Для чего нужен трансформатор: Трансформатор. Что такое? Зачем нужен?

Содержание

Трансформатор: назначение, принципы работы и правила подключения

Автор Даниил Леонидович На чтение 9 мин. Просмотров 14.9k. Опубликовано Обновлено

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток.

Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока.

Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

Для чего этих целей в помощь – измерительные устройства, которые:

  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля.

Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

устройство, принцип работы, назначение и применение

Люди, незнакомые с электрикой, могут и не знать, для чего нужен трансформатор и как он выглядит. Роль этого устройства для технического прогресса можно считать одной из самых недооценённых, хотя благодаря его изобретению человечество получило широкий доступ к электроэнергии. За более чем 100 лет эволюции трансформаторы стали ключевыми компонентами не только энергетических систем, но и самых разнообразных радиоэлектронных устройств.

Принцип работы и виды

Трансформатором называют электрическое устройство, предназначенное для переноса электроэнергии переменного тока от одной цепи к другой с сохранением первоначальной частоты. Основа его конструкции — ферромагнитный сердечник с несколькими обмотками провода. Входное напряжение подключается к так называемой первичной обмотке, а выходное снимается со вторичных.

Переменный ток в первичной катушке индуцирует переменный магнитный поток, который локализуется в сердечнике, изменяет своё направление в течение каждого электрического цикла. Он же индуцирует переменный ток в каждой из вторичных обмоток.

Различные виды трансформаторов классифицируются в зависимости от конструкции, типа питания, охлаждения и так далее. Подробнее:

  • По целям. Здесь различают два основных типа — повышающие и понижающие напряжение. Существуют также разделительные трансформаторы, задачей которых является гальваническая развязка цепей без изменения параметров.
  • По типу питания. Различают однофазные и трехфазные. Три отдельных однофазных, соединённых в общую электрическую схему, могут работать в качестве трёхфазного.
  • По способу охлаждения. Разделяют на естественное и принудительное, воздушное и масляное.

Большинство трансформаторов в мире — это однофазные устройства воздушного охлаждения, понижающие напряжение. Но самые массивные и мощные из них работают как раз на повышение напряжения.

Транспортировка электроэнергии

Генераторы электростанций вырабатывают электроэнергию до десятков киловольт. Теоретически её в неизменном виде можно передать потребителям. Но с ростом мощности источника и расстояния транспортировки растут и проблемы потерь на нагрев проводов. При определённых значениях сама передача энергии может терять всякий смысл. Уменьшить потери можно только двумя способами:

  • снижением сопротивления проводов;
  • повышением напряжения передаваемой электроэнергии.

Первый способ реализуется увеличением площади поперечного сечения проводов. Это крайне дорого и сложно технически, так как влечёт за собой не только удорожание и утяжеление самих линий, но и усиление конструкций, их удерживающих. На больших расстояниях это просто невыгодно экономически, а то и нереально.

Во втором случае, согласно закону Ома, при уменьшении силы тока потери снижаются пропорционально квадрату силы тока. Это очень привлекательно с позиции снижения капитальных затрат на строительство и содержание системы энергопередачи. Поднять напряжение и одновременно снизить ток при неизменной мощности — вот зачем нужны трансформаторы в этом случае.

Поскольку электроэнергия высокого напряжения не может быть распределена между потребителями непосредственно, её приводят к желаемым параметрам с помощью понижающих трансформаторов. Таким образом, транспортировка энергии не обходится без предварительного и последующего преобразования, поэтому без силовых трансформаторов передача электроэнергии на большие расстояния в современном мире невозможна.

Преобразователи напряжения в схемах питания

Бытовые электрические сети стандартизированы по напряжению и частоте переменного тока, а вот приборы, которые подключаются к ней, могут нуждаться в совсем иных параметрах питания. Например, процессоры и компоненты электроники работают только в низковольтных цепях постоянного тока. Для того чтобы универсальность источника не была преградой для работы техники, подключаемые устройства комплектуют встроенными или наружными преобразователями напряжения на основе трансформаторов.

В линейных или традиционных источниках питания используются силовые трансформаторы. Они великолепно справляются с большой нагрузкой, но обладают некоторыми недостатками:

  • Большие размеры, обусловленные частотой сети 50 Гц. Это сказывается на весе источников питания, например, при выходном напряжении 16 В на каждый ампер выходного тока требуется приблизительно 0,5 кг массы.
  • Сравнительно большие потери мощности на тепло и, как следствие, низкий КПД.
  • Заметное потребление на холостом ходу.

Из-за перечисленных недостатков они были вытеснены импульсными преобразователями в зарядных устройствах и компьютерной технике. В подобных блоках питания электроэнергия попадает на трансформатор через фильтр и электронную схему в виде тока с очень высокой частотой. Благодаря этому КПД передачи мощности резко возрастает. Таким образом, блоки питания, работающие на этом принципе, значительно меньше и легче традиционных аналогичной мощности.

Но если сравнивать силовые трансформаторы с импульсными преобразователями питания, то первые являются меньшими источником электромагнитных помех, особенно в диапазоне высоких частот. Это свойство важно для их применения в аудиофильской технике, лабораторном оборудовании и радиоаппаратуре.

Преобразование электроэнергии для передачи её от производителя до потребляющих приборов — очень ёмкая, но далеко не единственная область применения трансформаторов. Огромное разнообразие этих устройств можно встретить в самых непохожих местах — от звукоснимателя и микрофона до сварочного аппарата и мощных измерительных приборов. А в качестве преобразователя напряжения сети трансформаторы окружают человека повсюду.

Для чего нужны трансформаторы тока

Трансформатор тока — электромагнитный аппарат который принадлежит к одному из видов трансформаторов измерительного вида. Одной из задач трансформатора тока является получение переменного тока во вторичной обмотке.

В общем определить одну определенную задачу трансформатора тока сложно, ведь она зависит от многих факторов в том числе и от конкретной ситуации при которой применение трансформатора просто необходимо.

Особенности

Но среди прочего все же выделяются три основных особенности трансформатора тока, а именно: защита, измерение и стабилизация электрического тока.

Трансформатор тока это аппарат который очень важен для использования в области электротехники. Для эффективной, безопасной и стабильной работы различных промышленных приборов и аппаратов, а также бытовых электрических приборов, необходим контроль текущих уровней электрического тока. Специально для этого к трансформатору тока подключаются различные измерительные электрические приборы позволяющие производить контроль всей системы в различных местах.

Трансформатор тока Т-0,66 150/5а

В трансформаторе тока первичный и вторичный ток пропорциональны друг другу. Первичная обмотка трансформатора тока включена последовательно, а вторичная замыкается на нагрузку. За счет этого действия получаются пропорциональные величины.

Пропорциональная величина трансформатора тока это – величина которая имеет одинаковое отношение между собой.

Обмотки

Первичная обмотка включения трансформатора тока бывает в двух типовых исполнениях. Первое — обмотка плоская, второе — обмотка в форме ролика выполненная из толстого провода.

Вторичная обмотка имеет большее число витков катушки которые намотаны на глянцевую основу магнитного материала. Вторичная обмотка трансформатора ток арсчитана на показатель который соответствует стандарту 1 или 5 Ампер.

Трансформаторы тока можно различить по классу точности а именно: 0,2; 0,5; 1; 3; и 10. Эти трансформаторы способны снижать высокие проходные электрические токи, на более низкие. Данное действие обеспечивает безопасный контроль электрической энергии в переменной линии передачи.

Трансформаторы тока делятся также по по номинальной мощности которая имеет следующие значения: 25 кВа, 40 кВа, 63 кВа, 100 кВа и 160 кВа.

При эксплуатации трансформатора тока, возникает необходимость периодического обслуживания и его ремонта. Хочется отметить что обслуживание, ремонт а также замена составляющих запасных частей трансформатора тока, должна проводиться специализированной организацией имеющей допуски к данным видам работ.

Области и сферы назначения

По функциональному назначению трансформаторы тока можно разделить на 4 категории

  • измерение при помощи любого прибора силы электрического тока. В этом случае переменный ток остается переменным, и приемлемым для измерения. Для измерения силы тока подходит вольтметр или другие измерительные электрические приборы кроме амперметра.
  • трансформаторы тока служат для стабилизации работы, в тех случаях когда электрическая система является довольно мощной, это нужно для сохранения целостности изоляции, которая необходима для обеспечения безопасности жизни обслуживающего персонала, который проводит регулярные ремонтные и обслуживающие работы.
  • преобразование трехфазного переменного электрического тока в такой же переменный ток подходящего значения. Это нужно для стабилизации работы и защиты реле, которое подключается к определенной конкретной электрической цепи.
  • при эксплуатации оборудования исключив нарушение изоляции и технологических серьезных ошибок во время установки электрического оборудования, электрический ток все равно способен нанести ущерб здоровью и жизней персонала занимающегося его периодическим обслуживанием и ремонтом.

Назначение, принцип действия трансформаторов тока и отличие от ТН

  1. Главная
  2. Электрические аппараты
  3. Трансформаторы тока: назначение и принцип действия

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать,  используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом. 

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Применение

Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например,  до стандартных 5 Ампер.

Современный рынок предлагает решения совместимые как с  проводами, так и с шинами.

Важное замечание

Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене  аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.

Трансформаторы тока выполняют не только важные задачи  отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

  • Стального магнитопровода.

  • Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

  • Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

  • Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

  • К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

  • Число фаз: одно- и трехфазные.

  • Количество обмоток – две или три.

  • Класс точности – диапазон допустимых параметров погрешности.

  • Тип охлаждения – масляные и сухие (воздушное охлаждение).

  • Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

  • Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

  • Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

  • Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

  • Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

  • Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

  • Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Зачем нужен трансформатор? — Наука и Техника — Каталог статей

Большинство людей, вероятно, слышали о трансформаторах и знают, что они являются частью все еще очевидной, но все еще загадочной электрической сети, которая поставляет электроэнергию в дома, на предприятия и в любое другое место, где требуется «сок». Но обычный человек воздерживается от изучения тонкостей подачи электроэнергии, возможно, потому, что весь процесс кажется скрытым в опасности. С юных лет дети учатся тому, что электричество может быть очень опасным, и все понимают, что провода любой энергокомпании держатся высоко вне досягаемости (или иногда прячутся в земле) по уважительной причине.

Но энергосистема на самом деле является триумфом человеческой инженерии, без которой цивилизация была бы неузнаваема по сравнению с той, в которой вы живете сегодня. Трансформатор является ключевым элементом в управлении и доставке электроэнергии от точки, в которой оно производится на электростанциях, до момента, когда он не попадает в дом, офисное здание или другое конечное место назначения.


Какова цель трансформатора?

Подумайте о дамбе, сдерживающей миллионы галлонов воды, чтобы сформировать искусственное озеро. Поскольку река, питающая это озеро, не всегда несет в район одно и то же количество воды, а ее воды имеют тенденцию повышаться весной после таяния снега во многих районах и отливания летом в более сухое время, любая эффективная и безопасная плотина должна быть оснащен устройствами, которые обеспечивают более точное управление водой, чем просто прекращение ее протекания до тех пор, пока уровень не поднимется настолько, что вода просто начнет проливаться на нее. Таким образом, дамбы включают в себя все виды шлюзовых ворот и другие механизмы, которые определяют, сколько воды будет проходить на выходной стороне плотины, независимо от величины давления воды на входной стороне.

Примерно так работает трансформатор, за исключением того, что материал, который течет, это не вода, а электрический ток. Трансформаторы служат для управления уровнем напряжения, протекающего через любую точку энергосистемы (подробно описанную ниже), таким образом, чтобы сбалансировать эффективность передачи с базовой безопасностью. Очевидно, что как для потребителей, так и для владельцев электростанции и энергосистемы финансово и практически выгодно предотвращать потери электроэнергии между выходом электроэнергии из электростанции и ее попаданием в дома или в другие пункты назначения. С другой стороны, если величина напряжения, протекающего через типичный высоковольтный силовой провод, не уменьшится перед входом в ваш дом, это приведет к хаосу и катастрофе.


Что такое напряжение?

Напряжение является мерой разности электрических потенциалов. Номенклатура может сбивать с толку, потому что многие студенты слышали термин «потенциальная энергия», что позволяет легко спутать напряжение с энергией. Фактически, напряжение — это электрическая потенциальная энергия на единицу заряда или джоули на кулон (Дж / с). Кулон является стандартной единицей электрического заряда в физике. Единственному электрону присваивают -1,609 × 10-19 кулонов, в то время как протон несет заряд, равный по величине, но противоположный по направлению (то есть положительный заряд).

Ключевым словом здесь, на самом деле, является «разница». Причиной того, что электроны текут из одного места в другое, является разница в напряжении между двумя контрольными точками. Напряжение представляет собой объем работы, который потребуется на единицу заряда, чтобы переместить заряд против электрического поля из первой точки во вторую. Чтобы получить представление о масштабе, знайте, что провода передачи на большие расстояния обычно имеют напряжение от 155 000 до 765 000 вольт, тогда как напряжение на входе в дом обычно составляет 240 вольт.


История Трансформера

В 1880-х годах поставщики электрических услуг использовали постоянный ток (DC). Это было чревато обязательствами, включая тот факт, что DC нельзя было использовать для освещения и было очень опасно, требуя толстых слоев изоляции. За это время изобретатель по имени Уильям Стэнли произвел индукционную катушку, устройство, способное создавать переменный ток (AC). В то время, когда Стэнли придумал это изобретение, физики знали о явлении переменного тока и его преимуществах с точки зрения энергоснабжения, но никто не смог придумать средства доставки переменного тока в больших масштабах. Индукционная катушка Стэнли будет служить шаблоном для всех будущих вариантов устройства.

Стэнли чуть не стал адвокатом, прежде чем решил работать электриком. Он начал в Нью-Йорке, прежде чем переехать в Питтсбург, где он начал работать над своим трансформатором. Он построил первую муниципальную систему переменного тока в 1886 году в городе Грейт Баррингтон, штат Массачусетс. После рубежа веков его энергетическая компания была куплена General Electric.

Может ли трансформатор увеличить напряжение?

Трансформатор может как увеличивать (повышать), так и уменьшать (уменьшать) напряжение, передаваемое через силовые провода. Это примерно аналогично тому, как кровеносная система может увеличивать или уменьшать кровоснабжение определенных частей тела в зависимости от потребности. После того, как кровь («сила») покидает сердце («силовая установка»), чтобы достичь ряда точек ветвления, она может попасть в нижнюю часть тела вместо верхней части тела, а затем в правую ногу вместо слева, а затем к тельцу вместо бедра и т. д. Это определяется расширением или сужением кровеносных сосудов в органах и тканях-мишенях. Когда на электростанции вырабатывается электричество, трансформаторы повышают напряжение с нескольких тысяч до сотен тысяч в целях передачи на большие расстояния. Когда эти провода достигают точек, называемых силовыми подстанциями, трансформаторы снижают напряжение до 10000 вольт. Вы, наверное, видели эти подстанции и их трансформаторы среднего уровня в своих путешествиях; Трансформаторы обычно размещаются в коробках и выглядят как холодильники, установленные на обочинах дорог.

Когда электричество покидает эти станции, что обычно происходит в разных направлениях, оно сталкивается с другими трансформаторами ближе к своей конечной точке в подразделениях, кварталах и отдельных домах. Эти трансформаторы снижают напряжение от менее 10000 вольт до значения около 240 — более чем в 1000 раз меньше, чем типичные максимальные уровни, наблюдаемые в проводах высокого напряжения большой длины.


Как электричество приходит в наши дома?

Трансформаторы — это, конечно, только один компонент так называемой электросети, название системы проводов, коммутаторов и других устройств, которые производят, отправляют и контролируют электроэнергию от того места, где оно генерируется, до места, где оно в конечном итоге используется.

Первым шагом в создании электрической энергии является вращение вала генератора. По состоянию на 2018 г. чаще всего это делается с использованием пара, выделяющегося при сжигании ископаемого топлива, такого как уголь, нефть или природный газ. Атомные электростанции и другие «чистые» генераторы энергии, такие как гидроэлектростанции и ветряные мельницы, также могут использовать или производить энергию, необходимую для работы генератора. В любом случае, электричество, которое вырабатывается на этих станциях, называется трехфазной. Это связано с тем, что эти генераторы переменного тока вырабатывают электричество, которое колеблется между установленным минимальным и максимальным уровнем напряжения, и каждая из трех фаз смещена на 120 градусов от тех, которые находятся впереди и позади него во времени. (Представьте, что вы идете взад и вперед по 12-метровой улице, в то время как двое других делают то же самое, совершая 24-метровую поездку в оба конца, за исключением того, что один из двух других людей всегда на 8 метров впереди вас, а другой на 8 метров позади вас. Иногда двое из вас будут идти в одном направлении, в то время как в другое время двое из вас будут идти в другом направлении, изменяя сумму ваших движений, но в предсказуемой форме. работает трехфазная сеть переменного тока.)

Прежде чем электричество покидает электростанцию, оно впервые сталкивается с трансформатором. Это единственная точка, в которой трансформаторы в электросети заметно повышают напряжение, а не снижают его. Этот шаг необходим, потому что электричество затем поступает на большие линии электропередачи по три комплекта, по одному на каждую фазу питания, и некоторым из них может потребоваться проехать до 300 миль или около того.

В какой-то момент электричество попадает на электрическую подстанцию, где трансформаторы снижают напряжение до уровня, подходящего для более сдержанных линий электропередач, которые вы видите в микрорайонах или вдоль сельских дорог. Именно здесь происходит фаза распределения (в отличие от передачи) доставки электроэнергии, поскольку линии обычно покидают подстанции в нескольких направлениях, подобно ряду артерий, разветвляющихся от основного кровеносного сосуда в более или менее том же соединении.

От подстанции электричество передается в микрорайоны и покидает местные линии электропередач (которые обычно находятся на «телефонных столбах») для входа в отдельные жилые дома. Меньшие трансформаторы (многие из которых выглядят как маленькие металлические мусорные баки) снижают напряжение примерно до 240 вольт, чтобы оно могло попасть в дома без большого риска возникновения пожара или другого серьезного несчастного случая.

Какова функция трансформатора?

Трансформаторы не только должны выполнять работу по управлению напряжением, но они также должны быть устойчивы к повреждениям, будь то стихийные бедствия, такие как ураганы или целенаправленные атаки, созданные человеком. Невозможно держать энергосистему вне досягаемости стихий или злоумышленников, но, тем не менее, энергосистема абсолютно необходима для современной жизни. Это сочетание уязвимости и необходимости привело к тому, что Департамент внутренней безопасности США заинтересовался крупнейшими трансформаторами в американской электросети, называемыми крупными силовыми трансформаторами, или LPT. Функционирование этих массивных трансформаторов, которые находятся на электростанциях и могут весить от 100 до 400 тонн и стоят миллионы долларов, имеет важное значение для поддержания повседневной жизни, поскольку выход из строя одного из них может привести к отключению электроэнергии на обширной территории , Это трансформаторы, которые резко повышают напряжение, прежде чем электричество попадает на междугородние провода высокого напряжения.

По состоянию на 2012 год средний возраст LPT в США составлял около 40 лет. Некоторые из современных высоковольтных трансформаторов сверхвысокого напряжения (EHV) рассчитаны на 345 000 вольт, и спрос на трансформаторы растет как в США, так и во всем мире, что вынуждает правительство США искать способы замены существующих LPT по мере необходимости и разрабатывать новые по сравнительно низкой цене.
Как работает трансформатор?

Трансформатор — это большой квадратный магнит с отверстием посередине. Электричество поступает с одной стороны через провода, несколько раз обмотанные вокруг трансформатора, и уходит с противоположной стороны через провода, обернутые несколько раз вокруг трансформатора. Поступающее электричество индуцирует магнитное поле в трансформаторе, которое, в свою очередь, индуцирует электрическое поле в других проводах, которые затем отводят энергию от трансформатора.

На уровне физики трансформатор работает, используя преимущества закона Фарадея, который гласит, что отношение напряжений двух катушек равно отношению числа витков в соответствующих катушках. Таким образом, если на трансформаторе требуется пониженное напряжение, вторая (выходная) катушка содержит меньше витков, чем первичная (входная) катушка.

Что такое трансформатор? — Страна Каролины

Вы когда-нибудь задумывались, что это за серые металлические цилиндры на опорах? Как насчет тех зеленых металлических ящиков, которые вы видите на земле в некоторых районах? Они трансформеры. Это оборудование преобразует электричество в напряжение, безопасное для использования в домах и на предприятиях. Как они работают?

  • На электростанции электроэнергия, производимая генераторами, повышается трансформаторами до очень высокого напряжения, часто до 350 000 или 500 000 вольт.Высокое напряжение помогает передавать электроэнергию по линиям электропередачи на большие расстояния.
  • Линии электропередачи подключаются к соседним подстанциям, которые содержат трансформаторы и другое управляющее оборудование. Здесь трансформаторы понижают напряжение до более безопасного уровня для распределительных линий электропередачи. В зависимости от расстояния до самого дальнего обслуживаемого элемента напряжения распределения могут находиться в диапазоне от 12 500 до 34 000 вольт.
  • Ближайшие трансформаторы снова отключают электричество для подачи в ваш дом на 240 вольт.
  • Независимо от формы и размера трансформатора, все они работают одинаково. У них есть две стороны, сторона высокого напряжения и сторона низкого напряжения. При нормальной работе электричество поступает в трансформатор со стороны высокого напряжения, где оно попадает в катушку с проводом, обычно намотанную на железный сердечник. Каждая катушка имеет разное количество витков. Чем больше количество витков, тем выше напряжение. Катушка на высокой стороне будет иметь больше витков, чем катушка на низкой стороне. В результате напряжение на стороне низкого напряжения меньше.
  • Трансформаторы можно встретить повсюду в нашей повседневной жизни. Лучшим примером является зарядное устройство, которое поставляется со всеми сотовыми телефонами и многими другими электрическими устройствами. Эти маленькие родственники сетевых трансформаторов в основном выполняют ту же функцию. Зарядка сотового телефона напряжением 120 вольт мгновенно сожжет его. Итак, зарядное устройство преобразует напряжение в более приемлемые 5 вольт или около того.

Щелкните изображение выше, чтобы проследить путь электричества через трансформаторы.

Что такое трансформатор? | Вондрополис

Что вы считаете величайшим научным открытием или изобретением всех времен? Для некоторых открытие электричества Бенджамином Франклином, вероятно, окажется в верхней части списка.В конце концов, без электричества наша жизнь была бы совершенно иной, чем сегодня.

Задумывались ли вы когда-нибудь о том, как электричество поступает от электростанции в ваш дом? Просто подключить электронное устройство к ближайшей розетке — это удобство, которое мы часто принимаем как должное. Однако путь электричества к этим маленьким розеткам в стене — увлекательное путешествие.

Если вы когда-либо видели предметы, свисающие с верхних столбов инженерных сетей или большие ящики, стоящие рядом со зданиями, то вы знакомы с некоторыми из наиболее важных частей оборудования в системе, которая обеспечивает энергией ваш дом.Эти машины называются трансформаторами. Нет, они не превращаются в машины супергероев, когда вы не смотрите, но все они о переменах!

Трансформаторы — это электрические машины, которые переводят электричество с одного напряжения на другое. Напряжение — это мера электрической силы, которая толкает электроны по цепи. В некоторых случаях трансформаторы могут брать электричество с более низким напряжением и переключать его на более высокое напряжение. Такие трансформаторы называются повышающими трансформаторами.

Однако большинство трансформаторов являются понижающими трансформаторами.Они берут электричество с высоким напряжением и меняют его на более низкое. Это критический шаг в процессе доставки энергии, поскольку электричество, поступающее от электростанции, находится под чрезвычайно высоким напряжением, которое слишком велико для использования в вашем доме.

Например, линия электропередачи электростанции может передавать электричество напряжением от 400 000 до 750 000 вольт. Электричество отправляется с таким высоким напряжением, потому что ему часто приходится преодолевать большие расстояния. Использование более высоких напряжений помогает минимизировать потери энергии при перемещении.

В определенных областях, называемых электрическими подстанциями, огромные трансформаторы снижают это высокое напряжение до более низкого напряжения, которое направляется в определенные области. Вы когда-нибудь видели электрическую подстанцию ​​возле своего дома? Обычно по ним можно узнать по наличию большого количества электрических линий и оборудования, в том числе многочисленных трансформаторов.

Понижающие трансформаторы на подстанциях понижают высокое напряжение до более низкого в диапазоне 7200 вольт. Когда электричество достигает вашего района, трансформаторы на опорах или заземляющих коробках, подключенных к подземным проводам, снижают напряжение электричества до 220–240 вольт для использования в вашем доме.Некоторые основные электроприборы, такие как водонагреватели, плиты и кондиционеры, будут использовать 220–240 вольт, в то время как большинство других небольших электроприборов будут использовать 110–120 вольт.

Так как же трансформаторы творит эту электрическую магию? Все это происходит из-за пары простых фактов об электричестве. Трансформаторы работают, потому что колеблющийся электрический ток (известный как переменный ток или AC), протекающий по проводам, входящим в трансформатор (первичный ток), создает магнитное поле.Это флуктуирующее магнитное поле создает ток (вторичный ток) во втором наборе проводов, покидающих трансформатор, в результате процесса, называемого электромагнитной индукцией.

Чтобы сделать этот процесс более эффективным, провода, входящие в трансформатор и выходящие из него, скручены в петли или витки вокруг железного стержня, называемого сердечником. Если первичная и вторичная катушки имеют одинаковое количество витков или витков, напряжение будет одинаковым в каждой. Однако, если вторичная катушка имеет больше или меньше петель или витков, тогда напряжение вторичного тока будет больше или меньше первичного тока.

Например, если первичная обмотка имеет 10 витков, а вторичная обмотка — один виток, то трансформатор снизит первичное напряжение в 10 раз. Таким образом, ток, входящий в трансформатор при 1000 вольт, покинет трансформатор при 100 вольт. .

▷ Что такое трансформатор?

Вот статья Насира, одного из членов сообщества. Если вы также хотите отправить статью, отправьте нам письмо .

Трансформатор — это устройство, которое передает электрический ток из одной цепи в другую, обычно по принципу взаимной индукции.Во время этого процесса частота остается постоянной, а напряжение можно увеличивать или уменьшать в зависимости от необходимости.

Эта передача электричества происходит с помощью двух катушек. Одна из них, известная как первичная катушка, подключена к источнику переменного тока. Другой известен как вторичная катушка, и он подключен к внешней цепи. Это составляет базовую структуру трансформатора и показано ниже:


Принцип работы трансформатора

Трансформатор работает по принципу закона взаимной индукции Фарадея.Этот принцип гласит, что скорость изменения потока прямо пропорциональна индуцированному электромагнитному потоку.

Точно так же в трансформаторе, когда переменный ток течет через одну из катушек, он создает вокруг нее магнитное поле, которое постоянно создает изменяющийся магнитный поток, и поэтому, когда другая катушка приближается к ней, часть ЭДС также становится индуцируется и во вторичной катушке. Поскольку вторичная обмотка образует замкнутый контур, ЭДС также создает в нем ток.

Короче говоря, эта взаимная индукция между катушками отвечает за передачу электроэнергии.


Эти обмотки обычно делаются на железном сердечнике, чтобы усилить магнитное поле, а затем ламинируются, чтобы поток не ослабевал из-за воздуха, который является идеальным изолятором. Но все же наблюдаются некоторые потери мощности, такие как потери на вихревые токи и потери на гистерезис.

Типы трансформаторов

Классифицируемые по возрастанию напряжения, мы в первую очередь классифицируем трансформаторы на две основные категории:

    1) Повышающий трансформатор
    2) Понижающий трансформатор

Если мы увеличим количество витков во вторичной катушке, так что они станут больше, чем количество витков в первичной катушке, индуцированное напряжение может быть увеличено в прямом связь.то есть, если количество витков вторичной обмотки в десять раз превышает количество витков первичной обмотки, то индуцированное напряжение также будет в десять раз больше, чем напряжение в первичной обмотке.

Аналогично, если количество витков в первичной катушке больше, чем количество витков во вторичной катушке, индуцированное напряжение будет меньше исходного напряжения.

Это свойство трансформатора действительно полезно при передаче электроэнергии, особенно на большие расстояния. Чтобы избежать потерь мощности, сначала используется понижающий трансформатор, а на приемном конце используется повышающий трансформатор, который повышает напряжение до необходимого уровня.Такие типы трансформаторов известны как однофазные, двухобмоточные трансформаторы напряжения.

Но также могут быть созданы двухфазные, трехфазные или более высокие трансформаторы, особенно для коммерческих и промышленных целей, где нагрузка довольно велика, в основном используются три фазы. Подключения трансформатора в 3 фазе показаны ниже:


Как видно из рисунка, трехфазный трансформатор будет иметь три первичные обмотки и три вторичные обмотки. Способ, которым три обмотки соединяются друг с другом, может быть соединением треугольником или соединением Y.Оба они показаны ниже:


Если катушки соединены последовательно, образуя замкнутый контур, то соединение известно как соединение треугольником, но если три обмотки соединены так, что все они имеют общую точку, то образуется соединение Y-типа. Он имеет нейтральный провод в общей конечной точке. Обе эти связи эквивалентны и взаимопреобразуемы из одной формы в другую.

В следующей части этого руководства мы рассмотрим конструкцию трансформатора, который, я думаю, очень важен для инженера-электрика.Я объясню основы конструкции трансформатора, такие как обмотки и т. Д., И проверю, как спроектировать трансформатор.

Так что следите за обновлениями и подпишитесь на нашу рассылку по электронной почте, чтобы получить эти удивительные обучающие программы в своем почтовом ящике. Заботиться.

Что такое трансформатор? — Основы схемотехники

Трансформатор представляет собой электрическое устройство, предназначенное для передачи электрической энергии от одной цепи к другой с той же частотой. Его также называют статическим механизмом, поскольку он не имеет движущихся частей.Он используется для управления уровнями напряжения между цепями. Он состоит из трех основных частей, которые состоят из двух обмоток и металлического сердечника, на который намотаны обмотки. Эти обмотки имеют форму катушек, изготовленных из хороших токопроводящих материалов. Обмотки трансформатора играют главную роль в машине, поскольку эти обмотки служат в качестве индукторов.

Анатомия трансформера a T

Трансформатор состоит из следующих частей:

  • Первичная обмотка
  • Вторичная обмотка
  • Сердечник
  • Изоляционные материалы
  • Трансформаторное масло
  • Консерватор
  • Сапун
  • Устройство РПН
  • Охлаждающие трубки
  • Реле Бухгольца
  • Как работают трансформаторы

    Первичная обмотка, вторичная обмотка и сердечник являются основными частями силового трансформатора.Эти детали очень важны для работы трансформатора.

    Первичная обмотка обычно изготавливается из меди из-за ее высокой проводимости и пластичности. Количество витков катушки должно быть кратно количеству витков вторичной катушки. Он также отвечает за производство магнитного потока. Магнитный поток создается, когда первичная катушка подключена к источнику электричества. Медный провод, используемый в первичной катушке, должен быть тоньше, чем у вторичной катушки, чтобы ток во вторичной катушке был выше, чем в первичной катушке.

    Вторичная обмотка, которая также сделана из меди, принимает магнитный поток, создаваемый первичной обмоткой. Поток проходит через сердечник и соединяется со вторичной обмоткой. Вторичная обмотка подает энергию на нагрузку при измененном напряжении. В этой катушке будет индуцироваться напряжение, поэтому обмотка должна иметь большее количество витков по сравнению с первичной обмоткой. Ток, идущий от первичной катушки, будет генерировать переменный магнитный поток в сердечнике, чтобы вызвать электромагнитное соединение между первичной и вторичной катушками.Магнитный поток, который проходит через две катушки, индуцирует электродвижущую силу, величина которой пропорциональна количеству витков катушки.

    Обмотка проводов катушки и выходное напряжение и ток

    Величина наведенного напряжения, вызванного наведенным током во вторичной катушке, зависит от количества витков катушки во вторичной катушке. Связь между витками проволоки и напряжением в каждой катушке задается уравнением трансформатора :

    Уравнение трансформатора показывает, что отношение входного и выходного напряжений трансформатора равно отношению количества витков на первичной и вторичной обмотках.

    Расчет входного и выходного напряжения / тока в зависимости от первичной и вторичной обмоток проводов

    Соотношение входного и выходного тока и витков катушки трансформатора определяется выражением:

    Данное уравнение показывает, что отношение входного и выходного тока трансформатора равно отношению количества витков двух катушек.

    Оценивая два приведенных выше уравнения, мы можем сделать вывод, что если напряжение увеличивается, ток уменьшается.Таким же образом, если напряжение уменьшается, ток увеличивается.

    Что такое рейтинг VA?

    ВА или вольт-ампер. обычно используется для определения силы тока при заданном напряжении в трансформаторе. Вольт-ампер также используется для измерения полной мощности в электрической цепи. Этот рейтинг определяет, сколько вольт-ампер способен выдать трансформатор.

    Определение ВА и расчет максимального тока для первичной и вторичной обмоток

    Чтобы рассчитать ток первичной и вторичной обмоток трансформатора с заданной номинальной мощностью, мы используем следующее:

    Для отношения количества витков, напряжения и тока

    Для максимального первичного тока

    Для максимального вторичного тока,

    Обозначение выходного напряжения трансформаторов с центральным отводом

    Трансформатор с центральным отводом также широко известен как «двухфазный трехпроводной трансформатор».Это тип трансформатора, который имеет дополнительный провод, подключенный к середине вторичной обмотки трансформатора. Он обеспечивает два вторичных напряжения: V A и V B, с общим подключением. Эти вторичные напряжения равны подаваемому напряжению, поэтому каждая обмотка получает одинаковую мощность.


    12-0-12 Трансформатор

    A 12-0-12 трансформатор — это понижающий трансформатор с центральным отводом с входным напряжением 220 В переменного тока при 50 Гц и выходным напряжением 24 В или 12 В (среднеквадратичное значение).Он назван трансформатором 12-0-12 из-за выходных потенциалов трех клемм, как показано на рисунке выше. Вторичная обмотка состоит из трех выводов: двух выводов от конца до конца и третьего вывода в качестве центрального отвода. На приведенном выше рисунке напряжение будет 24 В на всем протяжении (T 1 и T 3 ). Напряжение на T 1 и T 2 будет 12 В. 0 в 12-0-12 представляет контрольную точку с нулевым напряжением.


    Что такое трансформатор?

    Что такое трансформатор?

    Трансформатор — это электрическое устройство, преобразующее переменный ток из одного напряжения в другое.он может быть разработан для «повышения» или «понижения» напряжения и работает по принципу магнитной индукции. Трансформатор не имеет движущихся частей и представляет собой полностью статичное твердотельное устройство, обеспечивающее при нормальных условиях эксплуатации долгий и безотказный срок службы. Трансформатор состоит из двух или более катушек изолированного провода, намотанного на многослойный стальной сердечник. Когда напряжение подается на одну катушку (называемую первичной), оно намагничивает железный сердечник. В результате во вторичной или выходной катушке индуцируется напряжение.Изменение напряжения (отношения напряжений) между первичной и вторичной обмотками зависит от соотношения витков двух катушек.


    Что делает трансформатор?

    Принцип работы

    Трансформатор работает по принципу магнитной индукции. Каждый трансформатор состоит из двух или более катушек изолированного проводника (проволоки), намотанного на многослойный стальной сердечник. Когда напряжение подается на ПЕРВИЧНУЮ (входную) катушку, она намагничивает стальной сердечник, который, в свою очередь, индуцирует напряжение на ВТОРИЧНОЙ (выходной) катушке.Напряжение, индуцированное от первичной к вторичной катушкам, прямо пропорционально соотношению витков между двумя катушками. (См. Рис.1)

    Например, если на входе трансформатора или на входе первичной обмотки в два раза больше витков провода, чем во вторичной обмотке, то соотношение будет 2: 1. Следовательно, если вы приложите 480 вольт к первичной обмотке, на вторичной будет индуцировано 240 вольт. Это пример двухобмоточного «понижающего» трансформатора. (См. Рис. 2). Если напряжение должно быть «повышено» или увеличено, тот же трансформатор можно повернуть и подключить так, чтобы на входной стороне было 240 вольт, а на выходе — 480 вольт.(См. Рис. 3)

    Стандартные трансформаторы мощностью 3 кВА и более могут использоваться как для повышающего, так и для понижающего режима. Трансформаторы номиналом 2 кВА и ниже имеют компенсированные обмотки и не должны использоваться в системах с обратным питанием. (Примечание: необходимо учитывать некоторые соображения по проектированию системы.)

    ТРАНСФОРМАТОРЫ — прикладное промышленное электричество

    Что такое повышающие и понижающие трансформаторы

    Это действительно очень полезное устройство.С его помощью мы можем легко умножить или разделить напряжение и ток в цепях переменного тока. Действительно, трансформатор сделал передачу электроэнергии на большие расстояния реальностью, поскольку напряжение переменного тока может быть «повышено», а ток «понижен» для снижения потерь мощности сопротивления проводов вдоль линий электропередач, соединяющих генерирующие станции с нагрузками. На обоих концах (как на генераторе, так и на нагрузках) уровни напряжения снижаются трансформаторами для более безопасной работы и менее дорогого оборудования.

    Трансформатор, который увеличивает напряжение от первичной обмотки к вторичной (больше витков вторичной обмотки, чем витков первичной обмотки), называется повышающим трансформатором .

    И наоборот, трансформатор, предназначенный для работы с точностью до наоборот, называется понижающим трансформатором .

    Давайте еще раз рассмотрим фотографию, показанную в предыдущем разделе:

    Рис. 8.1. Поперечное сечение трансформатора, показывающее первичную и вторичную обмотки, имеет высоту несколько дюймов (приблизительно 10 см).

    Это понижающий трансформатор, о чем свидетельствует большое число витков первичной обмотки и низкое число витков вторичной обмотки. В качестве понижающего блока этот трансформатор преобразует низковольтную слаботочную мощность в низковольтную сильноточную мощность.Провод большего сечения, используемый во вторичной обмотке, необходим из-за увеличения тока. Первичная обмотка, которая не должна проводить такой большой ток, может быть сделана из провода меньшего сечения.

    Обратимость работы трансформатора

    Если вам интересно, можно использовать любой из этих типов трансформатора в обратном направлении (питание вторичной обмотки от источника переменного тока и обеспечение питания нагрузки первичной обмоткой) для выполнения противоположной функции: может функционировать повышающий. как понижение и виза-верса.

    Однако, как мы видели в первом разделе этой главы, эффективная работа трансформатора требует, чтобы индуктивности отдельных обмоток были спроектированы для конкретных рабочих диапазонов напряжения и тока, поэтому, если трансформатор должен использоваться «в обратном направлении», как это должны использоваться в пределах исходных проектных параметров напряжения и тока для каждой обмотки, чтобы они не оказались неэффективными (или не повредил из-за чрезмерного напряжения или тока!).

    Этикетки для трансформаторов

    Трансформаторы

    часто конструируются таким образом, что не очевидно, какие провода ведут к первичной обмотке, а какие — к вторичной.В электроэнергетике, чтобы избежать путаницы, используется одно из условных обозначений «H» для обмотки более высокого напряжения (первичная обмотка в понижающем блоке; вторичная обмотка в повышающем) и «X». обозначения низковольтной обмотки. Следовательно, у простого силового трансформатора будут провода с маркировкой «H 1 », «H 2 », «X 1 » и «X 2 ». Обычно это имеет значение для нумерации проводов (H 1 по сравнению с H 2 и т. Д.), который мы рассмотрим немного позже в этой главе.

    Практическое значение повышающих и понижающих трансформаторов

    Тот факт, что напряжение и ток «скачкообразно изменяются» в противоположных направлениях (одно вверх, другое вниз), имеет смысл, если вы вспомните, что мощность равна напряжению, умноженному на ток, и поймете, что трансформаторы не могут производить мощность , а только преобразовывают ее. . Любое устройство, которое могло бы выдавать больше энергии, чем потребляло, нарушило бы закон сохранения энергии в физике, а именно, что энергия не может быть создана или уничтожена, а только преобразована.Как и в случае с первым рассмотренным нами примером трансформатора, эффективность передачи энергии от первичной к вторичной стороне устройства очень хорошая.

    Практическое значение этого становится более очевидным, когда рассматривается альтернатива: до появления эффективных трансформаторов преобразование уровня напряжения / тока могло быть достигнуто только за счет использования двигателей / генераторных установок. Чертеж двигателя / генераторной установки показывает основной принцип: (рисунок ниже)

    Рисунок 8.2 Мотор-генератор иллюстрирует основной принцип работы трансформатора.

    В такой машине двигатель механически соединен с генератором, причем генератор предназначен для выработки требуемых уровней напряжения и тока при скорости вращения двигателя. Хотя и двигатели, и генераторы являются довольно эффективными устройствами, использование обоих таким образом усугубляет их неэффективность, так что общий КПД находится в диапазоне 90% или меньше. Кроме того, поскольку для двигателей / генераторных установок явно требуются движущиеся части, механический износ и балансировка являются факторами, влияющими как на срок службы, так и на производительность.С другой стороны, трансформаторы способны преобразовывать уровни переменного напряжения и тока с очень высоким КПД без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

    Справедливости ради следует отметить, что моторные / генераторные установки не обязательно заменялись трансформаторами для всех приложений . Хотя трансформаторы явно превосходят мотор-генераторные установки для преобразования переменного напряжения и уровня тока, они не могут преобразовывать одну частоту переменного тока в другую или (сами по себе) преобразовывать постоянный ток в переменный или наоборот.Электродвигатели / генераторные установки могут выполнять все эти задачи с относительной простотой, хотя и с уже описанными ограничениями эффективности и механических факторов.

    Электродвигатели / генераторные установки также обладают уникальным свойством аккумулирования кинетической энергии: то есть, если подача питания двигателя на мгновение прерывается по какой-либо причине, его угловой момент (инерция этой вращающейся массы) будет поддерживать вращение генератора на короткое время. длительность, таким образом изолируя любые нагрузки, питаемые от генератора, от «сбоев» в основной энергосистеме. 2µA} {I} [/ латекс]

    Где,

    [латекс] L = \ text {индуктивность катушки Генри} [/ латекс]

    [латекс] N = \ text {Количество витков в катушке провода (прямой провод = 1)} [/ латекс]

    [латекс] \ mu = \ text {Проницаемость основных материалов (абсолютная, а не относительная)} [/ латекс]

    [латекс] A = \ text {Площадь рулона в квадратных метрах} [/ латекс]

    [латекс] I = \ text {Среднее значение рулона в метрах} [/ латекс]

    Итак, должно быть очевидно, что наши две катушки индуктивности должны иметь отношение витков катушки 10: 1, поскольку 10 в квадрате равняется 100.Это похоже на то же соотношение, которое мы обнаружили между первичным и вторичным напряжениями и токами (10: 1), поэтому мы можем, как правило, сказать, что коэффициент трансформации напряжения и тока равен отношению витков обмотки между первичной и вторичной обмотками.

    Рисунок 8.3 Пример понижающего трансформатора.

    Понижающий трансформатор: (много витков: несколько витков).

    Эффект повышения / понижения передаточных чисел катушки в трансформаторе аналогичен передаточным числам зубчатых колес в механических зубчатых передачах, преобразуя значения скорости и крутящего момента почти таким же образом:

    Рисунок 8.4 Зубчатая передача понижает крутящий момент, уменьшая крутящий момент, одновременно увеличивая скорость.

    Повышающие и понижающие трансформаторы для целей распределения энергии могут быть гигантскими по сравнению с показанными ранее силовыми трансформаторами, причем некоторые блоки имеют высоту дома. На следующей фотографии показан трансформатор подстанции высотой около двенадцати футов:

    Рисунок 8.5 Трансформатор подстанции.

    Существуют приложения, в которых необходима гальваническая развязка между двумя цепями переменного тока без какого-либо преобразования уровней напряжения или тока.В этих случаях используются трансформаторы под названием изолирующие трансформаторы с коэффициентами трансформации 1: 1. Настольный изолирующий трансформатор показан на рисунке ниже.

    Рисунок 8.6 Изолирующий трансформатор изолирует питание от линии питания.

    Поскольку трансформаторы в основном являются устройствами переменного тока, нам необходимо знать фазовые соотношения между первичной и вторичной цепями. Мы можем построить кривые для первичной и вторичной цепей и увидеть фазовые соотношения.

    Рисунок 8.7 Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

    Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

    При переходе от первичной обмотки, В (2) к вторичной, В (3,5), напряжение было понижено в десять раз, а ток увеличился в десять раз. синфазно при переходе от первичного к вторичному.

    Рисунок 8.8 Первичный и вторичный токи синфазны. Вторичный ток увеличивается в десять раз.

    Условные обозначения трансформатора

    Похоже, что напряжение и ток двух обмоток трансформатора синфазны, по крайней мере, для нашей резистивной нагрузки. Это достаточно просто, но было бы неплохо узнать , каким образом нам следует подключить трансформатор, чтобы обеспечить правильное соотношение фаз. В конце концов, трансформатор — это не что иное, как набор индукторов с магнитной связью, а на индукторах обычно нет какой-либо маркировки полярности.Если бы мы посмотрели на немаркированный трансформатор, у нас не было бы возможности узнать, как подключить его к цепи, чтобы получить синфазное (или не синфазное на 180 °) напряжение и ток:

    Рисунок 8.9 На практике полярность трансформатора может быть неоднозначной.

    Поскольку это практическая проблема, производители трансформаторов разработали своего рода стандарт маркировки полярности для обозначения фазовых соотношений. Он называется условным обозначением точки и представляет собой не что иное, как точку, помещенную рядом с каждым соответствующим плечом обмотки трансформатора:

    Рисунок 8.10 Пара точек указывает полярность.

    Обычно трансформатор поставляется с какой-то схематической диаграммой, на которой отмечены выводы проводов для первичной и вторичной обмоток. На схеме будет пара точек, похожая на то, что видно выше. Иногда точки будут опускаться, но когда метки «H» и «X» используются для обозначения проводов обмотки трансформатора, предполагается, что нижние индексы обозначают полярность обмоток. Провода «1» (H 1 и X 1 ) показывают, где обычно размещаются точки маркировки полярности.

    Подобное расположение этих точек рядом с верхними концами первичной и вторичной обмоток говорит нам о том, что любая мгновенная полярность напряжения, наблюдаемая на первичной обмотке, будет такой же, как и на вторичной обмотке. Другими словами, сдвиг фазы от первичного к вторичному будет равен нулю градусов.

    С другой стороны, если точки на каждой обмотке трансформатора не совпадают, , а не , фазовый сдвиг будет 180 ° между первичной и вторичной обмотками, например:

    Рисунок 8.11 Не в фазе: основной красный — точка, дополнительный черный — точка.

    Конечно, условное обозначение точек указывает только на то, какой конец каждой обмотки является каким относительно другой обмотки (ей). Если вы хотите самостоятельно изменить соотношение фаз, все, что вам нужно сделать, это поменять местами соединения обмотки следующим образом:

    Рисунок 8.12 В фазе: основной красный — точка, дополнительный красный — точка.

    Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношением витков первичной и вторичной обмоток.

    [латекс] \ text {Коэффициент передачи напряжения} = \ frac {N_ {вторичный}} {N_ {первичный}} [/ latex]

    [латекс] \ text {Текущий коэффициент передачи} = \ frac {N_ {первичный}} {N_ {вторичный}} [/ латекс]

    Где,

    [латекс] N = \ text {Количество витков в обмотке} [/ латекс]

    • Трансформатор, предназначенный для увеличения напряжения от первичной до вторичной, называется повышающим трансформатором .Трансформатор, предназначенный для понижения напряжения с первичной обмотки на вторичную, называется понижающим трансформатором .
    • Коэффициент трансформации трансформатора будет равен квадратному корню из отношения его первичной индуктивности к вторичной индуктивности (L).

    [латекс] \ text {Коэффициент передачи напряжения} = \ sqrt {\ frac {L_ {вторичный}} {L_ {первичный}}} [/ латекс]

    • Имея возможность передавать мощность от одной цепи к другой без использования соединительных проводов между двумя цепями, трансформаторы обеспечивают полезную функцию гальванической развязки .
    • Трансформаторы, предназначенные для обеспечения гальванической развязки без скачков напряжения и тока вверх или вниз, называются изолирующими трансформаторами .
    • Фазовое соотношение для напряжения и тока между первичной и вторичной цепями трансформатора прямое: в идеале нулевой сдвиг фазы.
    • Условное обозначение из точек — это тип маркировки полярности для обмоток трансформатора, показывающий, какой конец обмотки находится относительно других обмоток.

    Трансформаторы с несколькими вторичными обмотками

    Трансформаторы — очень универсальные устройства. Базовая концепция передачи энергии между взаимными индукторами достаточно полезна между одной первичной и одной вторичной обмотками, но трансформаторы не обязательно должны быть сделаны с двумя наборами обмоток. Рассмотрим схему трансформатора:

    Рисунок 8.13. Трансформатор с несколькими вторичными обмотками обеспечивает несколько выходных напряжений.

    Здесь три катушки индуктивности имеют общий магнитный сердечник, магнитно «связывая» или «связывая» их вместе.Связь между коэффициентами витков обмотки и отношениями напряжений, наблюдаемая с одной парой взаимных индукторов, все еще сохраняется здесь для нескольких пар катушек.

    Вполне возможно собрать трансформатор, подобный приведенному выше (одна первичная обмотка, две вторичные обмотки), в котором одна вторичная обмотка является понижающей, а другая — повышающей. Фактически, такая конструкция трансформатора была довольно распространена в цепях питания вакуумных ламп, которые требовались для подачи низкого напряжения на нити ламп (обычно 6 или 12 вольт) и высокого напряжения для пластин ламп (несколько сотен вольт) от источника питания. номинальное первичное напряжение 110 вольт переменного тока.

    С таким трансформатором возможны не только напряжения и токи совершенно разных величин, но все цепи электрически изолированы друг от друга.

    Рисунок 8.14 Фотография многообмоточного трансформатора с шестью обмотками, первичной и пятью вторичными обмотками.

    Трансформатор на рисунке выше предназначен для обеспечения высокого и низкого напряжения, необходимого в электронной системе с использованием электронных ламп. Низкое напряжение требуется для питания нитей вакуумных трубок, в то время как высокое напряжение требуется для создания разности потенциалов между пластиной и катодными элементами каждой трубки.Одного трансформатора с несколькими обмотками достаточно, чтобы обеспечить все необходимые уровни напряжения от одного источника 115 В. Провода для этого трансформатора (их 15!) На фотографии не показаны, они скрыты от глаз.

    Если электрическая изоляция между вторичными цепями не имеет большого значения, аналогичный эффект может быть получен путем «постукивания» одной вторичной обмотки в нескольких точках по ее длине, как показано на рисунке ниже.

    Рис. 8.15. Вторичная обмотка с одним ответвлением обеспечивает несколько напряжений.

    Многополюсный коммутирующий трансформатор

    Ответвитель — это не что иное, как соединение проводов, сделанное в некоторой точке обмотки между концами. Неудивительно, что соотношение витков обмотки / величины напряжения обычного трансформатора сохраняется для всех сегментов обмотки с ответвлениями. Этот факт можно использовать для производства трансформатора с несколькими передаточными числами:

    Рисунок 8.16. Вторичная обмотка с ответвлениями, использующая переключатель для выбора одного из многих возможных напряжений.

    Переменный трансформатор

    Продолжая концепцию отводов обмотки, мы получаем «регулируемый трансформатор», в котором скользящий контакт перемещается по длине открытой вторичной обмотки и может соединяться с ней в любой точке по ее длине.Эффект эквивалентен наличию отвода обмотки на каждом витке обмотки и переключателя с полюсами на каждом положении отвода:

    Рисунок 8.17 Скользящий контакт на вторичной обмотке непрерывно изменяет вторичное напряжение.

    Одним из потребительских применений переменного трансформатора является регулирование скорости для модельных поездов, особенно поездов 1950-х и 1960-х годов. Эти трансформаторы были по существу понижающими блоками, максимальное напряжение, получаемое от вторичной обмотки, было существенно меньше, чем первичное напряжение от 110 до 120 вольт переменного тока.Контакт с регулируемой разверткой обеспечивает простое средство управления напряжением с небольшими потерями энергии, намного более эффективное, чем управление с использованием переменного резистора!

    Подвижно-скользящие контакты слишком непрактичны для использования в крупных промышленных силовых трансформаторах, но многополюсные переключатели и отводы обмотки являются обычным явлением для регулировки напряжения. В энергосистемах необходимо периодически производить регулировку, чтобы приспособиться к изменениям нагрузки в течение месяцев или лет во времени, и эти схемы переключения обеспечивают удобное средство.Как правило, такие «переключатели ответвлений» не предназначены для работы с током полной нагрузки, а должны срабатывать только тогда, когда трансформатор обесточен (отсутствует питание).

    Автотрансформатор

    Учитывая, как мы можем отвести любую обмотку трансформатора, чтобы получить эквивалент нескольких обмоток (хотя и с потерей гальванической развязки между ними), имеет смысл полностью отказаться от гальванической развязки и построить трансформатор из одной обмотки. Действительно, это возможно, и получившееся устройство называется автотрансформатором :

    . Рисунок 8.18 Этот автотрансформатор повышает напряжение с помощью одинарной ответвленной обмотки, экономя медь и жертвуя изоляцией.

    Автотрансформатор, изображенный выше, выполняет функцию повышения напряжения. Понижающий автотрансформатор будет выглядеть примерно так, как показано на рисунке ниже.

    Рисунок 8.19. Этот автотрансформатор понижает напряжение с помощью одной обмотки с ответвлениями, экономящей медь. Автотрансформаторы

    находят широкое применение в приложениях, требующих небольшого повышения или понижения напряжения на нагрузке. Альтернативой обычному (изолированному) трансформатору было бы либо иметь правильное соотношение первичной / вторичной обмоток, предназначенное для работы, либо использовать понижающую конфигурацию с вторичной обмоткой, подключенной последовательно («повышающий») или последовательно. противодействующая («вздергивающая») мода.Для иллюстрации того, как это будет работать, приведены первичные, вторичные напряжения и напряжения нагрузки.

    Конфигурации автотрансформатора

    Во-первых, «повышающая» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую складывается с первичным напряжением.

    Рисунок 8.20. Обычный трансформатор, подключенный как автотрансформатор для повышения сетевого напряжения.

    Далее, «раскладывающаяся» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую вычитается из первичного напряжения:

    Рисунок 8.21 Обычный трансформатор, подключенный как автотрансформатор для понижения напряжения в сети.

    Основным преимуществом автотрансформатора является то, что та же функция повышения или понижения достигается только с одной обмоткой, что делает его более дешевым и легким в производстве, чем обычный (изолирующий) трансформатор, имеющий как первичную, так и вторичную обмотки.

    Автотрансформатор с вариатором

    Как и у обычных трансформаторов, обмотки автотрансформатора могут иметь ответвления для изменения коэффициента передачи.Кроме того, их можно сделать бесступенчато регулируемыми с помощью скользящего контакта, чтобы постучать по обмотке в любой точке по ее длине. Последняя конфигурация достаточно популярна, чтобы заслужить собственное имя: Variac . (рисунок ниже)

    Рис. 8.22. Вариак — это автотрансформатор со скользящим ответвлением.

    Маленькие вариаторы для настольного использования — это популярное оборудование для экспериментаторов в области электроники. Они могут понижать (а иногда и повышать) напряжение переменного тока в быту с широким и точным диапазоном регулировки простым поворотом ручки.

    • Трансформаторы могут быть оснащены более чем одной парой первичной и одной вторичной обмоток. Это позволяет использовать несколько коэффициентов повышения и / или понижения в одном устройстве.
    • Обмотки трансформатора также могут иметь «ответвления»: то есть пересекаться во многих точках для разделения одной обмотки на секции.
    • Переменные трансформаторы могут быть изготовлены с помощью подвижного плеча, который перемещается по длине обмотки, контактируя с обмоткой в ​​любой точке по ее длине.Обмотка, конечно же, должна быть оголенной (без изоляции) в области движения плеча.
    • Автотрансформатор — это одинарная катушка индуктивности с ответвлениями, используемая для повышения или понижения напряжения, как трансформатор, за исключением гальванической развязки.
    • A Variac — регулируемый автотрансформатор.

    Поскольку трехфазные сети так часто используются в системах распределения электроэнергии, вполне логично, что нам понадобятся трехфазные трансформаторы, чтобы иметь возможность повышать или понижать напряжение.Это верно лишь частично, поскольку обычные однофазные трансформаторы могут быть объединены вместе для преобразования мощности между двумя трехфазными системами в различных конфигурациях, устраняя необходимость в специальном трехфазном трансформаторе. Однако для этих задач созданы специальные трехфазные трансформаторы, которые могут работать с меньшими требованиями к материалам, меньшими размерами и меньшим весом, чем их модульные аналоги.

    Обмотки и соединения трехфазного трансформатора

    Трехфазный трансформатор состоит из трех наборов первичной и вторичной обмоток, каждый набор намотан на одну ногу узла железного сердечника.По сути, это выглядит как три однофазных трансформатора, совместно использующих объединенный сердечник, как показано на рисунке ниже.

    Рисунок 8.23 ​​Сердечник трехфазного трансформатора имеет три набора обмоток.

    Эти наборы первичной и вторичной обмоток будут соединены в конфигурации Δ или Y, чтобы сформировать единый блок. Различные комбинации способов, которыми эти обмотки могут быть соединены вместе, будут в центре внимания этого раздела.

    Независимо от того, используются ли комплекты обмоток с общим сердечником или каждая пара обмоток представляет собой отдельный трансформатор, варианты соединения обмоток одинаковы:

    Первичная — Вторичная

    • Y — Y
    • Y — Δ
    • Δ — Я
    • Δ — Δ

    Причины выбора конфигурации Y или Δ для соединений обмоток трансформатора те же, что и для любого другого трехфазного приложения: соединения Y обеспечивают возможность нескольких напряжений, в то время как соединения Δ имеют более высокий уровень надежности (если одна обмотка выходит из строя в открытом состоянии, два других могут поддерживать полное линейное напряжение нагрузки).

    Вероятно, наиболее важным аспектом соединения трех наборов первичной и вторичной обмоток для формирования трехфазного блока трансформаторов является уделение внимания правильному фазированию обмоток (точки, используемые для обозначения «полярности» обмоток). Помните правильное соотношение фаз между фазными обмотками Δ и Y: (рисунок ниже)

    Рисунок 8.24 (Y) Центральная точка «Y» должна связывать либо все «-», либо все «+» точки намотки вместе. (Δ) Полярности обмоток должны складываться вместе (от + до -).

    Правильная синхронизация фаз, когда обмотки не показаны в стандартной конфигурации Y или Δ, может быть непростой задачей. Позвольте мне проиллюстрировать это, начиная с рисунка ниже.

    Рисунок 8.23. Входы A1, A2, A3 могут быть подключены к «Δ» или «Y», как и выходы B1, B2, B3.

    Разводка фаз для трансформатора «Y-Y»

    Три отдельных трансформатора должны быть соединены вместе для преобразования энергии из одной трехфазной системы в другую. Сначала я покажу электрические соединения для конфигурации Y-Y:

    Рисунок 8.25 Фазовая разводка для трансформатора «Y-Y».

    Обратите внимание на рисунок выше, как все концы обмотки, отмеченные точками, подключены к своим соответствующим фазам A, B и C, в то время как концы без точек соединены вместе, образуя центры каждой буквы «Y». Соединение первичной и вторичной обмоток по схеме «Y» позволяет использовать нейтральные проводники (N 1 и N 2 ) в каждой энергосистеме.

    Разводка фаз для трансформатора «Y-Δ»

    Теперь посмотрим на конфигурацию Y-Δ:

    Рисунок 8.26 Подключение фаз для трансформатора «Y-Δ».

    Обратите внимание на то, как вторичные обмотки (нижний набор, рисунок выше) соединены в цепочку, причем сторона с «точкой» одной обмотки соединена со стороной «без точки» следующей, образуя петлю Δ. В каждой точке соединения между парами обмоток выполняется подключение к линии второй энергосистемы (A, B и C).

    Фазовая проводка для трансформатора «Δ-Y»

    Теперь давайте рассмотрим систему Δ-Y на рисунке ниже.

    Рисунок 8.27. Подключение фаз для трансформатора «Δ-Y».

    Такая конфигурация (рисунок выше) позволит обеспечить несколько напряжений (между фазой или между фазой и нейтралью) во второй энергосистеме от исходной энергосистемы, не имеющей нейтрали.

    Подключение фаз для трансформатора «Δ-Δ»

    И, наконец, перейдем к конфигурации Δ-Δ:

    Рисунок 8.28. Схема подключения фаз для трансформатора «Δ-Δ».

    Когда нет необходимости в нейтральном проводе во вторичной энергосистеме, предпочтительны схемы подключения Δ-Δ (рисунок выше) из-за присущей надежности конфигурации Δ.

    Фазовая проводка для трансформатора «V» или «открытый Δ»

    Учитывая, что Δ-конфигурация может удовлетворительно работать без одной обмотки, некоторые разработчики энергосистем предпочитают создавать батарею трехфазных трансформаторов только с двумя трансформаторами, представляя конфигурацию Δ-Δ с отсутствующей обмоткой как на первичной, так и на вторичной стороне:

    Рисунок 8.29 «В» или «разомкнутый Δ» обеспечивает мощность 2 φ только с двумя трансформаторами.

    Эта конфигурация называется «V» или «Open-Δ». Конечно, каждый из двух трансформаторов должен быть большего размера, чтобы выдерживать такое же количество мощности, как три в стандартной Δ-конфигурации, но общие размеры, вес и стоимость часто того стоят.Однако следует иметь в виду, что при отсутствии одного набора обмоток в форме Δ эта система больше не обеспечивает отказоустойчивость нормальной системы Δ-Δ. Если один из двух трансформаторов выйдет из строя, это определенно повлияет на напряжение и ток нагрузки.

    Пример из реальной жизни

    На следующей фотографии (рисунок ниже) показан блок повышающих трансформаторов на плотине гидроэлектростанции Гранд-Кули в штате Вашингтон. С этой точки зрения можно увидеть несколько трансформаторов (зеленого цвета), которые сгруппированы по три: по три трансформатора на гидроэлектрический генератор, соединенные вместе проводом в той или иной форме трехфазной конфигурации.

    На фотографии не показаны соединения первичной обмотки, но похоже, что вторичные обмотки соединены по Y-образной схеме, так как из каждого трансформатора выступает только один большой высоковольтный изолятор. Это говорит о том, что другая сторона вторичной обмотки каждого трансформатора имеет потенциал земли или близок к нему, что может быть верно только в системе Y. В здании слева находится электростанция, в которой размещены генераторы и турбины. Справа наклонная бетонная стена — нижняя поверхность плотины:

    Рисунок 8.Плотина гидроэлектростанции Гранд Кули 30

    Мощность

    Как уже отмечалось, трансформаторы должны быть хорошо спроектированы, чтобы обеспечить приемлемую связь по мощности, точное регулирование напряжения и низкие искажения тока возбуждения. Кроме того, трансформаторы должны быть спроектированы так, чтобы без проблем передавать ожидаемые значения тока первичной и вторичной обмоток. Это означает, что проводники обмотки должны быть изготовлены из проволоки соответствующего калибра, чтобы избежать проблем с нагревом.

    Идеальный трансформатор

    Идеальный трансформатор должен иметь идеальную связь (без индуктивности рассеяния), идеальное регулирование напряжения, идеально синусоидальный ток возбуждения, отсутствие гистерезиса или потерь на вихревые токи и достаточно толстый провод, чтобы выдерживать любой ток.К сожалению, идеальный трансформатор должен быть бесконечно большим и тяжелым, чтобы соответствовать этим целям проектирования. Таким образом, при разработке практического трансформатора необходимо идти на компромиссы.

    Кроме того, изоляция проводов обмотки является проблемой там, где встречаются высокие напряжения, как это часто бывает в повышающих и понижающих распределительных трансформаторах. Обмотки должны быть не только хорошо изолированы от стального сердечника, но и каждая обмотка должна быть достаточно изолирована от другой, чтобы поддерживать электрическую изоляцию между обмотками.

    Номинальные характеристики трансформатора

    С учетом этих ограничений трансформаторы рассчитаны на определенные уровни напряжения и тока первичной и вторичной обмоток, хотя номинальный ток обычно выводится из номинального значения вольт-ампер (ВА), присвоенного трансформатору. Например, возьмите понижающий трансформатор с номинальным напряжением первичной обмотки 120 В, номинальным вторичным напряжением 48 В и номинальной мощностью 1 кВА (1000 ВА) в ВА. Максимальные токи обмотки можно определить как таковые: кВА (1000 ВА).Максимальные токи обмотки можно определить как таковые:

    [латекс] \ text {Максимальный ток обмотки} [/ латекс]

    [латекс] \ tag {8.1} I_ {Max} = \ frac {S} {E} [/ latex]

    Иногда обмотки имеют номинальный ток в амперах, но это обычно наблюдается на небольших трансформаторах. Большие трансформаторы почти всегда имеют номинальное напряжение на обмотке и

    ВА или кВА.

    Потери энергии

    Трансформаторы передают мощность с минимальными потерями.Как было сказано ранее, КПД современных силовых трансформаторов обычно превышает 95%. Однако хорошо знать, куда уходит часть этой утраченной силы и что вызывает ее потерю.

    Конечно, возможны потери мощности из-за сопротивления обмоток проводов. Если не используются сверхпроводящие провода, всегда будет рассеиваться мощность в виде тепла через сопротивление проводников с током. Поскольку трансформаторы требуют таких длинных проводов, эти потери могут быть существенным фактором.Увеличение диаметра обмоточного провода — один из способов минимизировать эти потери, но только при значительном увеличении стоимости, размера и веса.

    Вихретоковые потери

    Помимо резистивных потерь, большая часть потерь мощности трансформатора происходит из-за магнитных эффектов в сердечнике. Возможно, наиболее значительным из этих «потерь в сердечнике» являются потери на вихревые токи , которые представляют собой рассеивание резистивной мощности из-за прохождения индуцированных токов через железо сердечника. Поскольку железо является проводником электричества, а также отличным «проводником» магнитного потока, в железе будут индуцироваться токи, точно так же, как есть токи, индуцированные во вторичных обмотках из-за переменного магнитного поля.Эти индуцированные токи — как описано в пункте закона Фарадея о перпендикулярности — стремятся проходить через поперечное сечение сердечника перпендикулярно виткам первичной обмотки. Их круговое движение дало им необычное название: как водовороты в потоке воды, которые циркулируют, а не движутся по прямым линиям.

    Железо является хорошим проводником электричества, но не так хорошо, как медь или алюминий, из которых обычно делаются проволочные обмотки. Следовательно, эти «вихревые токи» должны преодолевать значительное электрическое сопротивление, поскольку они циркулируют по сердечнику.Преодолевая сопротивление утюга, они рассеивают энергию в виде тепла. Следовательно, у нас есть источник неэффективности трансформатора, который трудно устранить.

    Индукционный нагрев

    Это явление настолько ярко выражено, что его часто используют как средство нагрева черных (железосодержащих) материалов. На фотографии ниже показан блок «индукционного нагрева», повышающий температуру большого участка трубы. Петли провода, покрытые высокотемпературной изоляцией, опоясывают окружность трубы, вызывая вихревые токи внутри стенки трубы за счет электромагнитной индукции.Чтобы максимизировать эффект вихревых токов, используется высокочастотный переменный ток, а не частота линии электропередачи (60 Гц). Блоки в правой части изображения вырабатывают высокочастотный переменный ток и регулируют величину тока в проводах, чтобы стабилизировать температуру трубы на предварительно определенном «заданном значении».

    Рисунок 8.31 Индукционный нагрев: Первичная изолированная обмотка наводит ток во вторичную железную трубу с потерями.

    Снижение вихревых токов

    Основная стратегия уменьшения этих расточительных вихревых токов в сердечниках трансформаторов состоит в том, чтобы сформировать железный сердечник в виде листов, каждый из которых покрыт изолирующим лаком, чтобы сердечник был разделен на тонкие пластинки.В результате ширина сердечника очень мала для циркуляции вихревых токов:

    Рисунок 8.32 Разделение стального сердечника на тонкие изолированные пластинки сводит к минимуму потери на вихревые токи.

    Ламинированные сердечники , подобные показанному здесь, входят в стандартную комплектацию почти всех низкочастотных трансформаторов. Напомним, что на фотографии трансформатора, разрезанного пополам, железный сердечник состоял из множества тонких листов, а не из одной цельной детали. Потери на вихревые токи увеличиваются с увеличением частоты, поэтому трансформаторы, предназначенные для работы от высокочастотной энергии (например, 400 Гц, используемой во многих военных и авиационных приложениях), должны использовать более тонкие пластины, чтобы снизить потери до приемлемого минимума.Это имеет нежелательный эффект увеличения стоимости изготовления трансформатора.

    Другой аналогичный метод минимизации потерь на вихревые токи, который лучше подходит для высокочастотных приложений, состоит в том, чтобы сделать сердечник из железного порошка, а не из тонких листов железа. Подобно ламинированным листам, эти гранулы железа индивидуально покрыты электроизоляционным материалом, который делает сердечник непроводящим, за исключением ширины каждой гранулы. Сердечники из порошкового железа часто используются в трансформаторах, работающих с радиочастотными токами.

    Магнитный гистерезис

    Еще одна «потеря в сердечнике» — это магнитный гистерезис . Все ферромагнитные материалы имеют тенденцию сохранять некоторую степень намагниченности после воздействия внешнего магнитного поля. Эта тенденция оставаться намагниченным называется «гистерезисом», и требуются определенные затраты энергии, чтобы преодолеть это противодействие, изменяющееся каждый раз, когда магнитное поле, создаваемое первичной обмоткой, меняет полярность (дважды за цикл переменного тока).

    Этот тип потерь может быть уменьшен за счет правильного выбора материала сердечника (выбор сплава сердечника с низким гистерезисом, о чем свидетельствует «тонкая» гистерезисная кривая B / H) и проектирования сердечника с минимальной магнитной индукцией (большая площадь поперечного сечения ).

    Скин-эффект на высоких частотах

    Потери энергии в трансформаторе увеличиваются с увеличением частоты. Скин-эффект внутри проводников обмотки уменьшает доступную площадь поперечного сечения для потока электрического заряда, тем самым увеличивая эффективное сопротивление при повышении частоты и создавая больше мощности, теряемой из-за резистивной диссипации. Потери в магнитном сердечнике также увеличиваются из-за того, что более высокие частоты, вихревые токи и эффекты гистерезиса становятся более серьезными. По этой причине трансформаторы значительных размеров предназначены для эффективной работы в ограниченном диапазоне частот.

    В большинстве систем распределения электроэнергии, где частота сети очень стабильна, можно подумать, что чрезмерная частота никогда не будет проблемой. К сожалению, это происходит в виде гармоник, создаваемых нелинейными нагрузками.

    Как мы видели в предыдущих главах, несинусоидальные сигналы эквивалентны аддитивным сериям множества синусоидальных сигналов с разными амплитудами и частотами. В энергосистемах эти другие частоты являются целыми числами, кратными основной (линейной) частоте, что означает, что они всегда будут выше, а не ниже проектной частоты трансформатора.В значительной степени они могут вызвать серьезный перегрев трансформатора. Силовые трансформаторы могут быть спроектированы для обработки определенных уровней гармоник энергосистемы, и эта способность иногда обозначается рейтингом «K-фактор».

    Паразитная емкость и индуктивность

    Помимо номинальной мощности и потерь мощности, трансформаторы часто имеют другие нежелательные ограничения, о которых следует знать разработчикам схем. Подобно их более простым аналогам — индукторам — трансформаторы обладают емкостью из-за изоляционного диэлектрика между проводниками: от обмотки к обмотке, от витка к витку (в одной обмотке) и от обмотки к сердечнику.

    Частота резонанса трансформатора

    Обычно эта емкость не имеет значения в приложениях питания, но приложения с малыми сигналами (особенно с высокими частотами) могут плохо переносить эту причуду. Кроме того, эффект наличия емкости наряду с расчетной индуктивностью обмоток дает трансформаторам способность резонировать с на определенной частоте, что определенно является проблемой проектирования в сигнальных приложениях, где приложенная частота может достигать этой точки (обычно резонансная частота мощности трансформатор находится далеко за пределами частоты переменного тока, для которой он был разработан).

    Удерживание флюса

    Сдерживание потока (обеспечение того, чтобы магнитный поток трансформатора не ускользнул, чтобы создать помехи другому устройству, и убедиться, что магнитный поток других устройств экранирован от сердечника трансформатора) — еще одна проблема, которую разделяют как индукторы, так и трансформаторы.

    Индуктивность утечки

    Индуктивность рассеяния тесно связана с проблемой удержания потока. Поскольку индуктивность рассеяния эквивалентна индуктивности, последовательно соединенной с обмоткой трансформатора, она проявляется как последовательное сопротивление с нагрузкой.Таким образом, чем больше ток потребляет нагрузка, тем меньше напряжения на выводах вторичной обмотки. Обычно при проектировании трансформатора требуется хорошее регулирование напряжения, но существуют и исключительные области применения. Как указывалось ранее, для схем разрядного освещения требуется повышающий трансформатор с «слабым» (плохим) регулированием напряжения для обеспечения пониженного напряжения после возникновения дуги в лампе. Один из способов удовлетворить этот критерий проектирования — спроектировать трансформатор с путями рассеяния магнитного потока в обход вторичной (ых) обмотки (ов).Результирующий поток рассеяния будет создавать индуктивность рассеяния, которая, в свою очередь, приведет к плохому регулированию, необходимому для разрядного освещения.

    Насыщенность ядра

    Трансформаторы

    также ограничены в своих характеристиках из-за ограничений магнитного потока сердечника. Для трансформаторов с ферромагнитным сердечником необходимо учитывать пределы насыщения сердечника. Помните, что ферромагнитные материалы не могут поддерживать бесконечную плотность магнитного потока: они имеют тенденцию «насыщаться» на определенном уровне (продиктованном материалом и размерами сердечника), а это означает, что дальнейшее увеличение силы магнитного поля (ммс) не приводит к пропорциональному увеличению магнитного поля. поток поля (Φ).

    Когда первичная обмотка трансформатора перегружается из-за чрезмерного приложенного напряжения, магнитный поток сердечника может достигать уровней насыщения в пиковые моменты цикла синусоидальной волны переменного тока. Если это произойдет, напряжение, индуцированное во вторичной обмотке, больше не будет соответствовать форме волны, как напряжение, питающее первичную катушку. Другими словами, перегруженный трансформатор будет искажать форму волны от первичной до вторичной обмоток, создавая гармоники на выходе вторичной обмотки. Как мы обсуждали ранее, содержание гармоник в энергосистемах переменного тока обычно вызывает проблемы.

    Пиковые трансформаторы

    Специальные трансформаторы, известные как трансформаторы максимального напряжения , используют этот принцип для создания коротких импульсов напряжения вблизи пиков формы волны напряжения источника. Ядро рассчитано на быстрое и резкое насыщение при уровнях напряжения значительно ниже пикового. Это приводит к сильно обрезанной форме волны синусоидального потока и импульсы вторичного напряжения только при изменении потока (ниже уровней насыщения):

    Рис. 8.33. Осциллограммы напряжения и магнитного потока для пикового трансформатора.

    Работа на частотах ниже нормы

    Другой причиной ненормального насыщения сердечника трансформатора является работа на частотах ниже нормы. Например, если силовой трансформатор, предназначенный для работы на частоте 60 Гц, вынужден работать на частоте 50 Гц, поток должен достигнуть более высоких пиковых уровней, чем раньше, чтобы создать такое же противоположное напряжение, необходимое для балансировки с напряжением источника. Это верно, даже если напряжение источника такое же, как и раньше.

    Рисунок 8.34. Магнитный поток выше в сердечнике трансформатора, работающем на 50 Гц, по сравнению с 60 Гц для того же напряжения.

    Поскольку мгновенное напряжение обмотки пропорционально скорости изменения мгновенного магнитного потока в трансформаторе, форма волны напряжения, достигающая того же пикового значения, но требующая больше времени для завершения каждого полупериода, требует, чтобы магнитный поток поддерживал та же скорость изменения, что и раньше, но на более длительные периоды времени. Таким образом, если поток должен расти с той же скоростью, что и раньше, но в течение более длительных периодов времени, он поднимется до более высокого пикового значения.

    Математически это еще один пример исчисления в действии.Поскольку напряжение пропорционально скорости изменения потока, мы говорим, что форма волны напряжения — это производная формы волны потока, «производная» — это операция вычисления, определяющая одну математическую функцию (форму волны) с точки зрения скорости: из-за смены другого. Однако, если мы возьмем противоположную точку зрения и свяжем исходную форму волны с ее производной, мы можем назвать исходную форму волны интегралом производной формы волны. В этом случае форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.

    Интеграл любой математической функции пропорционален площади, накопленной под кривой этой функции. Поскольку каждый полупериод сигнала 50 Гц накапливает большую площадь между ним и нулевой линией графика, чем будет форма сигнала 60 Гц — а мы знаем, что магнитный поток является интегралом напряжения, — поток будет достигать более высоких значений в рисунок ниже.

    Рис. 8.35. Изменение потока с той же скоростью возрастает до более высокого уровня при 50 Гц, чем при 60 Гц.

    Еще одна причина насыщения трансформатора — наличие постоянного тока в первичной обмотке.Любая величина постоянного напряжения, падающего на первичную обмотку трансформатора, вызовет дополнительный магнитный поток в сердечнике. Это дополнительное «смещение» или «смещение» потока будет подталкивать форму волны переменного магнитного потока ближе к насыщению в одном полупериоде, чем в другом.

    Рис. 8.36. Постоянный ток в первичной обмотке смещает пики формы сигнала в сторону верхнего предела насыщения.

    Для большинства трансформаторов насыщение сердечника является очень нежелательным эффектом, и его можно избежать за счет хорошей конструкции: спроектировав обмотки и сердечник так, чтобы плотности магнитного потока оставались значительно ниже уровней насыщения.Это гарантирует, что соотношение между mmf и Φ будет более линейным на протяжении всего цикла потока, что хорошо, поскольку способствует меньшим искажениям в форме волны тока намагничивания. Кроме того, проектирование сердечника для низких плотностей магнитного потока обеспечивает безопасный запас между нормальными пиками магнитного потока и пределами насыщения сердечника, чтобы приспособиться к случайным, ненормальным условиям, таким как изменение частоты и смещение постоянного тока.

    Пусковой ток

    Когда трансформатор первоначально подключен к источнику переменного напряжения, может возникнуть значительный скачок тока через первичную обмотку, называемый пусковым током .Это аналогично пусковому току, наблюдаемому у электродвигателя, который запускается при внезапном подключении к источнику питания, хотя бросок тока трансформатора вызван другим явлением.

    Мы знаем, что скорость изменения мгновенного потока в сердечнике трансформатора пропорциональна мгновенному падению напряжения на первичной обмотке. Или, как указывалось ранее, форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.В непрерывно работающем трансформаторе эти две формы сигнала сдвинуты по фазе на 90 °. Поскольку поток (Φ) пропорционален магнитодвижущей силе (mmf) в сердечнике, а mmf пропорционален току обмотки, форма волны тока будет синфазной с формой волны магнитного потока, и оба будут отстать от формы волны напряжения на 90 °:

    Рисунок 8.37 Непрерывный установившийся режим: Магнитный поток, как и ток, отстает от приложенного напряжения на 90 °.

    Предположим, что первичная обмотка трансформатора внезапно подключается к источнику переменного напряжения в точный момент времени, когда мгновенное напряжение достигает своего положительного пикового значения.Чтобы трансформатор создавал противоположное падение напряжения, чтобы уравновеситься с этим приложенным напряжением источника, должен создаваться магнитный поток быстро возрастающей величины. В результате ток в обмотке увеличивается быстро, но на самом деле не быстрее, чем при нормальных условиях:

    Рисунок 8.38. Подключение трансформатора к сети при пиковом напряжении переменного тока: поток быстро увеличивается от нуля, как и в установившемся режиме.

    И магнитный поток сердечника, и ток катушки начинаются с нуля и достигают тех же пиковых значений, что и при непрерывной работе.Таким образом, в этом сценарии нет «всплеска», «броска тока» или «тока».

    В качестве альтернативы, давайте рассмотрим, что произойдет, если подключение трансформатора к источнику переменного напряжения произойдет в точный момент времени, когда мгновенное напряжение равно нулю. Во время непрерывной работы (когда трансформатор был запитан в течение некоторого времени), это момент времени, когда и магнитный поток, и ток обмотки достигают своих отрицательных пиков, испытывая нулевую скорость изменения (dΦ / dt = 0 и di / dt = 0). По мере того, как напряжение достигает своего положительного пика, формы волны магнитного потока и тока нарастают до своих максимальных положительных скоростей изменения и повышаются до своих положительных пиков по мере того, как напряжение опускается до нулевого уровня:

    Рисунок 8.39 Запуск при e = 0 В — это не то же самое, что непрерывный запуск на рисунке выше. Эти ожидаемые формы сигналов неверны — Φ и i должны начинаться с нуля.

    Однако существует значительная разница между работой в непрерывном режиме и условием внезапного пуска, предполагаемым в этом сценарии: во время непрерывной работы уровни магнитного потока и тока были на своих отрицательных пиках, когда напряжение было в нулевых точках; Однако в трансформаторе, который простаивает, и магнитный поток, и ток обмотки должны начинаться с нуля .

    Когда магнитный поток увеличивается в ответ на повышение напряжения, он будет увеличиваться от нуля вверх, а не от ранее отрицательного (намагниченного) состояния, как мы обычно имели бы в трансформаторе, который какое-то время находится под напряжением. Таким образом, в трансформаторе, который только что «запускается», магнитный поток будет примерно в два раза превышать нормальную пиковую величину, поскольку он «интегрирует» область под первым полупериодом формы волны напряжения:

    Рис. 8.40. Начиная с e = 0 В, Φ начинается с начального условия Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает активную зону.

    Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, при условии, что это не насыщает сердечник.

    В идеальном трансформаторе ток намагничивания также увеличился бы примерно в два раза по сравнению с нормальным пиковым значением, генерируя необходимый mmf для создания этого потока, превышающего нормальный. Однако большинство трансформаторов не спроектированы с достаточным запасом между нормальными пиками магнитного потока и пределами насыщения, чтобы избежать насыщения в таких условиях, и поэтому сердечник почти наверняка будет насыщаться в течение этого первого полупериода напряжения.Во время насыщения для генерации магнитного потока необходимо непропорционально большое количество ммс. Это означает, что ток обмотки, который создает МДС, вызывающую магнитный поток в сердечнике, непропорционально возрастет до значения , легко превышающего , вдвое превышающего нормальный пик:

    Рис. 8.41 Начиная с e = 0 В, ток также увеличивается в два раза по сравнению с нормальным значением для ненасыщенного сердечника или значительно выше в случае (рассчитанном на) насыщение.

    Это механизм, вызывающий пусковой ток в первичной обмотке трансформатора при подключении к источнику переменного напряжения.Как видите, величина пускового тока сильно зависит от точного времени, когда электрическое подключение к источнику выполнено. Если трансформатор имеет некоторый остаточный магнетизм в его сердечнике в момент подключения к источнику, бросок тока может быть еще более серьезным. Из-за этого устройства максимальной токовой защиты трансформатора обычно относятся к «медленнодействующим», чтобы выдерживать такие скачки тока без размыкания цепи.

    Тепло и шум

    Помимо нежелательных электрических эффектов, трансформаторы могут также проявлять нежелательные физические эффекты, наиболее заметными из которых являются выделение тепла и шума.Шум — это прежде всего неприятный эффект, но нагрев — потенциально серьезная проблема, поскольку изоляция обмотки будет повреждена, если будет допущен перегрев. Нагрев можно свести к минимуму за счет хорошей конструкции, гарантирующей, что сердечник не приближается к уровням насыщения, что вихревые токи сведены к минимуму, и что обмотки не будут перегружены или работают слишком близко к максимальной допустимой нагрузке.

    Силовые трансформаторы большой мощности имеют сердечник и обмотки, погруженные в масляную ванну для передачи тепла и глушения шума, а также для вытеснения влаги, которая в противном случае нарушила бы целостность изоляции обмотки.Теплоотводящие «радиаторные» трубки на внешней стороне корпуса трансформатора обеспечивают конвективный путь потока масла для передачи тепла от сердечника трансформатора к окружающему воздуху:

    Рис. 8.42. Большие силовые трансформаторы погружены в теплоизолирующее масло.

    Безмасляные или «сухие» трансформаторы часто оцениваются с точки зрения максимального «повышения» рабочей температуры (превышения температуры окружающей среды) в соответствии с системой буквенных классов: A, B, F или H. Эти буквенные коды: расположены в порядке от наименьшей термостойкости к высшей:

    • Класс A: Повышение температуры обмотки не более чем на 55 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
    • Класс B: Повышение температуры обмотки не более чем на 80 ° C при температуре окружающего воздуха 40 ° C (максимум).
    • Class F: Повышение температуры обмотки не более чем на 115 ° C при температуре окружающего воздуха 40 ° C (максимум).
    • Класс H: Повышение температуры обмотки не более чем на 150 ° C при температуре окружающего воздуха 40 ° C (макс.).

    Звуковой шум — это эффект, в основном возникающий из явления магнитострикции : небольшое изменение длины, проявляемое ферромагнитным объектом при намагничивании.Знакомый «гул», слышимый вокруг больших силовых трансформаторов, — это звук расширения и сжатия железного сердечника с частотой 120 Гц (в два раза выше частоты системы, которая в США составляет 60 Гц) — один цикл сжатия и расширения сердечника на каждый пик форма волны магнитного потока плюс шум, создаваемый механическими силами между первичной и вторичной обмотками. Опять же, поддержание низких уровней магнитного потока в сердечнике является ключом к минимизации этого эффекта, что объясняет, почему феррорезонансные трансформаторы, которые должны работать в режиме насыщения для большей части формы волны тока, работают как в горячем состоянии, так и с шумом.

    Потери из-за наматывающих магнитных сил

    Еще одно шумовое явление в силовых трансформаторах — это физическая сила реакции между первичной и вторичной обмотками при большой нагрузке. Если вторичная обмотка разомкнута, через нее не будет тока и, следовательно, не будет создаваемой ею магнитодвижущей силы (ммс). Однако, когда вторичная обмотка «загружена» (в настоящее время подается на нагрузку), обмотка генерирует МДС, которой противодействует «отраженная» МДС в первичной обмотке, чтобы предотвратить изменение уровней магнитного потока сердечника.Эти противоположные МДС, возникающие между первичной и вторичной обмотками в результате вторичного (нагрузочного) тока, создают физическую силу отталкивания между обмотками, которая заставляет их вибрировать. Конструкторы трансформаторов должны учитывать эти физические силы при конструкции катушек обмотки, чтобы обеспечить адекватную механическую опору для выдерживания напряжений. Однако в условиях большой нагрузки (высокого тока) эти напряжения могут быть достаточно большими, чтобы вызвать слышимый шум, исходящий от трансформатора.

    • Силовые трансформаторы ограничены по количеству мощности, которую они могут передавать от первичной ко вторичной обмотке (ам). Большие блоки обычно имеют номинальные значения в ВА (вольт-амперы) или кВА (киловольт-амперы).
    • Сопротивление в обмотках трансформатора снижает эффективность, так как ток рассеивает тепло, тратя энергию.
    • Магнитные эффекты в железном сердечнике трансформатора также способствуют снижению эффективности. Среди эффектов — вихревые токи , (циркулирующие индукционные токи в железном сердечнике) и гистерезис , (потеря мощности из-за преодоления тенденции железа к намагничиванию в определенном направлении).
    • Повышенная частота приводит к увеличению потерь мощности в силовом трансформаторе. Присутствие гармоник в энергосистеме является источником частот, значительно превышающих нормальные, что может вызвать перегрев больших трансформаторов.
    • И трансформаторы, и катушки индуктивности обладают определенной неизбежной емкостью из-за изоляции проводов (диэлектрика), отделяющей витки обмотки от стального сердечника и друг от друга. Эта емкость может быть достаточно значительной, чтобы дать трансформатору естественную резонансную частоту , что может быть проблематичным в сигнальных приложениях.
    • Индуктивность утечки возникает из-за того, что магнитный поток не на 100% связан между обмотками трансформатора. Любой поток, не связанный с , передающий энергию от одной обмотки к другой, будет накапливать и выделять энергию, как работает (само) индуктивность. Индуктивность утечки имеет тенденцию ухудшать регулировку напряжения трансформатора (вторичное напряжение «проседает» больше при заданной величине тока нагрузки).
    • Магнитное насыщение сердечника трансформатора может быть вызвано чрезмерным первичным напряжением, работой на слишком низкой частоте и / или наличием постоянного тока в любой из обмоток.Насыщение можно минимизировать или избежать с помощью консервативной конструкции, которая обеспечивает достаточный запас прочности между пиковыми значениями плотности магнитного потока и пределами насыщения сердечника.
    • Трансформаторы часто испытывают значительные пусковые токи при первоначальном подключении к источнику переменного напряжения. Пусковой ток наиболее велик, когда подключение к источнику переменного тока выполняется в момент, когда мгновенное напряжение источника равно нулю.
    • Шум — обычное явление, проявляемое трансформаторами, особенно силовыми трансформаторами, и в первую очередь вызвано магнитострикцией сердечника.Физические силы, вызывающие вибрацию обмотки, также могут создавать шум в условиях большой (сильноточной) нагрузки вторичной обмотки.

    Что такое трансформатор? »Наука ABC

    Вы когда-нибудь видели длинные линии электропередач во время поездки по сельской местности. Эти линии питают наши дома и обычно рассчитаны на напряжение от 400 000 до 750 000 вольт. Вопрос в том, чем такое высокое напряжение полезно для наших бытовых приборов, которые обычно работают от 110 и 240 вольт! Если вы попытаетесь включить свой ноутбук или мобильный телефон непосредственно от одной из линий электропередач, устройство сразу же перегорит, так где и как это высокое напряжение преобразуется в более низкое напряжение? Вот тут-то и появляется трансформатор, который играет свою ключевую роль.А теперь давайте сначала попробуем понять немного больше о высоковольтных энергосистемах, прежде чем мы перейдем к пониманию трансформатора.

    Высоковольтные системы

    Один логичный вопрос, который может возникнуть, — почему линии электропередач не передают просто 125–240 вольт? Чтобы объяснить это, мы должны сначала понять, как ведет себя электричество, когда оно проходит определенное расстояние. Когда электричество течет по металлическому проводу, электроны несут с собой определенное количество энергии. Когда он проходит через провод, электроны теряют некоторое количество энергии, которую они несут, из-за того, что электрон испытывает сопротивление.Вот почему провода сильно нагреваются, когда через них проходит электричество. Получается, что чем выше напряжение электричества, которое вы используете, и чем ниже ток, тем меньше энергии тратится. Таким образом, электричество, поступающее с электростанций, передается по проводам под очень высоким напряжением для экономии энергии.

    Трансформаторы издают немного другой звук жужжания в зависимости от того, работают ли они на частоте 50 или 60 Гц. (Фото: Flicker)

    Однако есть и другая причина.В промышленном оборудовании есть машины большого размера, которые потребляют энергию в огромных количествах. Энергия, которую использует прибор, прямо пропорциональна потребляемому напряжению. Эти энергоемкие машины могут потреблять 10 000–30 000 вольт. Малым предприятиям могут потребоваться источники питания только на 400 вольт или около того. Проще говоря, разные слои общества имеют разные потребности в энергопотреблении. Имеет смысл доставлять электроэнергию высокого напряжения с электростанции, а затем преобразовывать ее в более низкое напряжение, когда она достигает различных пунктов назначения.

    Трансформатор

    Трансформатор может быть статическим электрическим устройством, которое передает электрическую энергию между двумя или более цепями. Трансформатор также основан на очень фундаментальном законе электромагнетизма, а именно, что когда флуктуирующий электрический ток течет по проводу, он генерирует магнитный поток вокруг него. Сила плотности магнитного потока напрямую связана с величиной электрического тока. Следовательно, чем больше ток, тем сильнее магнитное поле.Есть интересное явление, связанное с поведением электричества. Когда магнитное поле индуцируется вокруг провода, оно генерирует электрический ток в проводе, поэтому, если мы поместим вторую катушку проволоки рядом с первой и отправим колеблющийся электрический ток в первую катушку, мы сможем создать электрический ток во втором проводе. Здесь мы пропустили электрический ток через пространство от одной катушки к другой. Это называется электромагнитной индукцией, поскольку ток в первой катушке вызывает (или «индуцирует») ток во второй катушке.

    (Фото предоставлено Эвиатаром Бахом / Wikimedia Commons)

    Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в витки. Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток во второй катушке будет практически такого же размера, как и в первой катушке. Однако интересным аспектом трансформаторов является то, что если у нас больше или меньше витков во второй катушке, мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.Важно понимать, что электрический ток должен быть непостоянным. Другими словами, в трансформаторах электрический ток должен быть переменным (AC). Трансформаторы не работают с установившимся током или постоянным током (DC).

    Повышающий и понижающий трансформаторы

    Если вторая катушка имеет вдвое меньше витков, чем первая катушка, вторичное напряжение будет вдвое меньше первичного напряжения; если вторая катушка имеет одну десятую от числа витков, она имеет одну десятую напряжения.Обычно понижающий трансформатор имеет 1000 катушек в первичной обмотке и 100 катушек во вторичной обмотке. Это снизит напряжение в 10 раз, но в то же время умножит ток в 10 раз. Мощность электрического тока равна произведению напряжения и силы тока. В трансформаторе вы можете видеть, что мощность во вторичной катушке теоретически такая же, как мощность в первичной катушке, но во всех практических, реальных настройках между первичной и вторичной обмотками наблюдается некоторая потеря мощности — некоторые Из-за утечки магнитного потока из сердечника некоторая энергия теряется из-за нагрева сердечника и так далее.

    Статьи по теме

    Статьи по теме

    В случае повышающего трансформатора вторичные обмотки содержат огромное количество витков по сравнению с первичными обмотками. Эти трансформаторы обычно имеют очень большой коэффициент трансформации. Соотношение витков можно определить как соотношение между количеством вторичных обмоток и количеством первичных обмоток.

Добавить комментарий

Ваш адрес email не будет опубликован.