на лопасти генераторных турбин.

Дополнительная информация. За 4 года эксплуатации одной группы ТВЭЛов вырабатывается такое количество электроэнергии, для получения которого ТЭС потребуется сжечь 730 цистерн природного газа, 600 вагонов угля или 900 нефтеналивных железнодорожных танкеров.

Помимо этого, тепловые электростанции сильно ухудшают экологическую обстановку в районах месторасположения. Продукты горения топлива сильно загрязняют атмосферу. Лишь только станции, работающие на газотурбинных установках, отвечают требованиям экологической чистоты.

Гидроэнергетика

Примерами эффективного применения гидроэнергетики являются Асуанская, Саяно-Шушенская ГЭС и др. Самые экологичные электростанции, использующие кинетическую энергию движения воды, не производят никаких вредных выбросов в окружающую природу. Однако массовое возведение гидросооружений ограничено совокупностью обстоятельств. Это наличие определённой величины природного водного потока, особенностью рельефа местности и многое другое.

ГЭС

ГЭС

Альтернативная энергетика

Научно-техническая революция не замирает ни на минуту. Каждый день приносит новшества в получение электрического тока. Пытливые умы постоянно заняты поисками новых технологий выработки электроэнергии, которые выступают в роли альтернативы традиционным способам получения электричества.

Следует упомянуть ветровые генераторы, приливные морские станции и солнечные батареи. Наряду с этим, появились устройства, вырабатывающие электроток, используя тепло разложения бытовых отходов, продуктов жизнедеятельности крупного рогатого скота. Есть такие устройства, которые используют температурную разницу различных слоёв грунта, щелочную и кислотную среду почвы на разных уровнях. Альтернативные источники электроэнергии объединяет одно – это несопоставимость выработанного количества энергии с объёмами электричества, которые получают традиционными способами (АЭС, ТЭС и ГЭС).

Передача и распределение электрической энергии

Независимо от устройства электростанций, их энергия поставляется в единую энергосистему страны. Передаваемая электроэнергия поступает на распределительные подстанции, оттуда уже доходит до самих потребителей. Передача электричества от производителей осуществляется воздушным путём через линии электропередач. На короткие дистанции ток проходит в кабеле, который прокладывают под землёй.

Потребление электрической энергии

С появлением новых промышленных объектов, вводом в эксплуатацию жилых комплексов и зданий гражданского назначения потребление электроэнергии с каждым днём возрастает. Практически ежегодно на территории России входят в строй новые электростанции, или существующие предприятия пополняются новыми энергоблоками.

Виды деятельности в электроэнергетике

Электрические компании занимаются бесперебойной доставкой электричества каждому потребителю. В энергетической сфере уровень занятости превышает этот показатель некоторых ведущих отраслей народного хозяйства государства.

Оперативно-диспетчерское управление

ОДУ играет важнейшую роль в перераспределении энергопотоков в обстановке изменяющегося уровня потребления. Диспетчерские службы направлены на то, чтобы передавать электрический ток от производителя потребителю в безаварийном режиме. В случае каких-либо аварий или сбоев в линиях электропередач ОДУ выполняют обязанности оперативного штаба по быстрому устранению этих недостатков.

Энергосбыт

В тарифах на оплату за потребление электричества включены расходы на прибыль энергокомпаний. За правильностью и своевременностью оплаты за потреблённые услуги следит служба – Энергосбыт. От неё зависит финансовое обеспечение всей энергосистемы страны. К неплательщикам применяются штрафные санкции, вплоть до отключения электроснабжения потребителя.

Энергосистема – кровеносная система единого организма государства. Производство электроэнергии является стратегической сферой безопасности существования и развития экономики страны.

Видео

1. Основные способы получения энергии

Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.

1.1 Тепловые электростанции

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС — основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).

По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века.

1.2 Гидроэлектростанции

Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость.

Альтернативная энергетика — Википедия

Альтернати́вная энерге́тика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Направления альтернативной энергетики[править | править код]

Альтернативный источник энергии[править | править код]

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию»[1]. Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников[править | править код]
Источники энергии, используемые человеком
Способ использования Энергия, используемая человеком Первоначальный природный источник
Солнечные электростанции Электромагнитное излучение Солнца Солнечный ядерный синтез
Ветряные электростанции Кинетическая энергия ветра Солнечный ядерный синтез,

Движения Земли и Луны

Традиционные ГЭС

Малые ГЭС

Движение воды в реках Солнечный ядерный синтез
Приливные электростанции Движение воды в океанах и морях Движения Земли и Луны
Волновые электростанции Энергия волн морей и океанов Солнечный ядерный синтез,

Движения Земли и Луны

Геотермальные станции Тепловая энергия горячих источников планеты Внутренняя энергия Земли
Сжигание ископаемого топлива Химическая энергия ископаемого топлива Солнечный ядерный синтез в прошлом.
Сжигание возобновляемого топлива
традиционное
нетрадиционное
Химическая энергия возобновляемого топлива Солнечный ядерный синтез
Атомные электростанции Тепло, выделяемое при ядерном распаде Ядерный распад

Примечания

  1. Зелёным шрифтом обозначены нетрадиционные способы использования энергии.
  2. Зелёным цветом залиты возобновляемые источники энергии.
Ветроэнергетика[править | править код]

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра[2]

Биотопливо[править | править код]
Гелиоэнергетика[править | править код]

Солнечные электростанции (СЭС) работают более чем в 80 странах.

  • Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии.
  • Энергетическая башня, совмещает солнечную и ветроэнергетику. Есть два варианта. Первый — охлаждение нагретого солнцем воздуха на высоте нескольких сотен метров и преобразование кинетической энергии нисходящих потоков воздуха в электроэнергию. Второй — нагревание солнцем почвы и воздуха в очень большом парнике и преобразование кинетической энергии восходящего потока воздуха в электроэнергию.
  • Фотоэлектрические элементы
  • Наноантенны
Альтернативная гидроэнергетика[править | править код]
Российский волновой генератор
«Ocean 160»
Геотермальная энергетика[править | править код]

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
  • Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)
Мускульная сила человека[править | править код]

Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования транспортных средств на мускульной тяге — велосипед, самокат, веломобиль и т. п.

Грозовая энергетика[править | править код]

Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings в 2006 году объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.[6][7]

Криоэнергетика[править | править код]

Криоэнергетика — это способ аккумулирования избыточной энергии посредством сжижения воздуха.

В промышленной зоне Слау построена первая в мире 300-киловаттная криогенная аккумулирующая электростанция[8].

В феврале 2011 года от Highview Power Storage отсоединился стартап Dearman Engine, занимающийся разработкой криогенных двигателей [9].

В ВМФ Швеции субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Двигатели работающие на жидком кислороде, который используется в дальнейшем для дыхания, имеют очень низкий уровень шума.

Гравитационная энергетика[править | править код]

Гравитационная энергетика — аккумулирование избыточной энергии посредством запасания её в виде потенциальной энергии гравитационного поля.

Компания Energy Vault разработала проект гравитационной аккумулирующей электростанции, представляющей собой подъёмный кран с шестью стрелами, электродвигатели которого работают как электрогенераторы при спуске блоков, и поставленные друг на друга блоки. Когда в электросеть поступает избыточная энергия, она тратится на поднятие блоков. А в часы-пик, при спуске блоков кранами, энергия возвращается в сеть[10].

Управляемый термоядерный синтез[править | править код]

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

Направления альтернативной энергетики помимо использования нетрадиционных источников энергии[править | править код]

Распределённое производство энергии[править | править код]

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Водородная энергетика[править | править код]

На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

Космическая энергетика[править | править код]

Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения[11]. Может способствовать глобальному потеплению. До сих пор не применяется.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП[12].

Перспективы в России[править | править код]

Россия может получать 10 % энергии из ветра[2].

По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Также, один из основных[уточнить] барьеров для строительства крупных электростанций на ВИЭ — отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff)[13].

В 2017 году администрация городского округа Химки запустила проект по созданию Центра альтернативной энергетики, который будет разрабатывать новые схемы обеспечения электроэнергией промышленных предприятий и городского хозяйства. Центр будет организован на базе расположенного на Ленинградском шоссе дилерского центра садово-парковой техники «Юнисоо»[14].

В 2019 году в Мурманской области ветропарк создаётся на побережье Баренцева моря, неподалёку от села Териберка. Ввод в эксплуатацию запланирован на декабрь 2021 года. По данным региональных властей, его мощность составит 201 МВт, ветроэнергетические установки смогут в течение года производить 750 ГВт/час, что позволит сократить выбросы углекислого газа в атмосферу.[источник не указан 96 дней]

Ambox outdated serious.svg

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в добычу угля и нефти было инвестировано $110 млрд.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд[15].

В 2018 году инвестиции в сектор возобновляемой энергетики достигли показателя $ 288,9 млрд. На глобальном уровне солнечная энергетика по-прежнему осталась основным направлением инвестиций с показателем $139,7 млрд в 2018 году (сокращение на 22 %). Инвестиции в сферу ветроэнергетики в 2018 году увеличились на 2 % и достигли показателя в $134,1 млрд. На остальные секторы пришёлся значительно меньший объём инвестиций, хотя инвестиции в биоэнергетику и производство энергии путём сжигания отходов увеличились на 54 % и составили $8,7 млрд.[источник не указан 96 дней]

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9 % всей потребляемой человечеством энергии. В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3 %; биогорючее 0,7 %; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9 %.[16]

В Австралии в 2015 году 9,1 % электроэнергии вырабатывался из нетрадиционных возобновляемых источников (ВИЭ без крупной гидроэнергетики).

По состоянию на 2017 год альтернативные источники энергии выработали 9,6 % электроэнергии в США, включая 6,3 % из ветровых и 1,3 % из солнечных электростанций. С учётом больших ГЭС, вклад возобновляемых источников энергии составил 17,1 % от выработанного в США электричества.

В 2018 году, согласно данным BP, доля альтернативных возобновляемых источников энергии (без крупных ГЭС) составила 8,4 % в мировой генерации электричества.

За первую половину 2019 года в Германии возобновляемые источники (ВИЭ) впервые выработали больше энергии, чем угольные и атомные электростанции. Доля электроэнергии, произведённой из энергии солнца, ветра, биомассы и воды, составила 47,3 %.[источник не указан 96 дней]

Самые необычные способы добыть электричество

Топливо когда-нибудь закончится: и нефть, и уголь, и даже уран. А получится ли создать вечный — термоядерный — реактор, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы — солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти дармового тока. Вот лишь несколько недавних находок.

Из погоды

Эта идея пришла в голову американскому инженеру Энтони Мамо, когда он рассматривал карты погоды и увидел на них буквы «Н» и «В». Точно такие же нам регулярно показывает по телевизору профессор Беляев. Буквами обозначены зоны низкого (Н) и высокого (В) давления. Инженер поднял архивы наблюдений и выяснил: в одних районах США давление, как правило, повышенное, а в других — пониженное. Так почему бы не соединить их трубой? Ведь тогда воздух из В-области будет дуть в Н-область. И крутить турбину.

Увы, изобретатель умер. Но успел получить патент и создать фирму под названием «Холодная энергия», которая ныне реализует его идею — тянет трубу в штате Аризона. И планирует поставлять народу электричество по цене (на наши деньги) меньше копейки за киловатт-час.

Расчеты и эксперименты показывают: в трубе с некоторыми хитростями в виде переменных сечений и протяженностью в 200 — 300 километров создастся аж сверхзвуковой «сквозняк». И это при разнице давлений на концах всего в 0,03 атмосферы.

По словам директора фирмы Джона Крокера, мощность трубоэлектростанции составит сотни мегаватт. Но, чтобы не сильно зависеть от капризов погоды и пользоваться максимальной разницей атмосферного давления, она должна состоять из нескольких труб с переключаемыми заслонками для выбора мест забора и выпуска воздуха.

Из живых деревьев

Каким образом дерево вырабатывает электроэнергию, никто толком объяснить не может. Но эффект есть.

— Убедиться просто, — говорит изобретатель Гордон Уодл. — Воткните алюминиевый стержень через кору в ствол живого дерева. А в почву рядом — медную трубку. Так, чтобы она вошла примерно на 20 сантиметров. Подсоедините вольтметр. Стрелка покажет, что между стержнем в стволе и зарытой трубкой есть потенциал — 0,8 — 1,2 вольта постоянного тока.

Вот эти вольты и намерена выкачивать специально созданная фирма MagCap Engineering из Массачусетса (США). Инженеры уверены, что через несколько лет мы будем тянуть провода к ближайшим деревьям в парках и лесах, чтобы напитать дома электричеством. Конечно, не все так просто. Уодл создал хитрое устройство, которое фильтрует «деревянный» ток и повышает выходное напряжение. Его прототип уже дает 2 вольта. А в ближайшее время энтузиасты обещают 12 при силе тока в 1 ампер с каждого дерева. Но и это не предел. Оказывается, несколько воткнутых гвоздей повышают выход энергии. А размер электрического «зеленого друга» значения не имеет. Напряжение почему-то повышается и зимой, когда листья сброшены.

Из телерадиоэфира

Возможно, деревья черпают энергию из радиоволн. Ведь они несут не только информацию, но и энергию, которая пока пропадает даром.

С бесхозностью эфира взялась бороться гавайская компания Ambient Micro. Но без деревьев, а путем создания магнитных антенн и сопутствующих узлов, которые преобразовывают в постоянный ток пробегающие мимо радиосигналы. Конечно, речь идет о мизерной мощности в доли ватта. Но и такая пригодится для питания разнообразных электронных устройств, приборов, датчиков. Вместо нынешних батареек и аккумуляторов.

Сейчас компания работает над аппаратом, который будет утилизировать всеэфирное «вторсырье» одновременно: любой свет, радиоволны, шум, вибрацию и перепады температур. Прототип уже готов.

Из унитаза

Сортирную мини-электростанцию разработали исследователи из университета Пенсильвании. Ток вырабатывает 15-сантиметровая пластмассовая трубка, соединенная с унитазом. В трубке — бактерии, которым нравится поедать фекалии. И электроды. Благодаря химическим реакциям, в которые вступают отходы жизнедеятельности бактерий, между атомами начинают перемещаться электроны. Их-то и улавливают электроды. Возникает ток, которым можно питать лампочки в туалете. А если установить подобные электростанции в канализационных трубах по всему городу, то суммарной мощности хватит, к примеру, на движение трамваев и троллейбусов. Эффект — двойной: и энергия, и очистка сточных вод.

Из грязи

Еще один удивительный микроорганизм нашли Чарльз Милликен и Гарольд Мэй из медицинского университета Южной Каролины — так называемую десульфитобактерию. Она вырабатывает электричество, питаясь любой грязью — вплоть до ядовитой и нефтяной. Охотно ест и мусор. Даже если просто воткнуть в грязь с бактериями один электрод, а другой разместить в воде, появится электричество, которого хватит для работы компьютера.

— Пока у этих микроорганизмов есть пища, они способны поставлять энергию 24 часа в сутки 7 дней в неделю, — говорит доктор Милликен.

А такой «пищи» — в смысле всякой дряни — у человечества неисчерпаемые и возобновляемые запасы.

Из чистой воды

Чистая вода, оказывается, тоже источник электричества. Это доказал профессор Ларри Костюк из Университета Альберты (Канада), который нашел принципиально новый способ получения из нее энергии. И уже создал экспериментальную электрокинетическую установку.

В изобретении реализован удивительный феномен — так называемый двойной электрический слой. Обнаружилось: если вода течет по каналу диаметром в 10 микрон с непроводящими стенками, то на одном его конце возникает положительный заряд, на другом — отрицательный. Иными словами, для производства электричества не нужно ничего, кроме микроскопических трубочек и воды. Например, дождевой.

Первый электрогенератор Костюка размером в 2 сантиметра, состоящий из 400 тысяч каналов, выдал 10 вольт.

3 способа получить электричество из земли своими руками

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы.  В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться. 

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

 получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

получить электроэнергию из земли 

Выводы

  1. Изучая данный вопрос я понял, что современная промышленность не выпускает готовых устройства для получения электричества из земли, но это можно сделать и из подручного материала.
  2. Однако следует учесть, что эксперименты с электричеством опасны. Лучше если вы все же привлечёте специалиста, хотя бы на заключительной стадии оценки уровня безопасности системы.

Традиционные и альтернативные способы получения электроэнергии

В настоящее время человечество использует все возможные способы получения электроэнергии. Трудно переоценить важность этого ресурса. Причем его потребление растет с каждым днем. По этой причине все больше внимания уделяется нетрадиционным способам получения электроэнергии. В то же время эти источники на данном этапе развития не могут полностью удовлетворить потребности земного населения. В данной статье кратко рассмотрены основные традиционные и альтернативные способы получения электроэнергии.

Тепловая электростанция

­

Получение электроэнергии на тепловых электростанциях

Данный способ получения электроэнергии является самым распространенным. Так например, в Российской Федерации на долю тепловых источников приходится почти 80 % всей выработки необходимого ресурса. Идут годы, экологи уже практически кричат о негативном воздействии подобных инженерных сооружений на окружающую среду и на здоровье человека, однако станции, возведенные еще в середине прошлого века (а то и дореволюционные) продолжают снабжать населенные города и крупные промышленные предприятия электричеством.

Тепловые источники относятся к традиционным способам получения электроэнергии. И вот уже на протяжении трех или четырех десятков лет занимают лидирующую позицию в рейтинге по объемам выработки. И это несмотря на бурное развитие альтернативных способов получения электроэнергии.

Среди всех инженерных проектов выделяют особый вид сооружений. Это теплоэлектроцентрали, дополнительная функция которых снабжать дома и квартиры граждан теплом. По подсчетам специалистов, эффективность таких электростанций крайне низкая, а передача вырабатываемого ресурса на дальние расстояния сопряжена с большими потерями.

Выработка энергии осуществляется следующим образом. Твердое, жидкое или газообразное топливо сжигается, разогревая воду в котле до значительных температур. Сила пара приводит во вращение лопасти турбины, в результате чего ротор турбогенератора вращается и происходит выработка электроэнергии.

Самая мощная гидроэлектростанция в России

Гидроэлектростанции – перспективный способ получения электроэнергии

Строительство сложных инженерных сооружений, предназначенных для преобразования энергии воды в электричество, было начато еще в Российской Империи. С тех пор прошло много лет, а данный источник по-прежнему активно используется. В годы индустриализации СССР (1930-е) по всей стране выросли гидроэлектростанции-гиганты. На строительство этих исполинов (чего стоит только одна Запорожская ГЭС!) были брошены все силы молодой и неокрепшей страны. Инженерные сооружения тех лет по-прежнему эксплуатируются и вырабатывают значительное количество электроэнергии.

В настоящее время государство делает ставку на развитие «зеленых» способов получения электроэнергии. Поэтому активно финансируется возведение современных и очень продуктивных гидроэлектростанций по всей стране. Стратегия строительства некрупных объектов на небольших притоках рек полностью оправдала себя. Одна такая станция может вполне удовлетворить потребности в электроэнергии небольших прилежащих населенных пунктах. В масштабах всей страны это приведет к повышению эффективности народного хозяйства и конкурентоспособности отечественных производителей промышленных товаров.

К недостаткам данной технологии можно отнести большую стоимость таких объектов и очень длительные сроки их окупаемости. Основные затраты приходятся на строительство плотины. А ведь необходимо возвести само здание (административный и машинный корпуса), построить приспособление для сброса воды и так далее. Параметры и состав сооружения зависят от многих факторов: установленной мощности генераторов и напора воды, типа электростанции (плотинная, русловая, деривационная, аккумулирующая, приливная). Гидроэлектростанции на крупных судоходных реках имеют также сложные судоходные шлюзы и каналы для обеспечения миграции рыб к месту нерестилищ.

Градирни атомной электростанции

Атомная энергетика

Атомной электростанцией сегодня уже никого не удивить. Такие объекты активно стали возводиться еще в СССР. Поэтому эта технология относится к традиционным способам получения электроэнергии.

Атомные станции и в настоящее время активно возводятся не только в России, но и в странах ближнего и дальнего зарубежья. Так, например, компания с русскими корнями «Росатом» финансирует строительство такого источника в Республике Беларусь. К слову, на данной территории эта станция будет первой.

В мире отношение к атомной энергетике весьма неоднозначно. Германия, например, всерьез вздумала полностью отказаться от мирного атома. И это в то время, когда Российская федерация активно инвестирует строительство новых объектов последнего поколения.

Ученые достоверно установили, что залежей ядерного топлива в недрах земли гораздо больше всех запасов углеводородного сырья (нефти и газа). Постоянно нарастающая потребность в углеводородах ведет их удорожание. Именно по этому развитие ядерной энергетики оправдывает себя.

Ветровая электростанция

Энергия ветра

Ветровая электроэнергетика в промышленных масштабах возникла относительно недавно и пополнила перечень нетрадиционных способов получения электроэнергии. И это очень перспективная технология. С большой долей вероятности можно утверждать, что в отдаленном будущем ветряки будут вырабатывать столько электроэнергии, сколько необходимо человечеству. И это не пустые слова, ведь по самым скромным оценкам ученых, суммарная сила ветра на поверхности земного шара минимум в сто раз превышает мощность всех водных ресурсов.

Основной проблемой является непостоянство потоков воздуха, что влечет за собой сложности в прогнозировании выработки энергии. На огромной по площади территории России постоянно дуют ветры. И если научиться эффективно и результативно пользоваться этим неисчерпаемым ресурсом, то можно с лихвой удовлетворить все потребности тяжелой промышленности и населения страны.

Несмотря на очевидные плюсы от использования энергии ветра, объем выработки электричества ветровыми электростанциями не превышает и одного процента в общем объеме. Оборудование для этих целей стоит очень дорого, кроме того, такие объекты будут эффективны далеко не в каждом районе, а транспортировка электроэнергии на значительные расстояния сопряжена с большими потерями.

Геотермальная электростанция

Геотермальная энергетика

Освоение геотермальных источников ознаменовало новую веху в истории развития альтернативных способов получения электроэнергии.

Принцип выработки электроэнергии заключается в поступлении кинетической и потенциальной энергии пара горячей воды подземного источника в лопасти турбины генератора, которая посредством вращательных движений производит ток. В теории разница температур на поверхности и в глубине земной коры характерна для любого участка. Однако она, как правило, минимальна, и использовать ее в целях получения электроэнергии не представляется возможным. Возведение таких станций оправдано лишь в определенных районах нашей планеты (сейсмически активных). Первопроходцем в освоении этого способа является Исландия. Земли русской Камчатки также могут использоваться в этих целях.

Принцип получения энергии заключается в следующем. Горячая вода из недр земли поступает на поверхность. Давление здесь значительно ниже, что приводит к закипанию воды. Отделяющийся пар направляется по трубопроводу и вращает лопасти турбин генератора. Трудно дать прогноз на будущее по этому современному способу получения электроэнергии. Возможно такие станции начнут массово строиться на территории Российской Федерации, а возможно эта идея со временем затухнет и о ней никто и не вспомнит.

Освоение тепловой энергии океана

Мировой океан поражает воображение своими масштабами. Специалисты не могут дать даже приблизительную оценку величине аккумулируемой в нем тепловой энергии. Понятно лишь одно – колоссальный объем ресурсов остается незадействованным. В настоящее время уже построены прототипы электростанций, которые преобразовывают энергию тепла вод океана в ток. Однако это опытные проекты, и нет никакой уверенности, что это направление энергетики получит дальнейшее развитие.

Приливная электростанция

Приливы и отливы на службе электроэнергетики

Преобразование мощной силы отливов и приливов в ценные производные является новым способом получении электроэнергии. Природа этих явлений в настоящее время известна и не вызывает того благоговейного трепета, который возникал у наших предков. Виной всему – воздействие магнитного поля верного спутника планеты – Луны.

Наиболее заметными приливные и отливные течения вод наблюдаются на мелководьях морей и океанов, а также в руслах рек.

Первая станция, действительно давшая результат, была возведена в далеком 1913 году в Великобритании неподалеку от Ливерпуля. С тех пор многие страны пытались повторить опыт, но в итоге отказывались от этой затеи по разным причинам.

солнечная электростанция

Солнечная энергия

По сути дела, все природные топливные ископаемые были образованы миллионы лет назад с участием и под воздействием солнечных лучей. Таким образом, можно сказать, что человечество давно и активно пользуется продуктами, получаемыми от солнца. Собственно говоря, и наличием рек и озер мы обязаны этому неиссякаемому источнику, который обеспечивает кругооборот воды. Однако под современной солнечной энергетикой понимается не это. Относительно недавно ученые смогли разработать и произвести специальные батареи. Они вырабатывают электричество при попадании на их поверхность солнечных лучей. Данная технология относится к альтернативному способу получения электроэнергии.

Солнце, пожалуй, является самым мощным источником из всех ныне известных. За три дня планета Земля получает столько энергии, сколько не содержится во всех разведанных и потенциальных месторождениях всех видов тепловых ресурсов. Однако поверхности земной коры достигает лишь 1/3 этой энергии, а большая часть рассеивается в атмосфере. И все же речь идет о колоссальных объемах. По подсчетам специалистов, один небольшой водоем получает столько энергии, сколько вырабатывает довольно крупная тепловая электростанция.

В мире имеются установки, которые используют энергию солнечных лучей для получения пара. Он приводит во вращение генератор и вырабатывается электричество. Однако подобные установки являются большой редкостью.

Независимо от того, по какому принципу вырабатывается электроэнергия, установка должна оснащаться коллектором – устройством для концентрации солнечных лучей. Наверняка многие видели собственными глазами солнечные батареи. Создается впечатление, что они находятся под темным стеклом. Оказывается, подобное покрытие и являет собой простейший коллектор. Принцип его работы основывается на том, что темный прозрачный материал пропускает солнечные лучи, но задерживает и отражает инфракрасное и ультрафиолетовое излучение. Внутри батареи расположены трубки с рабочим веществом. Так как тепловое излучение не пропускается сквозь темную пленку, то температура рабочих жидкостей значительно превышает температуру окружающей среды. Следует отметить, что подобные решения эффективно работают лишь в тропических широтах, где нет необходимости поворачивать коллектор вслед за солнцем.

Еще одна разновидность покрытия – вогнутое зеркало. Такое оборудование является весьма дорогостоящим решением, поэтому оно и не нашло широкого применения. Такой коллектор может обеспечить нагрев до трех тысяч градусов по Цельсию.

Данное направление бурно развивается. В Европе уже никого не удивишь домами, отключенными от электрических сетей. Однако в промышленных масштабах электроэнергия этим методом не вырабатывается. На крышах таких домов красуются солнечные батареи. Это весьма сомнительное вложение. В лучшем случае, установка такого оборудования окупится лишь за десть лет эксплуатации.

Использование морских течений

Это весьма необычный способ получения электроэнергии. За счет разницы температур в северных районах океанов и южных (экваториальных), по всему объему возникают мощные течения. Ели погрузить в воду турбину, то мощное течение будет ее вращать. На этом основан принцип действия таких электростанций.

Однако в настоящее время этот источник энергии активно не используется. Очень много инженерных задач еще предстоит решить. Ведутся лишь опытно-экспериментальные работы. Наиболее активно продвигаются в этом направлении англичане. Не исключено, что в недалеком будущем у берегов Великобритании возникнут колонии энергетических установок, лопасти которых будут приводиться в движение морскими течениями.

Способы получения электроэнергии в домашних условиях

Электроэнергию можно вырабатывать и в домашних условиях. А если серьезно подойти к этому вопросу, то можно даже удовлетворить потребности домашнего хозяйства в электроэнергии.

Прежде всего следует отметить, что некоторые из перечисленных способов получения электричества вполне применимы и в условиях частного хозяйства. Так, многие фермеры и просто владельцы загородных имений, устанавливают на своих участках ветряные мельницы. Также все чаще на крышах загородных домов можно увидеть солнечные батареи.

Существуют и иные способы производства электричества, но об их практическом применении не может быть и речи. Это, скорее, ради забавы, или с целью эксперимента.

Сравнительная характеристика различных способов производства электроэнергии (часть первая)

«Необходим объективный подход к ядерной энергетике. Обе стороны должны осознать неотъемлемое право на объективную, а не тактическую информацию, выгодную одной из сторон. Каждый должен сознательно идти на риск.

Обычно риск считается приемлемым, если при сравнении серьезности последствий его теоретическая вероятность намного ниже вероятности природных катастроф, которые рассматриваются как неизбежные и никогда не принимаются в расчет в повседневной жизни … Я не знаю другой области человеческой деятельности кроме атомной энергетики, где было бы так много сделано для оценки риска и гарантии безопасности».

          Кардинал Х. Шверк  (Швейцария) .

Введение.

Среди величайших достижений ХХ века наряду с генной и полупроводниковой технологиями открытие атомной энергии и овладение ею занимает особое место.

Человечество получило доступ к громадному и потенциально опасному источнику энергии, который нельзя ни закрыть, ни забыть, его нужно использовать не во вред, а на пользу человечеству.

У атомной энергии две «родовые» функции – военная, разрушительная и энергетическая – созидательная. По мере уничтожения устрашающих ядерных арсеналов, созданных в период холодной войны, атомная энергия будет проникать внутрь цивилизованного общества в виде тепла, электричества, медицинских изотопов, ядерных технологий, нашедших применение в промышленности, космосе, сельском хозяйстве, археологии, судебной медицине и т.д.

В XXI веке истощение энергоресурса уже не будет первым ограничивающим фактором. Главным становится фактор ограничения предела экологической емкости среды обитания.

Прогресс, достигнутый в превращении атомной энергии в безопасное, чистое и действенное средство удовлетворения растущих глобальных энергетических потребностей, не может быть достигнут никакой другой технологией, несмотря на привлекательность энергии ветра, солнца и других, «возобновляемых» источников энергии.

Однако бытующее в обществе представление об атомной энергии по-прежнему окутано мифами и страхами, которые абсолютно не соответствуют фактическому положению дел, и, в основном, опираются исключительно на чувства и эмоции.

В том случае, Когда голосованием предлагается решать вопросы об опасности там, где действуют законы природы  ( по терминологии В.И.Вернадского, когда «общественное мнение» опережает «общественное понимание» ) , как это ни парадоксально , происходит преуменьшение экологической опасности.

Поэтому одной из важнейших задач, стоящих в настоящее время перед учеными, является задача достижения «общественного понимания» экологических проблем, в том числе – атомной энергетике.

Активность экологических движений должна приветствоваться, но она должна быть конструктивной, а не разрушительной.

Хорошо организованный и цивилизованный диалог между специалистами и общественностью, безусловно, полезен.

Цель нашего проекта – анализ информации, необходимой для выработки собственного осознанного отношения к проблемам развития энергетики вообще и атомной энергетики в частности.

Научно-технический прогресс, энергия и человеческое общество. Источники энергии.

Человечество живет в едином, взаимосвязанном мире, и наиболее серьезные энергетические, экологические и социально-экономические проблемы приобрели глобальный масштаб.

Развитие энергетике связано с развитием человеческого общества, научно-техническим прогрессом, который, с одной стороны, ведет к значительному подъему уровня жизни людей, но с другой оказывает воздействие на окружающую человека природную среду. К  числу важнейших глобальных проблем относятся:

  • рост численности населения Земли и обеспечение его продовольствием;
  • обеспечение растущих потребностей мирового хозяйства в энергии и природных ресурсов;
  • охрана природной среды, в том числе и здоровья человека, от разрушительного антропогенного воздействия технического прогресса.

Такие экологические угрозы, как парниковый эффект и необратимые изменения климата, истощение озонового слоя, кислотные дожди (осадки ), сокращение биологического разнообразия, увеличение содержания токсичных веществ в окружающей среде, требуют новой стратегии развития человечества, предусматривающей согласованное функционирование экономики и экосистемы. Разумеется, потребности современного общества должны удовлетворяться с учётом потребности будущих поколений. Потребление энергии является одним из важных факторов развития экономики и уровня жизни людей. За последние 140 лет потребление энергии во всём мире возросло примерно в 20 раз, а  численность населения планеты – в 4 раза (24).

С учётом темпов нынешнего роста численности населения и необходимости улучшения уровня жизни будущих поколений Мировой Энергетический  Конгресс прогнозирует рост глобального потребления энергии на 50-100% к 2020 году и на 140-320% к 2050г. (3,25).

Что же такое энергия вообще? Согласно современным научным представлениям, энергия-это общая количественная мера движения и взаимодействия всех видов материи, которая не возникает из ничего и не исчезает, а только может переходить из одной формы в другую в соответствии с законом сохранения энергии.

Энергия может проявляться в различных формах : кинетическая, потенциальная, химическая, электрическая, тепловая, ядерная.

Для удовлетворения нашей потребности в энергии существуют возобновляемые и невозобновляемые источники.

Солнце, ветер, гидроэнергия, приливы и некоторые другие источники энергии называют возобновляемыми потому, что их использование человеком практически не изменяет их запасы. Уголь, нефть, газ, торф, уран относятся к невозобнавляемым источникам энергии, и при переработке они теряются безвозвратно.

По прогнозам Международного энергетического агентства потребности в первичных энергоносителях в первом десятилетии ХХ1-го века будут удовлетворены в следующих соотношениях : нефть- не более 40%, газ- менее 24%, твёрдые виды топлива (в основном уголь ) – менее 30%, ядерная энергия -7%, гидроэнергетика – 7%, возобновляемые виды энергии – менее 1%. Региональное потребление первичных энергоносителей может иметь отклонения от мировых тенденций .

Основное количество энергии человечество получает и будет получать в ближайшем будущем, расходуя невозобновляемые источники.

Такие природные ресурсы, как: уголь, нефть, газ –практически невосстанавливаемые, не смотря на то, что их запасы на сегодняшний день во всем мире очень велики, но они все равно когда-либо закончатся. Самое главное то, что при работе ТЭС происходит отравление окружающей среды.

Широко бытующее утверждение об экологической «чистоте» возобновляемых источников энергии справедливо, лишь, если иметь в виду только конечную стадию – энергопроизводящую станцию. Из всех этих видов возобновляемых источников энергии только гидроэнергия          в настоящий момент вносит серьёзный вклад во всемирное производство электроэнергии (17% ).

Гидроэнергетика.

В большинстве промышленно развитых стран незадействованным на сегодня остался лишь незначительный по объёму гидроэнергетический потенциал.

Так,в европейской части страны с наиболее напряжённым топливным балансом использование гидроэнергетических ресурсов достигло 50%, а их экономический потенциал практически исчерпан.

Гидроэнергетические сооружения в потенциале несут в себе опасность крупных катастроф. Так, в 1979 году авария на плотине в Морви (Индия) унесла около 15 тысяч жизней. В Европе в 1963 году авария плотины в Вайонт (Италия) привела к гибели 3 тысячи человек.

Неблагоприятное воздействие гидроэнергетики на окружающую среду, в основном, сводится к следующему : затопление с/х угодий и населённых пунктов, нарушение водного баланса, что ведёт к изменению существования флоры и фауны, климатические последствия (изменение теплового баланса, увеличение количества осадков, скорости ветра, облачности и т.д.).

Перегораживание русла реки приводит к заливанию водоёма и эрозии берегов, ухудшению самоочищения проточных вод и уменьшению содержания кислорода, затруднения свободное движение рыб.

С увеличением масштабов гидротехнического сооружения растёт и масштаб воздействия на окружающую среду.

Энергия ветра.

Энергия ветра в больших масштабах оказалась ненадёжной, неэкономичной и, главное, неспособной давать электроэнергию в нужных количествах.

Строительство ветряных установок усложняется необходимостью изготовления лопастей турбины больших размеров. Так, по проекту ФРГ установка мощностью 2-3 МВт должна иметь диаметр ветрового колеса 100м, причём она производит такой шум, что возникает необходимость отключения её в ночное время.

В штате Огайо была построена крупнейшая в мире ветросиловая установка 10МВт. Проработав несколько суток, была продана на слом по цене 10дол. За тонну. В радиусе нескольких километров жить стало невозможно из-за инфразвука, совпадающего с альфа-ритмом головного мозга, что вызывает психические заболевания.

К серьёзным негативным последствиям использование энергии ветра можно отнести помехи для воздушного сообщения и для распространения радио-и телеволн, нарушения путей миграции птиц, климатические изменения вследствие нарушения естественной циркуляции воздушных потоков.

Солнечная энергия.

Солнечная энергия. Техническое использование солнечной энергии осуществляется в нескольких формах: применение низко – и высокотемпературного оборудования, прямое преобразование солнечной энергии в электрическую на фотоэлектрическом оборудовании.

Принципиальными особенностями солнечного излучения являются огромные потенциальные ресурсы (в 4000 раз превышает прогнозируемые энергопотребности человечества в 2020 году ) и низкая интенсивность. Так, среднесуточная интенсивность солнечного излучения для средней полосы европейской части России составляет 150Вт/м , что в 1000раз меньше тепловых потоков в котлах ТЭС.

К сожалению, пока не видно, какими путями эти огромные потенциальные ресурсы можно реализовать в больших количествах. Одним из наиболее важных препятствий является низкая интенсивность солнечного излучения, что проблему необходимости концентрирования солнечной энергии в сотни раз ещё до того, как она превратится в тепло. Практическая реализация концентрации солнечной энергии требует отчуждения огромных земельных площадей. Для размещения солнечной электростанции (СЭС) мощностью 1000МВт (Эл) в средней полосе европейской части необходима площадь при 10%к.п.д. в 67км2. К этому надо добавить ещё и земли, которые потребуются отвести под различные промышленные предприятия, изготавливающие материалы для строительства и эксплуатации СЭС.

Следует подчеркнуть, что материалоёмкость, затраты времени и людских ресурсов в солнечной энергетике в 500 раз больше, чем в традиционной энергетике на органическом топливе и в атомной энергетике.

Действующая в Крыму СЭС мощностью 5 МВт потребила в 1988 году на собственные нужды в 20 раз больше энергии, чем произвела.

Геотермальная энергия

Отрицательными экологическими последствиями использования геотермальной энергии подземных источников горячей воды является возможность пробуждения сейсмической активности в районе электростанции, опасность локального оседания грунтов, эмиссия отравляющих газов (пары ртути, сероводорода, аммиака, двуокиси и окиси углерода, метана ), которые представляют опасность для человека, животных и растений.

Проведенные исследования показали, что возможная роль возобновляемых источников энергии не выходит за пределы вспомогательного энергоресурса, решающего региональные проблемы. Ресурсы таких источников, как гидроэнергетика, энергия ветра, морских волн и приливов, недостаточны. Солнечная энергетика и энергия  геотермальная с теоретически неограниченными ресурсами характеризуются чрезвычайно низкой интенсивностью поступающей энергии.

Кроме того необходимо помнить, что с использованием новых видов энергии возникает и новый тип экологических последствий, которые могут привести к изменению природных условий в глобальных масштабах и которые пока в полной мере трудно представить. Исследования последних лет показали, что на определенные планы с термоядерным синтезом ( проект ИТЭР ) преждевременно рассчитывать.

Тепловые электростанции.

Тепловые электростанции (ТЭС) появились в конце 19-ого века почти одновременно в России, США и Германии, а вскоре и в других странах. Первая центральная электрическая станция  была введена в эксплуатацию в Нью-Йорке в 1882 году для осветительных целей. Первая крупная тепловая электростанция с паровыми турбинами вступила в строй в 1906 году в Москве. Сегодня ни один более или менее крупный город не обходится без собственных электростанций. Тепловая электростанция – сложное и обширное хозяйство, порой она занимает территорию в 70 га, помимо главного корпуса, где размещаются энергоблоки, здесь располагаются различные вспомогательные производственные установки и сооружения, электрические распределительные устройства, лаборатории, мастерские, склады и т.д. Генераторы тепловых электростанций вырабатывают ток напряжением в десятки киловольт. Мощность теплоэлектростанций сегодня достигает сотен МВт. В США существует ТЭС мощностью 1,2-1,5 млн. кВт и более. В нашей стране от них поступает к потребителям наибольшая часть получаемой электроэнергии (69%). Особый вид тепловых электростанций – теплоэлектроцентрали (ТЭЦ). Эти предприятия производят энергию и тепло одновременно, поэтому коэффициент полезного действия используемого топлива у них достигает 70%, а у обычных тепловых электростанций лишь 30-35%. ТЭЦ всегда размещают вблизи потребителей – в крупных городах, так как передавать тепло (пар, горячую воду) без больших потерь можно максимум на 15-20 километров.

Размещение электростанций зависит от двух основных факторов – топливно-энергетических ресурсов и потребителей энергии, поэтому тепловые электростанции размещаются в районах топливных баз при наличии малокалорийного топлива – его не выгодно далеко перевозить. Например, Канско-Ачинский уголь использует Берёзовская ГРЭС-1 (ГРЭС – государственная районная электростанция). На попутном нефтяном газе работают две Сургутские электростанции. Если же электростанции используют высококалорийное топливо, которое выдерживает дальние перевозки (природный газ), они строятся ближе к местам потребления электроэнергии.

Тепловая энергетика оказывает огромное влияние на окружающую среду, загрязняет воду и атмосферный воздух. Самая грязная и экологически опасная – угольная электростанция. При мощности в 1 млрд. Вт она ежегодно выбрасывает в атмосферу 36,5 млрд. куб. метров горячих газов, содержащих пыль, вредные вещества и 100 млн. куб. метров пара. В отходы идут 50 млн. куб. метров сточных вод, в которых содержится 82 тонны серной кислоты, 26 тонн хлоридов, 41 тонна фосфатов и 500 тонн твёрдой извести. Ко всем этим выбросам необходимо добавить углекислый газ – результат сгорания угля. Наконец, остаётся 360 тысяч тонн золы, которую приходится складировать. В целом для работы угольной электростанции ежегодно требуется 1 млн. тонн угля, 150 млн. кубических метров воды и 30 млрд. кубических метров воздуха. Если учесть, что такие электростанции работают десятилетиями, то их воздействие на окружающую среду можно сравнить с вулканической деятельностью. Каждый         крупный город имеет несколько подобных «вулканов». Например, энергией и теплом Москву обеспечивает 15 теплоэлектроцентралей. В течение 20-ого века тепловые электростанции существенно повысили концентрацию ряда газов в атмосфере. Так, концентрация углекислого газа выросла на 25% и продолжает ежегодно увеличиваться на 0,5%, вдвое выросла концентрация метана и увеличивается на 0,9% в год, постоянно растут концентрации оксидов азота и двуокиси серы. Насыщенный парами воздух разъедает здания и сооружения, ранее устойчивые соединения становятся неустойчивыми, нерастворимые вещества переходят в растворимые и т.д. Избыточное поступление питательных веществ в водоёмы ведёт к их ускоренному «старению», заболевают леса, повышается уровень напряжения электромагнитных полей. Всё это чрезвычайно негативно сказывается на здоровье людей, риск преждевременной смерти увеличивается. Кроме того, повышенное содержание углекислого газа и метана в атмосфере является одной из причин возникновения парникового эффекта.

Парниковый эффект.

Есть несколько точек зрения на эту проблему. Согласно недавним решениям ООН для улучшения климата Земли наиболее развитый государства, такие как США, Япония  и страны Европейского союза, обязаны сократить к 2012 году объём выброса тепличных газов на 6% по сравнению с 1990 годом. Однако многие специалисты считают, что и этого недостаточно. Они настаивают  на 60%,  по их мнению, в борьбу должны включиться не только развитые страны, но и все остальные. Но есть и другая точка зрения: В 1997 году почти 1700 американских учёных подписали обращение к президенту страны, где поставили под сомнение сам подход к решению проблемы. Выбрасываемый промышленностью углекислый газ практически не влияет на климат, считают они. Вулканические извержения, другие природные катаклизмы поставляют подобных соединений куда больше. Например, учёные обратили внимание, что из подпочвенных слоёв тундры в последнее время стало выделяться больше углекислого газа и метана, чем прежде, а по оценкам учёных здесь содержится примерно треть всех земных  углесодержащих газов. Было установлено, что с каждого кв. метра тундры вода уносит 5 граммов углесодержащих веществ, примерно половина из них растворяется в реках, озёрах, ручьях, а затем поступает в атмосферу, остальные уходят в Северный Ледовитый океан. Средняя температура поверхности Земли за последний год поднялась на полградуса, но, по словам экспертов, им потребуется несколько лет,

чтобы определить, свидетельствуют ли данные показатели об ускорении глобального потепления. По мнению учёных, парниковых эффект – результат того, что климат Земли постоянно меняется. Возможно, сейчас происходит потепление, так как заканчивается последний ледниковый период, а колебания климата связаны с солнечной активностью, появлением пятен, увеличением излучаемого тепла. Опасности, связанные с повышением концентрации углекислого газа в атмосфере состоят в повышении температуры Земли. Но общепринятые оценки метеорологов показывают, что повышение  содержания углекислого газа в атмосфере приведёт к повышению температуры практически только в высоких широтах, особенно в Северном полушарии, причём в основном это потепление произойдёт зимой. По оценки специалистом Института сельхозметеорологии Роскомгидромета повышение концентрации этого газа в атмосфере в два раза приведёт к удвоению полезной сельскохозяйственной площади России, с 5 до 11 млн. кв. километров. В различных источниках также указываются  возможные повышения уровня Мирового океана в пределах от 0,2 до 1,4м, многие утверждают, что скоро нас ожидает великий потоп. Но почти все ледники Северного полушария растаяли около 9 тысяч лет назад, осталась только Гренландия. Но и она вместе  со льдами Северного Ледовитого океана не повысит при таянии уровень Мирового океана даже на 1мм.

Основные показатели  стран, развивающих теплоэнергетику

Показатель

 

Франция

Швеция

Япония

Германия

Великобритания

США

Россия

На душу населения, т

Диоксид углерода CO2

5.6

6.74

1.5

1.8

1.28

2.56

0.7

Оксид серы, SO2

0,13

0,16

0,04

0,04

0,02

0,06

0,01

Оксид азота, NOx

0,08

0,1

0,02

0,02

0,02

0,03

0,005

Зола

0,42

0,4

0,13

0,12

0,1

0,17

0,06

Шлаки

0,08

0,08

0,02

0,02

0,02

0,03

0,01

Зола, не улавливаемая фильтрами

0,004

0,004

0,001

0,001

0,001

0,001

0,0006

Высвобождённые радионуклиды, Ки

13,7

15,1

3,4

3,9

2,8

5,8

1,75

Из таблицы совершенно очевидно, что все ведущие страны, даже при очень развитой технологии, не могут избавиться от огромных выбросов, отравляющих атмосферу. Оксид серы, диоксид углерода, способствуют развитию сердечнососудистых и онкологических заболеваний, которые по смертности являются ведущими в мире. Обращает на себя внимание тот факт, что при работе ТЭС так же, как и при работе АЭС, образуются радионуклиды, которые на ТЭС никак не улавливаются.

Приливные электростанции.

Уровень воды в течение суток меняет 4 раза, такие колебания особенно заметны в заливах и устьях рек, впадающих в море. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. ПЭС двустороннего действия (турбины работают при движении воды из моря в бассейн и обратно) способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 году во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение ГЭС такой же мощности, первый опыт эксплуатации приливной электростанции оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется. В 1968 году на Баренцевом море вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место её строительства – Кислая губа представляет собой узкий залив шириной 150 м и длиной 450 м. Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется также использовать огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе – 12-14 м. В 1985 году была пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м.

С точки зрения экологии ПЭС имеют бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

Солнечные космические электростанции.

Получать и использовать «чистую» солнечную энергию на поверхности  Земли мешает атмосфера, поэтому появляются проекты размещения  солнечных электростанций в космосе, на околоземной орбите. У таких станций  есть несколько достоинств: невесомость позволяет создать  многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается  выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

К проектированию солнечных космических электростанций (СКЭС) конструкторы приступили ещё в конце 60-ых годов 20-ого века. Было предложено несколько вариантов транспортировки энергии из космоса на Землю, но наиболее рациональным было признано предложение использовать её  на месте выработки, для этого необходимо перенести основных потребителей электроэнергии (металлургия, машиностроение, химическая промышленность) на спутник Земли Луну или астероиды. Любой вариант СКЭС предполагает, что это колоссальное сооружение, причём не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. Современные средства выведения в состоянии доставить на низкую – опорную орбиту необходимое количество блоков, узлов и панелей солнечных батарей.

Строительство солнечных космических электростанций сейчас кажется фантастикой, но в скором времени, возможно, появится  первая СКЭС, которая даст начало новому уровню развития энергетики.

Отправить ответ

avatar
  Подписаться  
Уведомление о