Для чего нужен трансформатор – Что такое понижающий трансформатор — для чего применяется и как подобрать нужный трансформатор

Содержание

Виды и принцип работы трансформаторов

Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают трансформаторы для определенных целей – или повышающим или понижающим трансом.

На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.

Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения. Какие бывают трансформаторы

По назначению:

  • самыми распространенными являются силовые трансформаторы, предназначенные для передачи и распространения электроэнергии
  • существуют силовые трансформаторы специального назначения – сварочные, печные
  • трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
  • испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
  • а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы

Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).

В зависимости от числа фаз – однофазные, трехфазные, многофазные.

По способу охлаждения – масляные, сухие.

Принцип действия трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.

В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Трансформаторы тока и напряжения: виды, конструкция, принцип действия!

Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.

Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках

напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.

Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.

Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а

устройство, принцип работы, назначение и применение

Для чего нужен трансформаторЛюди, незнакомые с электрикой, могут и не знать, для чего нужен трансформатор и как он выглядит. Роль этого устройства для технического прогресса можно считать одной из самых недооценённых, хотя благодаря его изобретению человечество получило широкий доступ к электроэнергии. За более чем 100 лет эволюции трансформаторы стали ключевыми компонентами не только энергетических систем, но и самых разнообразных радиоэлектронных устройств.

Принцип работы и виды

Трансформатором называют электрическое устройство, предназначенное для переноса электроэнергии переменного тока от одной цепи к другой с сохранением первоначальной частоты. Основа его конструкции — ферромагнитный сердечник с несколькими обмотками провода. Входное напряжение подключается к так называемой первичной обмотке, а выходное снимается со вторичных.

Переменный ток в первичной катушке индуцирует переменный магнитный поток, который локализуется в сердечнике, изменяет своё направление в течение каждого электрического цикла. Он же индуцирует переменный ток в каждой из вторичных обмоток.

Различные виды трансформаторов классифицируются в зависимости от конструкции, типа питания, охлаждения и так далее. Подробнее:

  • Виды трансформаторовПо целям. Здесь различают два основных типа — повышающие и понижающие напряжение. Существуют также разделительные трансформаторы, задачей которых является гальваническая развязка цепей без изменения параметров.
  • По типу питания. Различают однофазные и трехфазные. Три отдельных однофазных, соединённых в общую электрическую схему, могут работать в качестве трёхфазного.
  • По способу охлаждения. Разделяют на естественное и принудительное, воздушное и масляное.

Большинство трансформаторов в мире — это однофазные устройства воздушного охлаждения, понижающие напряжение. Но самые массивные и мощные из них работают как раз на повышение напряжения.

Транспортировка электроэнергии

Генераторы электростанций вырабатывают электроэнергию до десятков киловольт. Теоретически её в неизменном виде можно передать потребителям. Но с ростом мощности источника и расстояния транспортировки растут и проблемы потерь на нагрев проводов. При определённых значениях сама передача энергии может терять всякий смысл. Уменьшить потери можно только двумя способами:

  • снижением сопротивления проводов;
  • повышением напряжения передаваемой электроэнергии.

Транспортировка электроэнергииПервый способ реализуется увеличением площади поперечного сечения проводов. Это крайне дорого и сложно технически, так как влечёт за собой не только удорожание и утяжеление самих линий, но и усиление конструкций, их удерживающих. На больших расстояниях это просто невыгодно экономически, а то и нереально.

Во втором случае, согласно закону Ома, при уменьшении силы тока потери снижаются пропорционально квадрату силы тока. Это очень привлекательно с позиции снижения капитальных затрат на строительство и содержание системы энергопередачи. Поднять напряжение и одновременно снизить ток при неизменной мощности — вот зачем нужны трансформаторы в этом случае.

Поскольку электроэнергия высокого напряжения не может быть распределена между потребителями непосредственно, её приводят к желаемым параметрам с помощью понижающих трансформаторов

. Таким образом, транспортировка энергии не обходится без предварительного и последующего преобразования, поэтому без силовых трансформаторов передача электроэнергии на большие расстояния в современном мире невозможна.

Преобразователи напряжения в схемах питания

Бытовые электрические сети стандартизированы по напряжению и частоте переменного тока, а вот приборы, которые подключаются к ней, могут нуждаться в совсем иных параметрах питания. Например, процессоры и компоненты электроники работают только в низковольтных цепях постоянного тока. Для того чтобы универсальность источника не была преградой для работы техники, подключаемые устройства комплектуют встроенными или наружными преобразователями напряжения на основе трансформаторов.

В линейных или традиционных источниках питания используются силовые трансформаторы. Они великолепно справляются с большой нагрузкой, но обладают некоторыми недостатками:

  • Большие размеры, обусловленные частотой сети 50 Гц. Это сказывается на весе источников питания, например, при выходном напряжении 16 В на каждый ампер выходного тока требуется приблизительно 0,5 кг массы.
  • Сравнительно большие потери мощности на тепло и, как следствие, низкий КПД.
  • Заметное потребление на холостом ходу.

Используются силовые трансформаторы

Из-за перечисленных недостатков они были вытеснены импульсными преобразователями в зарядных устройствах и компьютерной технике. В подобных блоках питания электроэнергия попадает на трансформатор через фильтр и электронную схему в виде тока с очень высокой частотой. Благодаря этому КПД передачи мощности резко возрастает. Таким образом, блоки питания, работающие на этом принципе, значительно меньше и легче традиционных аналогичной мощности.

Импульсные преобразователи питанияНо если сравнивать силовые трансформаторы с импульсными преобразователями питания, то первые являются меньшими источником электромагнитных помех, особенно в диапазоне высоких частот. Это свойство важно для их применения в аудиофильской технике, лабораторном оборудовании и радиоаппаратуре.

Преобразование электроэнергии для передачи её от производителя до потребляющих приборов — очень ёмкая, но далеко не единственная область применения трансформаторов. Огромное разнообразие этих устройств можно встретить в самых непохожих местах — от звукоснимателя и микрофона до сварочного аппарата и мощных измерительных приборов. А в качестве преобразователя напряжения сети трансформаторы окружают человека повсюду.

Назначение, принцип действия трансформаторов тока и отличие от ТН

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют существенные отличия в работе ТТ и ТН.

Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.

Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.

В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

устройство, принцип работы и схема подключения

В статье читатель узнает, что такое трансформатор тока, где они применяются. Мы постараемся дать краткую характеристику видам и типам устройства, объясним принцип действия. Также предлагаем ознакомиться с видеороликом в конце текста для лучшего понимания материала.

Без такого привычного устройства современный мир был бы невозможен в том виде, каком мы к нему привыкли. Его задача – помочь передавать энергию на большие расстояния. Тех, кто дочитает материал до конца, ждет приятный бонус: файл с книгой о трансформаторах тока Афанасьева А.А. По любым вопросам не стесняйтесь писать в комментариях, опытные эксперты будут рады вам помочь.

Что нужно знать о трансформаторах тока

Опорные трансформаторы тока.

Что это за устройство

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.

Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.

Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным. Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Трансформатор тока

Схематичный рисунок опорного трансформатора тока.

Это устройство, первичная обмотка которого последовательно включена в рабочую цепь, а вторичная служит для проведения измерений. Подобные устройства используются не только в лабораториях для оценки величин. Истинное место трансформаторов тока возле электростанций, где они помогают контролировать режимы, внося коррективы в процесс эксплуатации оборудования.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Трансформаторы тока принято классифицировать по роду тока. Измеряемое напряжение различается по роду. Для проведения измерений в цепи постоянного тока используется нарезка сигнала на импульсы. Напрямую трансформация невозможна:

  • для переменного тока;
  • для постоянного тока.

По назначению: мы уже сказали, что часто трансформаторы тока применяются для измерений (к примеру, кВт ч). Называют системы, где требуется защитить персонал для повышения безопасности.

Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования. Трансформаторы делят в зависимости от назначения. Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

Что нужно знать о трансформаторах тока

Принцип работы устройства

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток, выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

Что нужно знать о трансформаторах тока

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток. Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1, U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек, либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией.

Микротрансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги. Подробнее принцип работы трансформатора тока рассмотрен в видеоролике:

Вкратце принцип работы и устройство трансформатора тока заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления.

Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.

Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.

Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Схема работы трансформатора

Схема режима работы трансформатора тока.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.

Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство:

U_2/U_1 =N_2/N_1

где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.

Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.

Виды и типы трансформаторов

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на несколько видов.

  1. Автотрансформаторы.
  2. Импульсные трансформаторы.
  3. Разделительный трансформатор.
  4. Пик-трансформатор.

Стоит выделить способ классификации трансформаторов по способу их охлаждения. Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Виды трансформаторов

Сравнительные характеристики различных видов трансформаторов.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели, где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того, производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией. Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:

  1. Сухие.
  2. Тороидальные.
  3. Высоковольтные (масляные, газовые).
Что нужно знать о трансформаторах тока

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

Работа трансформатора

Принцип работы трансформатора тока.

Параметры трансформаторов тока

При выборе для работы в тандеме с трёхфазным счётчиком первым делом обращают внимание на коэффициент трансформации. Ряд значений стандартизирован, и нужно выбирать приборы, способные работать в паре. Выше говорилось, что в иных случаях коэффициент трансформации возможно менять, и нужно этим пользоваться.

Помимо рабочего напряжения роль играет ток в первичной обмотке (исследуемой сети). Понятно, что с ростом увеличивается нагрев, и однажды токонесущая часть может сгореть. Это требование не столь актуально для трансформаторов без первичной обмотки. Номинальный вторичный ток обычно равен 1 либо 5 А, что служит критерием для согласования с сопрягаемыми устройствами.

Полагается обращать внимание на сопротивление нагрузки в цепи измерения. Вряд ли найдётся счётчик, выбивающийся из общего ряда, но нужно контролировать момент. В противном случае не гарантируется точность показаний. Коэффициент нагрузки обычно не ниже 0,8.

Это уже касается измерительных приборов, с индуктивностями в составе. ГОСТ нормирует значение в вольт-амперах. Для получения сопротивления в омах требуется поделить цифру на квадрат тока вторичной обмотки.

Интересно почитать: однофазные асинхронные двигатели на службе человечества.

Предельные режимы работы обычно характеризуются током электродинамической стойкости, возникающим при коротком замыкании. В паспорте пишут значение, при котором прибор проработает сколь угодно долго без выхода из строя.

Что нужно знать о трансформаторах тока

В условиях короткого замыкания ток столь силен, что начинает оказывать механическое воздействие. Порой вместо тока электродинамической стойкости указывается кратность его к номинальному.

Остаётся лишь произвести операцию умножения. Указанный параметр не касается приборов без первичной обмотки. Вдобавок определяется ток термической стойкости, который трансформатор выдерживает без критического перегрева. Этот вид устойчивости способен выражаться кратностью.

Отличие трансформатора тока от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Что нужно знать о трансформаторах тока

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Заключение

Надеемся, что теперь вам полностью понятен принцип работы трансформаторов тока. Предлагаем скачать файл с книгой о трансформаторах тока Афанасьева А.А., в котором подробно рассмотрены все нюансы работы с трансформаторами тока. Если хотите регулярно узнавать новую информацию по этой теме, а также по теме металлоискателей и радиодеталей: подписывайтесь на нашу группу в социальной сети «Вконтакте».

Для этого вам необходимо будет перейти по следующей ссылке https://vk.com/electroinfonet. Там можно не только узнавать различного рода полезную информацию, но еще и задавать вопросы и получать на них подробные ответы. В завершение хочу поблагодарить источники, откуда мы черпали информацию:

kuhnileona.ru

vashtehnik.ru

Автотрансформатор — Википедия

Схема автотрансформатора со ступенчатой регулировкой выходного напряжения Автотрансформатор АТДЦТН-125000/330/110

А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения[1].

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Распространены аббревиатуры:

ЛАТР — Лабораторный АвтоТрансформатор Регулируемый.
РНО — Регулятор Напряжения Однофазный.
РНТ — Регулятор Напряжения Трёхфазный.
Схема автотрансформатора с плавной регулировкой выходного напряжения

Предположим, что источник электрической энергии (сеть переменного тока) подключен к виткам ω1{\displaystyle \omega _{1}} обмотки автотрансформатора, а потребитель — к некоторой части этой обмотки ω2{\displaystyle \omega _{2}}.

При прохождении переменного тока по обмотке автотрансформатора возникает переменный магнитный поток, индуцирующий в этой обмотке электродвижущую силу, величина которой прямо пропорциональна числу витков обмотки.

Следовательно, если во всей обмотке автотрансформатора, имеющей число витков ω1{\displaystyle \omega _{1}}, индуцируется электродвижущая сила E1{\displaystyle E_{1}}, то в части этой обмотки, имеющей число витков ω2{\displaystyle \omega _{2}}, индуцируется электродвижущая сила E2{\displaystyle E_{2}}. Соотношение величин этих ЭДС выглядит так: E1E2=ω1ω2=k{\displaystyle {{E_{1}} \over {E_{2}}}={{\omega _{1}} \over {\omega _{2}}}=k}, где k{\displaystyle k} — коэффициент трансформации.

Так как падение напряжения в активном сопротивлении обмотки автотрансформатора относительно мало, то им практически можно пренебречь и считать справедливыми равенства U1=E1{\displaystyle U_{1}=E_{1}} и U2=E2{\displaystyle U_{2}=E_{2}},

где U1{\displaystyle U_{1}} — напряжение источника электрической энергии, поданное на всю обмотку автотрансформатора, имеющую число витков ω1{\displaystyle \omega _{1}};

U2{\displaystyle U_{2}} — напряжение, подаваемое к потребителю электрической энергии, снимаемое с той части обмотки автотрансформатора, которая обладает количеством витков ω2{\displaystyle \omega _{2}}.

Следовательно, U1U2=ω1ω2=k{\displaystyle {{U_{1}} \over {U_{2}}}={{\omega _{1}} \over {\omega _{2}}}=k}.

Напряжение U1{\displaystyle U_{1}}, приложенное со стороны источника электрической энергии ко всем виткам ω1{\displaystyle \omega _{1}} обмотки автотрансформатора, во столько раз больше напряжения U2{\displaystyle U_{2}}, снимаемого с части обмотки, обладающей числом витков ω2{\displaystyle \omega _{2}}, во сколько раз число витков ω1{\displaystyle \omega _{1}} больше числа витков ω2{\displaystyle \omega _{2}}.

Если к автотрансформатору подключен потребитель электрической энергии, то под влиянием напряжения U2{\displaystyle U_{2}} в нём возникает электрический ток, действующее значение которого обозначим как I2{\displaystyle I_{2}}.

Соответственно в первичной цепи автотрансформатора будет ток, действующее значение которого обозначим как I1{\displaystyle I_{1}}.

Однако ток в верхней части обмотки автотрансформатора, имеющей число витков (ω1−ω2){\displaystyle ({\omega _{1}}-{\omega _{2}})} будет отличаться от тока в нижней её части, имеющей количество витков ω2{\displaystyle \omega _{2}}. Это объясняется тем, что в верхней части обмотки протекает только ток I1{\displaystyle I_{1}}, а в нижней части — некоторый результирующий ток, представляющий собой разность токов I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Дело в том, что согласно правилу Ленца индуцированное электрическое поле в обмотке автотрансформатора ω2{\displaystyle \omega _{2}} направлено навстречу электрическому полю, созданному в ней источником электрической энергии. Поэтому токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}} в нижней части обмотки автотрансформатора направлены навстречу друг другу, то есть находятся в противофазе.

Сами токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}, как и в обычном трансформаторе, связаны соотношением I1I2=ω2ω1=1k{\displaystyle {{I_{1}} \over {I_{2}}}={{\omega _{2}} \over {\omega _{1}}}={1 \over k}}

или I2=ω1ω2×I1{\displaystyle I_{2}={{\omega _{1}} \over {\omega _{2}}}\times I_{1}}.

Так как в понижающем трансформаторе ω1>ω2{\displaystyle {\omega _{1}}>{\omega _{2}}}, то I2>I1{\displaystyle {I_{2}}>{I_{1}}} и результирующий ток в нижней обмотке автотрансформатора равен I2−I1{\displaystyle {I_{2}}-{I_{1}}}.

Следовательно, в той части обмотки автотрансформатора, с которой подаётся напряжение на потребитель, ток значительно меньше тока в потребителе, то есть I2−I1≪I2{\displaystyle {I_{2}}-{I_{1}}\ll {I_{2}}}.

Это позволяет значительно снизить расход энергии в обмотке автотрансформатора на нагрев её проволоки (См. Закон Джоуля — Ленца) и применить провод меньшего сечения, то есть снизить расход цветного металла, уменьшить вес и габариты автотрансформатора.

Если автотрансформатор повышающий, то напряжение со стороны источника электрической энергии подводится к части витков обмотки трансформатора ω1{\displaystyle \omega _{1}}, а на потребитель подводится напряжение со всех его витков ω2{\displaystyle \omega _{2}}.

Автотрансформатор для питания телевизоров, СССР, 1960-е — 1970-е гг. Напряжение плавно регулировалось перемещением «ползунка» на верхней панели, контроль по показаниям вольтметра. \omega _{2}

Автотрансформатор с регулированием напряжения. Защитный кожух снят. Сзади видна снятая верхняя панель со шкалой, деления показывают, какое напряжение будет подаваться потребителю.

Автотрансформаторы применяются в телефонных аппаратах, радиотехнических устройствах, для питания выпрямителей и т. д. Достаточно широкое применение автотрансформаторы получили в СССР: для ручной стабилизации питающего напряжения ламповый телевизор подключался к сети через ЛАТР и перед включением самого телевизора производилась ручная регулировка напряжения до номинального значения. Причиной этому было то, что в электросетях зачастую регулярно наблюдалось повышенное или пониженное напряжение, что могло повредить дорогостоящий телевизионный приёмник и даже привести к возгоранию.

В дальнейшем для этой задачи более эффективно применялись автоматические феррорезонансные стабилизаторы. В последующих моделях телевизоров (УПИМЦТ и тп), вместо пожароопасного силового трансформатора стал применяться импульсный блок питания, что сделало использование внешних стабилизаторов напряжения излишним.

Электрификация железных дорог по системе 2×25 кВ[править | править код]

В СССР (и на постсоветском пространстве) часть железных дорог электрифицирована на переменном токе 25 киловольт, частотой 50 Герц. С тяговой подстанции в контактный провод подаётся высокое напряжение[2], обратным проводом служит рельс. Однако, на малонаселённых территориях нет возможности часто располагать тяговые подстанции (к тому же трудно найти квалифицированный персонал для их обслуживания, а также создать для людей должные жилищно-бытовые условия).

Для малонаселённых территорий разработана система электрификации 2×25 кВ (два по двадцать пять киловольт).

На опорах контактной сети (сбоку от железнодорожного полотна и контактного провода) натянут специальный питающий провод, в который подаётся напряжение 50 тыс. вольт от тяговой подстанции. На железнодорожных станциях (или на перегонах) установлены малообслуживаемые понижающие автотрансформаторы, вывод обмотки ω1{\displaystyle \omega _{1}} подключён к питающему проводу, а вывод обмотки ω2{\displaystyle \omega _{2}} — к контактному проводу. Общим (обратным) проводом является рельс. На контактный провод подаётся половинное напряжение от 50 кВ, то есть 25 кВ[3].

Данная система позволяет реже строить тяговые подстанции, а также уменьшаются тепловые потери. Электровозы и электропоезда переменного тока в переделке не нуждаются.

  1. ↑ Большая советская энциклопедия: [в 51 т.] / гл. ред. С. И. Вавилов. — 2-е. — М.: Советская энциклопедия, 1949—1958. — Т. 1. — С. 284.
  2. ↑ Как правило, подаётся несколько выше 25 киловольт, обычно 27—27,5; с учётом потерь.
  3. ↑ Как правило, подаётся несколько выше 50 киловольт, обычно 55; с учётом потерь, чтобы на контактном проводе было 27,5 кВ.

Для чего нужны ТНы

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *