Диод — полупроводниковый элемент. Принцип работы, устройство и разновидности.
Диод (Diode -eng.) – электронный прибор, имеющий 2 электрода, основным функциональным свойством которого является низкое сопротивление при передаче тока в одну сторону и высокое при передаче в обратную.
То есть при передаче тока в одну сторону он проходит без проблем, а при передаче в другую, сопротивление многократно увеличивается, не давая току пройти без сильных потерь в мощности. При этом диод довольно сильно нагревается.
Диоды бывают электровакуумные, газоразрядные и самые распространённые – полупроводниковые.
Конструкция диодов.
Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния или германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электронов («дырочная»)), другая обладает электропроводимостью n-типа
Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negative — «отрицательный», и positive — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типа —
Электровакуумные (ламповые) диоды, представляют собой лампу с двумя электродами внутри, один из которых имеет нить накаливания, таким образом подогревая себя и создавая вокруг себя магнитное поле.
При разогреве, электроны отделяются от одного электрода (катода) и начинают движение к другому электроду (аноду), благодаря электрическому магнитному полю. Если направить ток в обратную сторону
Диоды на основе германия, более чувствительны на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.
Типы диодов:
- · pin диод — содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор.
- · Лавинный диод — применяется для защиты цепей от перенапряжения. Основан на лавинном пробое обратного участка вольт-амперной характеристики.
- · Лавинно-пролётный диод
- · Магнитодиод. Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
- · Диоды Ганна. Используются для преобразования и генерации частоты в СВЧ диапазоне.
- · Диод Шоттки. Имеет малое падение напряжения при прямом включении.
- ·
Полупроводниковые лазеры.
Применяются в лазеростроении, по принципу работы схожи с диодами, но излучают в когерентном диапазоне.
- · Фотодиоды. Запертый фотодиод открывается под действием светового излучения. Применяются в датчиках света, движения и т.д.
- · Солнечный элемент (вариация солнечных батарей). При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток
- · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.
- · Туннельные диоды, использующие квантовомеханические эффекты. Применяются как усилители, преобразователи, генераторы и пр.
- · Светодиоды (диоды Генри Раунда, LED). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света.
Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом, инфракрасном и других требуемых диапазонах (в основном, литографической и космической сфере).
- · Варикапы (диод Джона Джеумма) Благодаря тому, что закрытый p—n-переход обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения. Применяются в качестве конденсаторов
Для чего ставят диод параллельно катушке, обмотке реле в цепи постоянного тока, в чем смысл.
На электронных схемах, где стоит электромагнитное реле, можно заметить, что параллельно его катушке припаян диод. Этот диод подсоединяется к обмотке обратным подключением. То есть, плюс диода (он же анод) будет лежать на минусе источника питания схемы, а минус диода (он же катод), будет находится на плюсе питания. Как известно, при таком способе подключения диода к питанию полупроводник находится в закрытом состоянии, он через себя не проводит электрический ток. Тогда возникает вопрос, а зачем он тогда нужен, если он работает как обычный диэлектрик?
А дело всё в том, что любая катушка, намотанная обычный образом (провод мотается в одном направлении) имеет помимо электрического сопротивления и индуктивность. Вокруг катушки при прохождении постоянного тока образуется электромагнитное поле. А в момент снятия напряжения с катушки, та энергия, которая была аккумулирована в этом электромагнитном поле резко преобразуется опять в электрическую. При этом на концах катушки появляется высоких разностный потенциал. То есть, проще говоря, в момент отключения от катушки питания на ней образуется кратковременный электрический всплески напряжения. Причем, этот всплеск ЭДС (электродвижущей силы) может в несколько раз превышать напряжение питания, которое ранее было подано на обмотку.
Такие скачки увеличенного напряжения, которые образуются на различных катушках, в том числе и на обмотке реле, способны негативно влиять на чувствительные элементы электронной схемы. Например, этот скачок легко может создать электрический пробой различных маломощных транзисторов, микросхем и т.д. Либо же это кратковременное увеличение напряжения может в момент процессов переключения реле вводить в электронную схему различные искажения, погрешности, плохо влиять на измерительные узлы и т.д. Одним словом явление возникновения подобных импульсов увеличенного напряжения – это плохо для любой электронной схемы.
А как же обычный диод может защитить от таких вот ЭДС скачков? Дело в том, что генерация ЭДС индукции имеет противоположную полярность, относительно подаваемого напряжения питания на катушку. Вначале мы на один конец катушки реле подавали плюс, а на второй – минус. При снятии напряжения питания с катушки полюса изменятся. Где был плюс, появится минус, а где был минус, появится плюс. Если наш защитный диод при одной полярности, когда идет питание катушки, находится в закрытом состоянии, работая как диэлектрик, то при другой полярности он уже будет переходить в открытое состояние. Другими словами говоря, при нормальной работе реле диод не будет себя проявлять как функциональный элемент, а при возникновении ЭДС индукции на катушки реле он сразу же станет проводником и замкнет этот импульс увеличенного напряжения на себе.
Может возникнуть вопрос. Если диод берет (замыкает) всю энергию ЭДС индукции катушки реле на себя, то не выйдет ли он от этого из строя (не сгорит ли)? Дело в том что у обычных катушек реле не столь большая энергия, что аккумулируется на ней в виде электромагнитного поля. Эта энергия имеет импульсный, одноразовый характер. Причем, при ЭДС индукции опасно именно увеличенное напряжение (относительно напряжения питания), токи же в этом импульсе достаточно малы. Задача диода нейтрализовать именно импульс увеличенного напряжения. Да и самый обычный, распространенный диод, такой как 1N4007 способен выдерживать обратное напряжение аж до 1000 вольт и прямой ток до 1 ампера (ток импульса намного меньше).
А какие диоды нужно ставить параллельно катушке реле, чтобы защитить электронную схему от подобный скачков напряжения ЭДС индукции? Как я только что уже сказал, энергия обычного маломощного реле (да и средней мощности) не такая уж и большая. Опасен именно сам увеличенный по напряжению импульс. Если питание катушки было, например, 12 вольт постоянного тока, то этот импульс может быть в несколько раз больше (ну пусть до 150 вольт, не больше). Токи, которые могут быть при этом импульсе могут иметь величину единицы и десятки миллиампер. На ток влияет диаметр провода, и его длина в катушке. Чем тоньше диаметр, и чем больше намотка, тем меньше ток. С напряжением наоборот. Чем больше витков в катушке, тем выше напряжение будет при ЭДС индукции.
Если не вдаваться в расчеты, то поставив на катушку обычного маломощного реле кремниевые диоды типа 1N4007 вы не ошибетесь. Их вполне хватит, чтобы надежно защитить электронную схему от подобный ЭДС импульсов, возникающих из-за переключающихся процессов.
Видео по этой теме:
P.S. Порой встречаются схемы (например электронная нагрузка), где в цепи мощных транзисторов стоят низкоомные резисторы. Эти резисторы на малое сопротивление иногда наматываются своими руками. Так вот если их мотать обычным образом (витки всего провода имеют одно направление) то это самодельное сопротивление будет обладать и активным сопротивлением и индуктивностью, которая также будет создавать эти ЭДС импульсы увеличенного напряжения. Но такие самодельные резисторы можно мотать и другим образом. Обмоточный провод складываем вдвое, его концы припаиваем на корпус обычного резистора, а сам сдвоенный провод одновременно наматываем на каркас резистора. В этом случае этот резистор будет иметь только активное сопротивление, индукция у него будет нулевая, что исключить возникновения ЭДС импульса. Дело в том, что электромагнитное поле провода одного направления будет компенсироваться полем другого провода, имеющего обратное направление.
Добавим диод и улучшим электросхему автомобиля.
Приветствую всех любителей постоянно что-то улучшать в своей машине своими руками, в этой небольшой статье мы рассмотрим на что способен обыкновенный диод, и что даст нам его главная способность — проводить электрический ток только в одном направлении. Многие водители знают, что диоды установлены в выпрямителях генераторов (диодный мост ), и выпрямляют переменный ток от генератора в постоянный ток для заряда батареи. Но не многие знают, что германиевый или кремниевый диод, можно использовать на машине не только для этого.
Если знать, куда добавить (припаять) в электросхеме автомобиля диод, то этим можно добиться некоторых полезных свойств в электрооборудовании машины. Например на машинах прошлых лет выпуска, можно сделать так, что при включении насоса омывателя стекла, дворники сами включатся при этом. Нужно просто добавить диод и подключить моторчик насоса, как показано на схеме № 1.
А при опускании водителем кнопки Вк 1, насос отключается, но при этом дворники остановятся только после завершения цикла и при возвращении на своё место (внизу стекла). Ну а диод в этой схеме нужен для того, чтобы насос не включался, когда будут работать дворники, при включенной заводской кнопке Вк 2 (например во время дождя, когда насос не нужен).
На схеме 1 моторчик стеклообывателя это М1, а М2 — это моторчик дворников. Вк 1 — это кнопка включения омывателя, а Вк 2 это выключатель дворников (стеклоочистителей). Ну а VD — это диод КД 202, который можно наглядно увидеть на самом верхнем фото.
Полезные свойства диода можно использовать и в схемах зажигания. Например на катушке зажигания (типа Б 117) не установлено добавочное сопротивление (резистор). И конечно же у жигулёвского стартера нет дополнительных контактов в тяговом реле.
Ну а если установить на машину катушку типа Б-115, и подключить диод, как показано на схеме № 2, то он обеспечит поступление напряжения на первичную обмотку, когда будет работать стартер. Благодаря этому, можно не бояться перегреть катушку зажигания и разрядить аккумулятор, как бывает при заводской схеме, если оставить ключ зажигания включенным.
На схеме №2 показано как подключить катушку зажигания Б 115, вместо катушки Б 117. Буква П на схеме — это прерыватель, а буквы VD означают диод КД 202Р.
Ещё диод можно добавить в заводскую электросхему включения фар и звукового сигнала, как показано на схеме №3. Добавление диода в схему, обеспечит включение фар как только вы нажмёте на звуковой сигнал. Но благодаря диоду, звуковой сигнал не будет звучать, если вы включите фары. В этой схеме можно использовать даже маломощные кремниевые диоды, например КД 209 (так как силовые функции здесь возложены на реле света и сигнала).
На схеме №3 показано как совместно включить фары и звуковой сигнал. Буквы Зс — это звуковой сигнал, Р1 — это реле сигнала, а Р2 — это реле дальнего света фар. Ну а буквы Вк1 означают кнопку включчения звукового сигнала, а буквы Вк2 — это включатель дальнего света.
Диод можно подключить и в цепь регулятора напряжения, а для чего это нужно? Для начала напомню, что при протекании тока через диод в прямом направлении, падение напряжения на этом диоде практически не зависит от величины этого тока и составляет примерно 0, 7 вольта (для кремниевого диода) или 0,4 вольта (для германиевого диода).
И поэтому, если вы подключите диод (как на схеме № 4) в цепь питания реле-регулятора напряжения (Я112), которое устанавливается на генераторах большинства отечественных автомобилей, то вы повысите напряжение генератора на вашей машине тоже на о,4 или на 0,7 вольта (в зависимости от типа диода). А чуть повысить напряжение бывает полезно в зимний период, или при каждодневных коротких поездках на работу, когда батарея постоянно недозаряжается.
Ну а чтобы в любой момент вернуть величину напряжения в заводское состояние, например летом или когда вы отправляетесь в дальнюю поездку, то нужно подключить тумблер Вк (зима — лето), с помощью которого в любой момент вы сможете выключить влияние диода на работу генератора.
В схемах можно использовать кремниевые диоды, например: КД 202, КД 203, КД 213, Д 231, Д 232, Д 214, Д 215, Д 242, Д 243, Д 245, Д 246, Д 247.
Так же подойдут и германиевые диоды, но их поменьше, например: Д 304 или Д 305.
Надеюсь данная статья поможет кому то улучшить заводскую электросхему своего автомобиля, с помощью такой полезной мелочи как диод; удачи всем.
Что такое диод: назначение, устройство, принцип работы
В электротехнике используется много радиодеталей, и все они имеют свои особенности, но семейство диодов имеет свои удивительные свойства.
Манипулируя соотношениями примесей или конструктивными особенностями, получают новые возможности этого прибора, используемые совершенно для других целей. Зная, что такое диод, его устройство и принцип работы диода можно научиться использовать его для самых неожиданных решений.
Приглашаем познакомиться с этим многоцелевым и разнообразным радиоэлементом. А начнем с назначения диода.
Назначение диода
Область применения диодов все больше и больше расширяется. Это достигается благодаря тому, что работа над их преобразованием не утихает, а только увеличивается. Рассмотрим, где их можно встретить:
- выпрямление;
- детектирование;
- защита;
- стабилизация;
- переключение;
- излучение.
На заре своего образования диоды назывались выпрямителями. Они способны пропускать ток в одном направлении и задерживать его в противоположном. Благодаря чему переменный ток становился однонаправленным, пульсирующим. То есть напряжение носило волновой характер.
Причем выпрямление могло быть как на одном диоде, тогда на выходе была только положительная полуволна, так и на четырех, в этом случае на выходе оставались и положительная, и отрицательная полуволны.
Другой способ применения – детектирование. Радио и телевизионные сигналы передаются на несущих частотах. В передающих устройствах с помощью модулятора происходит наложение полезного сигнала на несущую частоту.
Чтобы извлечь полезную информацию, чаще всего применяют диод с конденсатором. В этом случае диод работает как однопериодный выпрямитель, а конденсатор фильтрует ненужные частоты.
Диод используется для защиты, например, в коммутируемой цепи с индукционной нагрузкой. Если катушку, по которой проходит ток отключить, то электроны под действием электромагнитного поля продолжат двигаться, создавая для ключа опасное высокое напряжение.
В качестве ключа может быть использован транзистор, который может выйти из строя. Чтобы снять накопленный заряд, параллельно катушке подключают диод, но включают его в обратном направлении относительно движения тока. При отключении выключателя диод возвращает ток на начало катушки, тем самым защищая ключ.
Несколько измененные диоды способны работать в обратном направлении, пропуская через себя ток, когда напряжение превышает допустимое значение. Такие приборы называются стабилитронами, и о них будет сказано ниже.
Для переключения частот часто требуются переменные конденсаторы. Варикап, еще одна разновидность диода, способен менять свою емкость под действием меняющегося обратного напряжения.
Наконец, светодиоды и фотодиоды. Светодиоды способны излучать потоки лучистой энергии, фотодиоды, напротив, преобразуют солнечный свет в электрический ток. Фотодиоды по своему назначению также разнообразны и имеют различное применение.
Из чего состоит диод
Лучше всего понять, что такое диод поможет его строение. Выделим три основные группы:
- вакуумные;
- газонаполненные;
- полупроводниковые.
Как у любого другого радиоэлемента у диода есть выводы. Если перевести слово диод с древнегреческого, то получится два электрода. Они носят название:
В обычном состоянии на анод подается положительное напряжение, на катод отрицательное. В этом случае диод открыт и через него протекает ток.
На оба вывода могут подаваться положительные потенциалы, но на аноде этот потенциал должен превышать катодный. |
В вакуумных диодах применяются стеклянные или металлические баллоны, из которых выкачан воздух. Катод может быть:
- прямого накала;
- косвенного накала.
Катод прямого накала представляет собой спиральную нить, по которой проходит ток, разогревая его. При этом высвобождаются электроны, которые устремляются к аноду, если он имеет положительный потенциал относительно катода.
Если на аноде напряжение ниже катодного, то электроны возвращаются назад. Таким образом, происходит выпрямление переменного тока. В лампах с косвенным подогревом катод представляет собой короб или цилиндр, внутри него находится нить накала, разогревающая его.
В отличие от вакуумных диодов в газонаполненных имеется ионизированный газ. Он становится проводником между анодом и катодом. Для включения диода используют сетки или поджигающий электрод.
Вакуумные и газонаполненные диоды способны пропускать большой ток и работать с повышенным напряжением. Однако они потребляют много энергии для своей работы, поэтому на смену им пришли полупроводники.
По проводимости электрического тока различают:
- проводники;
- полупроводники;
- диэлектрики.
Полупроводники занимают промежуточное значение между проводниками и диэлектриками. В обычном состоянии они не проводят ток, но при определенных условиях у них появляется проводимость. Достигается это, например, добавлением примесей. Различают два вида проводимости:
- с помощью электронов, n-тип;
- с помощью дырок, p-тип.
Материал, основным носителем которого служат положительно заряженные атомы. Для этого добавляют акцепторные примеси, при этом получается материал с недостающим количеством электронов. Для n-типа добавляют донорные примеси, материал обладает избытком электронов. |
Соединяя эти два типа получают прибор, способный пропускать ток только в одном направлении.
Как определить анод и катод диода
Диоды бывают разного размера, и маркировка может несколько отличаться. Например, на диодах советского образца на корпусе, который был достаточно большим, непосредственно наносился знак диода, указывающий направление движения.
Корпус, расположенный возле катода, может иметь большое расширение в виде кольца. На некоторых видах устанавливают знаки + и – или делают отметку в виде нарисованного кольца либо точки.
В случае сомнения можно проверить диод с помощью мультиметра, поставив прибор в режим измерения сопротивления или проверки диода, если есть такой режим.
Если сопротивление маленькое, значит, щуп с положительным напряжением подключен к аноду, а минусовой к катоду. Большое сопротивление говорит, что щупы подключены в обратном порядке.
Принцип работы диода
Осталось посмотреть, как работает диод. Когда происходит соединение двух полупроводников разной проводимостью, между ними появляется пограничная полоса с нейтральным зарядом, поскольку часть электронов занимает часть дырок.
При прямом включении положительное напряжение подается на дырочную область, а отрицательное на электронную. В этом случае электроны под действием напряжения перескакивают нейтральную зону и, проходя через дырочную область, устремляются к положительному полюсу источника питания.
Если поменять напряжение, электроны уходят к положительному полюсу, увеличивая нейтральную зону. В этом случае диод закрывается.
Диод в цепи постоянного тока
В схеме с постоянным током диод работает как ключ: открывается, когда прямое напряжение превышает пороговое значение и закрывается, когда это напряжение становится меньше.
Выше было рассмотрена работа диода с катушкой индуктивности. Когда по катушке идет ток, то параллельно подключенный диод находится в закрытом состоянии, так как на аноде и катоде напряжение почти равно.
Когда цепь размыкается, по катушке продолжает идти ток и накапливается. Напряжение на аноде повышается, диод открывается и пропускает лишний заряд через себя. После падения напряжения он закрывается.
Обозначение диода на схемах
Для пояснения работы радиоэлектронного устройства используют электрические принципиальные схемы. Найти диод на схеме не составит труда, потому что обозначение диода осуществляется с помощью треугольника с вертикальным отрезком на его вершине.
Рядом ставится порядковый номер и буквы VD.
Диод в цепи переменного тока
Если диод работает как выпрямитель переменного тока, тогда во время повышения напряжения положительной полуволны диод открывается, а когда напряжение падает ниже порогового значения, он закрывается. Во время отрицательной полуволны включается в работу параллельно подключенный диод, но обращенный в обратном направлении.
Два других подключены таким же образом к нулевому проводу. При каждой полуволне участвуют в работе два диода, один связан с фазным проводом, другой с нулевым. Снимаемое с них положительное и отрицательное напряжение подается в постоянную цепь.
Характеристики диода
Полупроводники очень чувствительны к перегреву, поэтому режим их работы строго оговаривается. Учитываются следующие параметры:
рабочее, максимальное и импульсное обратное напряжение;
- прямое напряжение;
- обратный ток;
- прямой постоянный, импульсный и ток перегрузки;
- рабочая и максимальная частота;
- максимальная температура корпуса и перехода.
Допускается максимальное значение только по одному из указанных параметров. После импульса должно пройти оговоренное время, чтобы прибор успел остыть.
Виды диодов
Кроме описанных диодов, используются диоды, у которых характеристики изменены за счет примесей и конструкторских доработок. Остановимся на двух из них: стабилитроне и светодиоде.
Стабилитроны
Работа стабилитрона отличается от работы диода. Подключается он в обратном направлении, то есть на анод подают отрицательное напряжение, а на катод положительное. При таком подключении он работает в пробивном режиме.
Стабилитроны рассчитаны на определенное рабочее обратное напряжение, при достижении которого происходит обратимый пробой. Используются для поддержания определенного напряжения на контролируемом участке цепи. Чтобы ток не превышал рабочее значение, в цепь стабилитрона ставят ограничивающий резистор.
Светодиоды
У полупроводниковых приборов p-n-переход из-за внутреннего сопротивления постоянно греется. Это происходит главным образом во время захвата дырками электронов. Высвобождается энергия, нагревающая переход.
В 60-х годах прошлого столетия был создан светодиод, в котором часть высвобождаемой энергии была лучистой с красным и желто-зеленым свечением. Правда, процентное соотношение было маленьким, всего 0,1% от всей высвобождаемой энергии. Но это было только началом.
В 70-х годах упорные разработки привели к хорошим показателям. Сначала это был 15% выход, затем дошло до 55%. Такой показатель уже превышал к. п. д. ламп накаливания. Испускаемый свет имеет очень узкий спектр, что позволяет получать очень качественное цветное свечение.
Оно намного превосходит свет ламп накаливания, пропущенных через светофильтр. Мощность светового потока также была поднята, это дало возможность использовать светодиоды в качестве освещения.
Тиристоры
Тиристоры – это общее название для мощных диодов, работающих в режиме ключа. Подразделяются на три вида:
- тринистор;
- динистор;
- симистор.
Тринистор имеет три вывода: анод, катод и управляющий электрод. При подаче небольшого управляющего напряжения на управляющий электрод тринистор открывается. Динистор открывается при достижении заданного напряжения на его двух выводах. Симистор – это два динистора, включенных навстречу друг другу. То есть он работает, в отличие от динистора, в двух направлениях.
Исследуя, что такое диод, можно открыть для себя еще много удивительных знаний. Здесь были рассмотрены лишь поверхностные познания, но они уже могут дать понять, что такие элементы радиотехники очень полезны и разнообразны в своем применении.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Возобновляемый источник энергии — солнечная энергия от Гелиос Хаус
- Опубликовано 23 мая 2020
Мы постараемся пролить свет на этот сложный вопрос и сформулируем основные правила применения диодов при монтаже солнечных электростанций.
По большей части солнечные батареи состоят из некоторого количества солнечных ячеек. Простейшая эквивалентная схема солнечной ячейки выглядит следующим образом:
Рис. 1 Эквивалентная схема фотоэлектрической ячейки
Здесь Rп – последовательное сопротивление фотоэлектрической ячейки, Rш – шунтовое (параллельное) сопротивление фотоэлектрической ячейки.
Обычно в солнечной панели все элементы соединяются последовательно, что может приводить к проблеме «черного пятна». Рассмотрим схему солнечной батареи. Нагрузку обозначим как Rн.
Рис.2 Схема солнечной батареи
Если затеняется один из элементов, исчезает его ЭДС, а активное сопротивление растет по мере затенения. Нетрудно догадаться, что на затененной ячейке выделится большая часть мощности солнечной батареи, от чего ячейка может перегреться и выйти из строя, а вместе с ней и вся солнечная панель.
Для предотвращения этого нежелательного эффекта каждую фотоэлектрическую ячейку нужно шунтировать диодом.
Рис. 3 Схема фотоэлектрической панели с шунтирующими диодами.
Если солнечная ячейка освещена, шунтирующий диод заперт ЭДС самой ячейки, и ток через него не идет, солнечная батарея работает в обычном режиме. При затенении исчезает ЭДС, диод открывается и весть ток идет мимо ячейки, не повреждая её. Таким образом, фотоэлектрическая ячейка, равно как и вся солнечная батарея, не выходит из строя.
Конечно, шунтировать каждую ячейку очень сложно и дорого, поэтому обычно диоды подключают к некоторой группе ячеек. В зависимости от мощности и конструкции солнечной батареи, в монтажной коробке может быть различное количество шунтирующих диодов.
Теперь, наверняка, понятно, зачем нужны шунтирующие диоды, также совершенно ясно, что ставить их отдельно не нужно, они уже есть внутри солнечных батарей. Могут встречаться солнечные батареи и без шунтирующих диодов, однако это большая редкость.
Блокирующие диоды для солнечных панелей
Помимо шунтирующих диодов широко применяются и блокирующие. Зачем они нужны? Рассмотрим параллельное соединение двух солнечных батарей. Для наглядности изобразим их как диоды.
Рис.4 Параллельное соединение двух солнечных батарей.
При затенении одной из солнечных батарей, даже частичном, возникнет довольно неприятная картина: затененный модуль станет нагрузкой для освещенного, возникнет противоток и дополнительный нагрев. Ситуация усугубляется, если сопротивление нагрузки велико, а это запросто может быть, если аккумулятор заряжен. В предельном случае имеет место просто короткое замыкание освещенной панели через затененную.
Тем не менее, если солнечных батарей две, то все не так страшно, в цепи будет течь ток короткого замыкания одной солнечной батареи, который, как известно, не так велик, чтобы как-то повредить панель.
Рис.5 Параллельное соединение трех солнечных батарей.
Другое дело, если параллельно соединено много солнечных батарей, больше двух. Тогда, при затенении, в цепи может протекать сумма нескольких токов короткого замыкания и затененный солнечный модуль запросто может выйти из строя. В данном случае, чтобы исключить противоток, следует установить блокирующий диод для каждой параллельной цепочки, будь это одна солнечная батарея или несколько, соединенных последовательно.
Рис. 6 Применение блокирующих диодов при параллельном соединении солнечных батарей.
Итак, мы рассмотрели тот единственный случай, когда действительно нужно дополнительно устанавливать блокирующие диоды.
Подключается диод при помощи МС4 коннекторов. Прелесть в том, что подключить его в неверном направлении просто невозможно, так как МС4 + и – разные и они просто не подойдут, если направление неверное. Диоды характеризуются предельным током, от 5 до 30 А. Больше 30А вряд ли получится встретить, так как это максимальный ток для МС4 коннектора.
Намеренное затенение солнечных батарей
Затенение солнечных батарей является большой проблемой, однако иногда оно создается намеренно. Довольно популярна идея установки солнечных батарей на разные стороны света, допустим, на восток и на запад. Идея, действительна, хорошая. Пожертвовав суммарной дневной выработкой, мы улучшаем распределение этой выработки в течении дня, то есть увеличиваем утреннюю и вечернюю часть. Таким образом, аккумулятор меньше циклируется и живет дольше. Использовать в подобных системах следует два независимых трекера, то есть два солнечных контроллера, что вполне логично, солнечные массивы освещены по-разному и каждый имеет свою рабочую точку.
Пример такой электростанции мы уже разбирали в обзоре «Установка солнечных батарей на разные скаты крыши».
Тем не менее, очень часто, по большей части из экономии, оба солнечных массива подключают к одному контроллеру. Якобы второй контроллер вообще не нужен, а влияние солнечных батарей друг на друга можно исключить при помощи диодов. Применяется даже термин – «развязывающие» диоды. Действительно, блокирующие диоды в данной ситуации просто необходимы, и скорее уже как противопожарная мера. Тем не менее, в течение дня один из солнечных массивов постоянно блокирован диодом, работает только самый освещенный. По сути, солнечные батареи мешают работать друг другу и толку от такой системы совсем не много.
Итак, имея солнечные батареи в разных условиях, это могут быть просто разные солнечные панели, разная ориентация по сторонам света, или разный угол установки — используйте отдельные контроллеры заряда. Диоды вам не помогут сохранить выработку. Вообще, как мы выяснили, диоды нужно ставить лишь в одном случае, когда параллельно соединены три и более солнечных батареи или группы солнечных батарей.
Вам могут быть интересны:
Монтаж солнечной электростанции своими руками
Инвертор для солнечной электростанции. Что внутри?
Защита солнечных батарей. Устройства защиты и предохранители фотоэлектрической системы
Что такое диод? — Определение с сайта WhatIs.com
Диод — это специализированный электронный компонент с двумя электродами, которые называются анодом и катодом. Большинство диодов изготовлено из полупроводниковых материалов, таких как кремний, германий или селен. Некоторые диоды состоят из металлических электродов в камере, откачанной или заполненной чистым элементарным газом при низком давлении. Диоды могут использоваться как выпрямители, ограничители сигналов, регуляторы напряжения, переключатели, модуляторы сигналов, смесители сигналов, демодуляторы сигналов и генераторы.
Основным свойством диода является его способность проводить электрический ток только в одном направлении. Когда катод заряжен отрицательно относительно анода при напряжении, превышающем определенный минимум, называемый прямым переключением , тогда через диод протекает ток. Если катод положительный по отношению к аноду, находится под тем же напряжением, что и анод, или отрицательный на величину, меньшую, чем напряжение прямого переключения, то диод не проводит ток.Это упрощенное представление, но верно для диодов, работающих как выпрямители, переключатели и ограничители. Напряжение прямого переключения составляет примерно шесть десятых вольта (0,6 В) для кремниевых устройств, 0,3 В для германиевых устройств и 1 В для селеновых устройств.
Невзирая на вышеприведенное общее правило, если катодное напряжение является положительным по отношению к анодному напряжению на достаточно большую величину, диод будет проводить ток. Напряжение, необходимое для возникновения этого явления, известное как лавинное напряжение , сильно варьируется в зависимости от природы полупроводникового материала, из которого изготовлено устройство.Напряжение лавины может составлять от нескольких вольт до нескольких сотен вольт.
Когда аналоговый сигнал проходит через диод, работающий в точке прямого размыкания или около нее, форма сигнала искажается. Эта нелинейность позволяет осуществлять модуляцию, демодуляцию и смешивание сигналов. Кроме того, сигналы генерируются на гармониках или целых кратных входной частоте. Некоторые диоды также имеют характеристику, которая неточно названа отрицательным сопротивлением .Диоды этого типа при приложении напряжения нужного уровня и полярности генерируют аналоговые сигналы на микроволновых радиочастотах.
Полупроводниковые диоды могут быть разработаны для выработки постоянного тока (DC), когда на них попадает энергия видимого света, инфракрасного (ИК) или ультрафиолетового (УФ) излучения. Эти диоды известны как фотоэлектрические элементы и являются основой для систем солнечной энергии и фотосенсоров. Еще одна форма диода, обычно используемая в электронном и компьютерном оборудовании, излучает видимый свет или инфракрасную энергию, когда через него проходит ток.Таким устройством является привычный светодиод (LED).
Как работают диоды и используются для | Тех
Как работают диоды
Диод — это электронный компонент, который направляет электрический ток в одном направлении. Их называют «активными компонентами», так же, как транзисторы и ИС. Это основной компонент из полупроводников. Он может регулировать поток электричества, поддерживать постоянное напряжение и обнаруживать волны.
Во-первых, давайте рассмотрим свойства «полупроводника», используемого в диодах.»Может ли этот материал проводить электричество?» Он подразделяется на «проводник», «полупроводник» и «изолятор» на основе вопроса. «Полупроводник» — это материал со свойствами между проводником, который хорошо проводит электричество, и изолятором, который этого не делает.
В общем, металлы хорошо проводят электричество, потому что электроны каждого атома становятся свободными электронами, когда металлические элементы связываются друг с другом. Когда подается напряжение, свободные электроны в металлическом кристалле перемещаются и несут электрический заряд, по которому течет электричество.
Полупроводники могут вести себя как проводники или изоляторы в зависимости от состояния протекающего через них электричества. В полупроводниках не так много свободных электронов, как в металлах. Когда подается напряжение, электроны по очереди движутся, чтобы заполнить недостающие дыры, или они переносят электричество с меньшим количеством свободных электронов, чем металлические связи.
Полупроводники делятся на полупроводники P-типа и полупроводники N-типа в зависимости от различий в механизме потока электричества; Полупроводники P-типа — это те, в которых электроны первых движутся последовательно, чтобы заполнить недостающие дырки.Четырехвалентный элемент, такой как кремний, смешанный с трехвалентной добавкой, такой как бор или бор, становится полупроводником P-типа. Поскольку в нем отсутствует один электрон, он считается заряженным положительно.
Полупроводники N-типа — это те, которые переносят электричество с меньшим количеством свободных электронов, чем последние металлические связи. Четырехвалентный элемент, такой как кремний, смешанный с одновалентной добавкой, такой как фосфор, становится полупроводником N-типа. Поскольку у него есть один дополнительный электрон, он считается отрицательно заряженным.
В PN-диоде электрод, подключенный к полупроводнику P-типа, называется анодом (A), а электрод, подключенный к полупроводнику N-типа, называется катодом (K). (Рисунок 1)
Когда «-» подключен к анодной стороне, а «+» подключен к катодной стороне PN-диода, электричество в полупроводнике притягивается к стороне электрода, и на PN-переходе генерируется пустая зона электричества. . В результате нет электричества. (Рисунок 2)
И наоборот, если «+» подключен к анодной стороне, а «-» — к катодной стороне, «+» и «-» электричество в полупроводнике будут склеиваться в P- и N-переходах и нейтрализовать друг друга, но следующее электричество будет отправлено от электрода, поэтому электричество будет течь.(Рисунок 3)
Таким образом, диоды обладают свойством проводить электричество только в фиксированном направлении. Светодиоды, которые мы часто видим в повседневной жизни, спроектированы так, чтобы излучать свет, когда электричество проходит через PN-переход. Диоды также используются в различных местах, где мы их не видим, поддерживая нашу повседневную жизнь.
Роль диодов
Диоды выполняют следующие четыре основных роли.
(1) Исправление
- Направление тока всегда меняется из-за переменного тока в обычных источниках питания.Диоды имеют свойство пропускать электричество только в определенном направлении, поэтому из переменного тока можно извлечь только прямой ток. Это называется выпрямляющим действием диода.
(2) Обнаружение радиоволн
- Диоды играют роль в извлечении аудиосигналов из радиоволн. Это называется обнаружением волн. Радиоволны создаются путем объединения высокочастотных сигналов, используемых для связи, с низкочастотными сигналами, такими как голос.
(3) Контроль напряжения
- Обычно диоды пропускают ток только в определенном направлении, но когда напряжение в противоположном направлении превышает определенное значение, напряжение начинает течь.Однако, когда напряжение в обратном направлении превышает определенное значение, напряжение начинает течь, и даже если ток увеличивается, напряжение не изменяется. Это называется явлением пробоя, а напряжение, при котором возникает явление пробоя, называется «напряжением пробоя» или «напряжением стабилитрона».
Явление текучести используется при контроле напряжения диодов, а используемые таким образом диоды называются стабилитронами. (4) Текущее преобразование
- Когда свет попадает на PN-переход, электроны на стороне N рядом с переходом перемещаются.В результате электричество будет продолжать течь, пока светит свет. Это то, из чего сделан солнечный элемент.
Когда внешнее напряжение не подается, он действует как батарея, но при подаче напряжения действует как диод. Некоторые диоды реагируют на видимый свет, тогда как те, которые реагируют на невидимый свет, используются в таких приложениях, как светоприемная часть инфракрасных пультов дистанционного управления.
Типы диодов
Существуют различные типы диодов. Ниже приводится список некоторых из наиболее распространенных типов.
Кремниевые диоды
- Самый распространенный тип PN диода. Чаще всего относится к выпрямительным диодам.
Германиевые диоды
- Как и кремниевые диоды, это диоды, которые объединяют PN. Они часто используются для обнаружения волн из-за их низкого прямого падающего напряжения, особенно в области, где протекающий ток составляет всего 0,1 мА. Однако из-за высокой стоимости германия в настоящее время широко используются диоды с барьером Шоттки.
Диод Шоттки
- Это диод, сделанный из металла и полупроводника. Эти диоды имеют превосходные характеристики переключения по сравнению с кремниевыми диодами и поэтому используются в высокоскоростных схемах.
Диод переключения
- Диод, используемый для размыкания и замыкания силовой цепи, например выключателя. Он включается, когда напряжение подается в направлении потока мощности, и выключается, когда напряжение подается в направлении, где мощность не течет.
Диод Эсаки
- Диод, использующий туннельный эффект, открытый лауреатом Нобелевской премии Леона Эсаки. Эффект туннелирования — это свойство диодов с PN-переходом с высокой концентрацией примесей, которое позволяет току течь, даже если этого не должно происходить из-за квантово-механических эффектов. Из-за чрезвычайно быстрого времени отклика они используются для генерации микроволн.
Светодиод (LED)
- Диод, в котором переход излучает свет при протекании тока через PN переход.Когда электричество проходит через полупроводник, дырки и электроны в полупроводнике P-типа объединяются, и энергия излучается в виде света. Иногда его используют и как силовую лампу, и как выпрямитель.
Стабилитрон
- Диод, используемый для подачи напряжения в направлении, противоположном тому, в котором обычно течет ток. Он используется для получения постоянного напряжения, а также для защиты схемы от перенапряжения.
Что такое диоды? Проверка диодов и их применение
Диоды — это электронные компоненты устройства, которые позволяют току более легко и плавно течь через любое устройство в определенном направлении.Он имеет два электрода, один известен как анод , , а другой — катод . Полупроводниковые материалы , такие как Кремний и Германий , используются для производства диодов.
Использование диодов
Диоды используются для различных целей, например:
- Выпрямитель
- Регулятор напряжения
- Переключатели
- Осцилляторы
- Ограничители, модуляторы и демодуляторы сигналов.
Существует большое количество полупроводниковых диодов различных номиналов, которые используются в электронных схемах в соответствии с требованиями.Диоды бывают разной формы, размера и цвета.
На рисунке ниже показана форма диода BY 127 , который может безопасно пропускать прямой ток 1 А с пиковым обратным напряжением 1000 В. Он зеленого цвета, и направление, в котором он может проходить, обозначено символом, как показано на рисунке. В этой же серии есть и другие диоды, такие как BY 118, и т. Д.
.На рисунке ниже показана форма диода 1N 4007 :
Он может безопасно пропускать прямой ток 1 А с PIV 100 В.Это черный цвет. На одной стороне напечатана полоса серебристого цвета, которая показывает отрицательный конец (катод) диода. В той же серии другие диоды: 1N 4001, 1N 4002. 1N 4003, 1N 4004 и т. Д. Другой диод той же серии — 1N 5406 , который может пропускать ток 6А с PIV 200 В.
На рисунке ниже показана форма диода OA 79 . Он изготовлен из прозрачного стекла. Красная отметка на корпусе (стрелка) обозначает положительный вывод. Другой диод той же серии — OA 80, OA 85 и т. Д.
На рисунке ниже показана форма силового диода D 1604 N . Он имеет металлический корпус и может выдерживать большую мощность. Он может безопасно переносить ток 16 А с PIV 400 В. Другой силовой диод — 10 KLR 12 , который может пропускать ток 10 А при PIV 1200 В.
Проверка клемм диодов
Если символ или отметка на корпусе диода, показывающая полярность вывода, отсутствует или стерта, то полярность вывода можно определить с помощью измерителя сопротивления или мультиметра.
На рисунке ниже показано, что полярность выводов батареи, содержащейся в омметре, проявляется на выводах омметра.
Отведение P положительное, а Q отрицательное. Чтобы проверить вывод диода, его подключают к выводам P и Q, как показано на рисунке выше. Если диод проводит, а измеритель дает отклонение, то вывод A диода положительный (анод), а вывод B отрицательный (катод).
Однако, если диод не проводит и в Омметре нет отклонения, выводы диода противоположны, как и раньше.
Diodes, Rectifier Diode, Semiconductor Diode
Обширный ассортимент диодов Allied Electronics охватывает тысячи компонентов в нескольких категориях. Наши электрические диоды, созданные в соответствии со строгими спецификациями от проверенных ведущих производителей, включая NTE Electronics, ON Semiconductor и Vishay, могут надежно работать независимо от схемы, в которую они встроены.
Если вы промышленный заказчик или любитель электроники, выберите из наших выпрямителей, диодов Шоттки, TVS, стабилитронов и PIN-диодов, а также многих других, используя нашу функцию поиска слева на странице.Все диоды имеют конкурентоспособные цены, доступны с различными вариантами поставки и подкреплены нашим ведущим в отрасли подходом к обслуживанию клиентов.
Для получения дополнительной информации о диодах — что это такое, их различных типах и областях применения, прокрутите вниз, чтобы узнать больше, или посетите наш экспертный центр. Если у вас есть какие-либо вопросы о нашем ассортименте диодов или о процессе заказа Allied Electronics, свяжитесь с нами.
Что такое диоды?
Диоды — это электрические компоненты, которые проводят электричество в одном направлении.Сопротивление диода высокое на одном конце (анод) и низкое на другом (катод), что гарантирует, что ток будет легко течь к катоду только в том случае, если цепь имеет положительный заряд. Если в цепи отрицательный заряд, через диод не будет протекать ток.
Этот эффект возникает из-за того, что диоды сформированы из полупроводниковых материалов, обычно кремния. Каждая сторона диода спроектирована с примесью примесей (также известной как легированная) — катод с примесью P-типа, которая содержит много свободных электронных позиций, и анод с примесью N-типа, которая поставляет свободные электроны.
Это создает электрическое поле между положительно заряженным и отрицательно заряженным переходом между каждой стороной диода, также известное как переход P-N. Эта граница расширяется при отрицательном токе или токе нулевого напряжения (известном как обратное смещение), чтобы остановить поток электронов, или, при положительном токе (прямое смещение), облегчает поток электронов.
Диоды также могут иметь нулевое смещение. Они известны как диоды Шоттки и могут «прослушивать» частоты без напряжения смещения.
Какие бывают типы диодов?
Диоды — это повсеместный компонент, отчасти потому, что существует множество типов на выбор, предлагающих всевозможные возможности. К ним относятся:
- Они позволяют токам течь в обратном направлении при достижении установленного напряжения (напряжения стабилитрона). Это делает их эффективными для защиты от перенапряжения и электростатического разряда.
- Они создают лазер на стыке диода, когда через компонент протекает заданное количество электрической энергии.
- Светодиоды светятся при воздействии тока.
- Диоды Шоттки, также известные как барьерные диоды или диоды с горячей несущей, обеспечивают очень высокую скорость переключения с очень низким падением напряжения при переключении.
- Эти диоды преобразуют переменный ток (AC) в постоянный (DC) с помощью выпрямительного моста.
- Диоды подавления переходных напряжений (TVS) (также известные как тиректоры и переходные цепи) защищают схемы от переходных процессов высокого напряжения, таких как скачки и электростатические разряды.
- Диоды генератора — Диоды генератора — это обычные диоды, используемые в автомобильных генераторах переменного тока.
- Диоды на 12 В — Эти диоды специально используются для цепей с 12 единицами потенциала напряжения.
- Диодные мосты — это конфигурации из четырех или более диодов в конфигурации мостовой схемы. Это позволяет каждой полярности выхода соответствовать полярности входа.
- PIN — Эти диоды содержат нелегированный собственный полупроводник между полупроводником P-типа и полупроводником N-типа — P-I-N.Это снижает его выпрямительный потенциал, но делает его пригодным для высоковольтных цепей, так как он может накапливать большой заряд.
- Электрические диоды — это еще одно название обычного диода.
- Варакторные диоды (также известные как варикап-диоды) обеспечивают регулируемую по напряжению переменную емкость, что обычно требуется в радиочастотных (РЧ) схемах.
- Переключающие диоды — это выпрямители, используемые для переключения малых сигналов до 100 мА.
- Полупроводниковые диоды — Термин полупроводниковый диод используется для обозначения всех диодов, имеющих p-n-переход с попеременно легированными полупроводниками.
Каковы области применения диодов?
В качестве такого основного, но важного компонента, имеющего множество различных вариаций, диоды находят бесчисленное множество применений.
Во-первых, в качестве выпрямителей электрические диоды используются для преобразования переменного тока в постоянный, что полезно в электрических переключателях и как средство остановки скачков напряжения в цепях, вызывающих повреждение. А благодаря своим выпрямляющим свойствам они также полезны для стабилизации напряжения.
Полупроводниковые диоды также могут изолировать сигналы в источнике питания, демодулируя сигнал в радиоприемниках, чтобы оборудование могло считывать сигналы, содержащиеся в несущей волне.Более того, они используются для создания процессоров, что делает их важной частью большинства вычислительных устройств и бытовой электроники.
Светодиоды также используются в датчиках и в качестве пользовательских интерфейсов в бесчисленных технологиях, а лазерные диоды также являются ключевым компонентом любого лазерного оборудования.
Почему для диодов выбирают Allied Electronics?
Какой бы тип диода вы ни искали, вам может помочь ассортимент высококачественных и высокопроизводительных диодов Allied Electronics. Наши диоды бывают самых разных типов и производятся лидерами отрасли в соответствии с высочайшими стандартами.
Выбор, ценность и качество — наши основные цели при поставке и распространении диодов. На протяжении почти столетия мы установили тесные отношения с производителями, включая Bourns, Littelfuse, Comchip Technology и Diodes Inc.
. Это означает, что, хотя мы храним тысячи различных диодов, вы можете безопасно их покупать, зная, что они будут добавляйте исключительные возможности к своим электронным схемам и будьте уверены в своей работе.
Посмотрите наш ассортимент электрических диодов и ограничьте область поиска с помощью фильтров в левой части страницы.Если у вас есть какие-либо вопросы о наших диодах, их возможностях или применении, свяжитесь с нашей командой. Чтобы узнать больше об электрических компонентах в целом, обязательно посетите наш экспертный центр.
Различные типы диодов и принцип их работы
Стабилитрон, Шоттки, выпрямители, тиристоры, кремний и триаки
Меган ТунгДиод — это электрическое устройство с двумя выводами. Диоды изготавливаются из полупроводника, чаще всего кремния, но иногда и германия.Существуют различные типы диодов, но здесь обсуждаются стабилитрон, выпрямитель, шоттки, ограничитель переходного напряжения, тиристор, кремниевый выпрямитель и симистор. На затвор выбора транзистора подается импульс «включено», вызывая большой ток стока. Высокое напряжение на соединении затвора притягивает электроны, которые проникают через тонкий оксид затвора и накапливаются на плавающем затворе. EPROM можно стереть, подвергнув его воздействию сильного ультрафиолетового источника света, что означает, что они могут быть перезаписаны много раз (в отличие от PROM).EPROM не подходят для хранения информации, которая будет часто меняться, потому что для перепрограммирования чип необходимо будет удалить из устройства, в котором он находится.
Стабилитроны
Стабилитрон— это кремниевые полупроводниковые устройства, которые позволяют току течь либо в прямом (от анода к катоду), либо в обратном направлении. Сильнолегированный p-n переход позволяет устройству проводить в обратном направлении при достижении напряжения пробоя. Обратный пробой Зенера происходит из-за квантового туннелирования электронов, вызванного сильным электрическим полем.В режиме прямого смещения стабилитроны работают как обычные диоды. При подключении в обратном режиме может протекать небольшой ток утечки. Когда обратное напряжение увеличивается ближе к напряжению пробоя, через диод начинает течь ток. Максимальный ток определяется последовательным резистором. По достижении максимума ток стабилизируется и остается постоянным в широком диапазоне приложенных напряжений.
Выпрямители
Выпрямители — это двухпроводные полупроводники, которые пропускают ток только в одном направлении.Выпрямитель состоит из одного или нескольких диодов, преобразующих переменный ток (AC) в постоянный (DC). Полупериодный выпрямитель — это когда на вход подается питание переменного тока, только положительный полупериод становится видимым через нагрузку, в то время как отрицательный полупериод скрывается (блокируется или теряется). В однополупериодном выпрямителе используется только один диод. Двухполупериодные выпрямители преобразуют полный входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) в пульсирующий выходной сигнал постоянного тока. Для двухполупериодного выпрямителя используются два или четыре диода.КПД полуволнового выпрямителя ниже, потому что видна только положительная часть входной формы волны. Выпрямители используются в различных устройствах, включая источники питания постоянного тока, радиосигналы или детекторы, системы передачи электроэнергии постоянного тока высокого напряжения и некоторые бытовые приборы (ноутбуки, игровые системы и телевизоры).
Диоды Шоттки
Диоды Шоттки — это полупроводниковые устройства, образованные соединением кремниевого полупроводника (n-типа) с металлическим электродом.Диоды Шоттки известны своим быстрым переключением и низким прямым падением. Прямое падение напряжения существенно меньше, чем у обычного кремниевого диода с p-n переходом. Падение напряжения в диодах Шоттки обычно находится в пределах 0,15-0,45 В. При прямом смещении электроны перемещаются от материала n-типа к металлическому электроду, позволяя течь току. Диоды Шоттки не имеют обедненного слоя, что означает, что они униполярны.
Ограничитель переходного напряжения
Диоды ограничителя переходного напряжения (TVS) используются для защиты электроники от скачков напряжения.Переходные процессы — это временные скачки напряжения или тока, которые могут отрицательно повлиять на цепи. TVS-диоды шунтируют избыточный ток, когда индуцированное напряжение превышает потенциал лавинного пробоя. Благодаря своей способности подавлять все перенапряжения, превышающие его напряжение пробоя, TVS является фиксирующим устройством. TVS может быть однонаправленным или двунаправленным. Однонаправленный допускает только напряжение выше или ниже земли (положительное или отрицательное напряжение). Двунаправленный выбирается, когда ожидается, что защищенный сигнал будет колебаться над или под землей, например, при переменном напряжении или сигнале постоянного тока предполагается работать как с положительным, так и с отрицательным напряжением.Некоторые из приложений включают линии передачи данных и сигналов, микропроцессоры и MOS-память, линии электропередач переменного тока, телекоммуникационное оборудование и переключение / ограничение в цепях / системах с низким энергопотреблением.
Тиристорные диоды
Тиристорные диоды — это три оконечных устройства. Три терминала — затвор, анод и катод. Затвор управляет током, протекающим между анодом и катодом. В тиристорном диоде небольшой ток на затворе вызывает гораздо больший ток между анодом и катодом.Даже если ток затвора убран, больший ток продолжает течь от анода к катоду. Диод остается в этом состоянии до сброса цепи. В семействе тиристоров есть несколько типов диодов, в том числе тиристоры и симисторы.Выпрямители с кремниевым управлением
Выпрямители с кремниевым управлением (SCR)— это диоды из семейства тиристоров. SCR — это четырехслойные твердотельные устройства управления током. Четыре слоя полупроводника — это P-N-P-N. Есть три вывода: анод, катод и затвор.Устройство изготовлено из кремниевого материала, который контролирует высокую мощность и преобразует высокий переменный ток в постоянный ток (выпрямление). SCR однонаправленные, электрический ток допускается только в одном направлении. SCR используются в приложениях управления мощностью, таких как мощность, подаваемая на электродвигатели, управление системой освещения, реле управления или индукционные нагревательные элементы.
ТРИАК
TRIAC — это три оконечных устройства, также принадлежащих к семейству тиристоров. Первый вывод — это вентиль, который действует как триггер для включения устройства.Два других вывода называются анодом 1 и анодом 2 (также называются основным выводом 1 и основным выводом 2). Эти две клеммы не взаимозаменяемы, ток затвора должен поступать со стороны анода 2 схемы. Схема аналогична двум SCR, соединенным встык параллельно; тем не менее, TRIAC фактически построены из цельного куска полупроводникового материала, который должным образом легирован и уложен слоями. TRIAC переключают высокое напряжение и большой ток. Это двунаправленные переключатели, поэтому ток может проходить в обоих направлениях после срабатывания затвора.Некоторые из приложений включают управление мощностью переменного тока, регуляторы освещенности, управление двигателем и другие простые схемы с низким энергопотреблением, где требуется переключение мощности.
Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.
Диоды Интернет-магазин | Будущее электроники
Что такое диод?Диод — это электронный компонент с двумя выводами и асимметричной передаточной характеристикой.Он имеет низкое сопротивление току в одном направлении и высокое сопротивление току в другом направлении. Полупроводниковый диод — это кристаллический кусок полупроводникового материала, содержащий p-n переход, который подключен к двум электрическим выводам. Диоды позволяют электрическому току проходить в прямом направлении, блокируя электрический ток в обратном направлении. Это однонаправленное поведение называется выпрямлением и используется для преобразования переменного тока в постоянный. Полупроводниковые диоды начинают проводить электричество при приложении определенного порогового напряжения в прямом направлении.
Типы диодовВ Future Electronics существует несколько различных типов диодов. У нас есть многие из наиболее распространенных типов, которые классифицируются по нескольким параметрам, включая максимальное время обратного восстановления, максимальный обратный ток, максимальный средний выпрямленный ток, прямое напряжение, максимальное обратное напряжение, рассеиваемую мощность, максимальный средний прямой ток, максимальный пиковый ток и тип упаковки, среди прочего другие. Наши параметрические фильтры позволят вам уточнить результаты поиска в соответствии с необходимыми спецификациями.
Диоды от Future ElectronicsFuture Electronics предлагает широкий спектр программируемых диодов от нескольких производителей. Как только вы решите, нужны ли вам мостовые выпрямители, токоограничивающие диоды, быстрые выпрямители, диоды Шоттки, выпрямители Шоттки, малосигнальные диоды, стандартные выпрямители, переключающие диоды, настроечные / варакторные диоды, сверхбыстрые выпрямители или стабилитроны, вы сможете выбрать один из следующих вариантов: их технические характеристики и результаты поиска будут сужены в соответствии с потребностями конкретного применения диодов.
Приложения для диодов:Нелинейная вольт-амперная характеристика полупроводниковых диодов может быть изменена путем изменения и модификации полупроводниковых материалов. Стабилитроны используются для регулирования напряжения. Настроечные / варакторные диоды используются для электронной настройки радио и ТВ-приемников. Другие диоды могут использоваться для защиты цепей от скачков высокого напряжения, генерации радиочастотных колебаний или получения света. Диоды можно найти в широком спектре приложений, включая радиодемодуляцию, преобразование мощности, логические вентили, детекторы ионизирующего излучения, измерение температуры и управление током.
Выбор правильного диода:С помощью параметрического поиска FutureElectronics.com при поиске нужных диодов вы можете фильтровать результаты по категориям. Мы производим следующие категории диодов:
- Мостиковые выпрямители
- Токоограничивающие диоды
- Быстрые выпрямители
- Диоды Шоттки
- Выпрямители Шоттки
- Малые сигнальные диоды
- Стандартные выпрямители Сверхбыстрые выпрямители
- Стабилитроны
Выбрав категорию диодов, вы можете сузить их по различным атрибутам: по максимальному обратному току, максимальному среднему выпрямленному току, прямому напряжению, максимальному обратному напряжению и максимальному пиковому току и т. Д. .Используя эти фильтры, вы сможете найти подходящие диоды-ограничители тока, стандартные выпрямители, переключающие диоды, быстрые выпрямители, диоды Шоттки, мостовые выпрямители, выпрямители Шоттки, малосигнальные диоды, стабилитроны, настроечные / варакторные диоды или сверхбыстрые выпрямители.
Диоды в готовой к производству упаковке или в количестве для НИОКРЕсли количество диодов, которое вам требуется, меньше, чем полная катушка, мы предлагаем нашим клиентам несколько наших диодов в лотке, трубке или отдельных количествах, которые помогут вам избежать ненужных излишек.
Future Electronics также предлагает своим клиентам уникальную программу складских запасов, предназначенную для устранения потенциальных проблем, которые могут возникнуть из-за непредсказуемых поставок продуктов, которые могут содержать необработанные металлы, и продуктов с нестабильным или длительным сроком поставки. Поговорите с ближайшим отделением Future Electronics и узнайте больше о том, как вы и ваша компания можете избежать возможного дефицита.
Введение в диоды
- Раздел 2.0 Введение в диоды.
- • Обозначения диодных цепей.
- • Ток через диоды.
- • Конструкция диодов.
- • PN-переход.
- • Прямое и обратное смещение.
- • Характеристики диода.
- Раздел 2.1 Кремниевые выпрямители.
- • Маркировка полярности.
- • Параметры выпрямителя.
- Раздел 2.2 Диоды Шоттки.
- • Конструкция диода Шоттки.
- • Потенциал соединения Шоттки.
- • Высокоскоростное переключение.
- • Выпрямители мощности Шоттки.
- • Ограничения по току Шоттки.
- • Защита от перенапряжения.
- Раздел 2.3 Малосигнальные диоды.
- • Конструкция малосигнального диода.
- • Формирование волны.
- • Вырезание.
- • Зажим / восстановление постоянного тока.
- • Приложения HF.
- • Защитные диоды.
- Раздел 2.4 Стабилитроны.
- • Конструкция стабилитрона.
- • Обозначения схем Зенера.
- • Эффект Зенера.
- • Эффект лавины.
- • Практические стабилитроны.
- Раздел 2.5. Светодиоды.
- • Работа светодиода.
- • Световое излучение.
- • Цвета светодиодов.
- • Расчеты цепей светодиодов.
- • Светодиодные матрицы.
- • Тестирование светодиодов.
- Раздел 2.6 Лазерные диоды.
- • Лазерный свет.
- • Основы атома.
- • Конструкция лазерного диода.
- • Лазерная накачка.
- • Управление лазерным диодом.
- • Лазерные модули.
- • Лазерная оптика.
- • Классы лазерных диодов.
- Раздел 2.7 Фотодиоды.
- • Основы фотодиодов.
- • Приложения.
- • Конструкция лазерного диода.
- • Лазерная накачка.
- • Управление лазерным диодом.
- • Лазерные модули.
- • Лазерная оптика.
- • Классы лазерных диодов.
- Раздел 2.8 Проверка диодов.
- • Неисправности диодов.
- • Проверка диодов омметрами.
- • Определение соединений диодов.
- • Выявление неисправных диодов.
- Раздел 2.9 Тест диодов.
- • Проверьте свои знания о диодах.
Рисунок 2.0.1. Диоды
Введение
Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком диапазоне приложений.Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для обеспечения точных опорных напряжений для многих схем. Диоды также можно использовать для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.
Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока).Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.
Рис. 2.0.2 Обозначения диодных цепей
Светодиодыизлучают многоцветный свет в очень широком спектре оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев. Фотодиоды также производят электрический ток из света.
Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с добавлением различных соединений (комбинаций более чем одного элемента) и металлов в зависимости от функции диода.Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.
На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:
1. Три силовых выпрямителя (мостовой выпрямитель для использования с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).
2. Точечный диод (в стеклянной капсуле) и диод Шоттки.
3. Кремниевый малосигнальный диод.
4. Стабилитроны в корпусе из стекла или черной смолы.
5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, теплый белый светодиод 5 мм и синий светодиод высокой яркости 10 мм.
Обозначения диодных цепей
Диод — это односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод.В условных обозначениях схем, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода может также обозначаться буквой «а», а катод — буквой «к».
В каком направлении течет диодный ток?
Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.
Конструкция кремниевого диода
Рис. 2.0.3 Кремниевый планарный диод
Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем. Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.
Упрощенный планарный кремниевый диод показан на рис.2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например, бор или алюминий), чтобы получить P-тип, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа.Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, тогда как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.
Диод PN переход
Рис. 2.0.4 Слой истощения диода
Когда кремний P- и N-типа объединяются во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода.Кроме того, электроны, расположенные рядом с переходом в кремнии N-типа, притягиваются к положительно заряженному кремнию P-типа. Следовательно, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N. соединение. Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не станет достаточно, чтобы предотвратить свободное движение любых дальнейших дырок или электронов.Из-за этого естественного электрического потенциала в переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Поэтому, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, прямым потенциалом или напряжением (V F ), по крайней мере, достаточным для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN-переходом имеют потенциал перехода от 0,6 до 0,7 В.
Диод прямой проводимости
Рис. 2.0.5 Диод вперед
Проводимость
Когда напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.
Когда напряжение, приложенное между анодом и катодом, увеличивается, прямой ток сначала увеличивается медленно, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.
Диод с обратным смещением
Рис. 2.0.6 Обратный диод
Смещенный
Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь на стыке без каких-либо носителей заряда (положительных дырок или отрицательных электронов) по мере расширения обедненного слоя.Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения применяются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.
Вольт-амперные характеристики диода
Рис 2.0.7. Типовой диод I / V
Характеристика
Работа диодов, описанная выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.
Для диодов характеристическая кривая называется ВАХ, потому что она показывает взаимосвязь между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.
Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.
Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь видно, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако, как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.
Начало страницы
.