Диод в электрической цепи – устройство, характеристика, как пропускает ток при прямом и обратном включении

Содержание

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Полупроводниковые диоды

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью

p-типа, а другая — проводимостью n-типа.

Диод в виде кристалла полупроводника

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

Прямое включение диода

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область

p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен

принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

Обратное включение диода

В этом случае электроны в области n-типа станут перемещаться к положительному

полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током

p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (

Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления –

обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения

Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Вольт-амперная характеристика диода

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной

оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр

= 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Пробои p-n переходов диода

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Урок-7. ДИОДЫ И ИХ ПРИМЕНЕНИЕ

ДИОДЫ И ИХ ПРИМЕНЕНИЕ

Продолжаем изучать полупроводниковые приборы, им хочется уделить более пристальное внимание, потому как их значимость в радиоэлектронике трудно переоценить. В этом уроке будет предложена несложная практическая работа для закрепления материала. Во всем остальном этот урок по значимости ни чем не отличается от предыдущих. Если вы заметили во всех уроках, я стараюсь выкладывать основные мысли по теме, чтобы не перегружать юных радиолюбителей непонятными математическими выкладками и т.д., за исключением подробных пояснений, если это необходимо. И так; как и в предыдущих уроках, что выделено красным курсивом, зазубриваем, — черным, — принимаем к сведению. Приступайте!

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми вам в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая — n типа. На (рис. 1, а) дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т.е. положительным электродом, является область типа р, а катодом, т.е. отрицательным электродом,- область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т.е. с областью типа р, а отрицательный — с катодом, т.е. с областью типа, n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи потечет ток, значение которого зависит от приложенного к нему напряжения и свойств диода. При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно — дырочным переходом или, короче, р — n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование. Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя недостаток электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок.

Рис. 1 Схематическое устройство и работа полупроводникового диода.

В этом случае сопротивление р — n перехода мало, вследствие чего через диод течет ток, называемый прямым током. Чем больше площадь р — n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, как это показано на (рис. 1, в), диод окажется в закрытом состоянии. В этом случае электрические заряды на диоде поведут себя иначе. Теперь, удаляясь от р — n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р — к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, (в) она заштрихована и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный. Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико. Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ). Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Рис. 2 Вольт — амперная характеристика полупроводникового диода.
Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2 — 4 мм квадратных и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р — n переход. Контактами электродов диода служат капелька индия и металлический диск или стержень с выводными проводниками. Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на (рис. 3, б). Приборы заключены в цельнометаллические или стеклянные корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств. Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными Диодами. Теперь познакомимся с принципом преобразования переменного тока в ток постоянный. Схему простейшего выпрямителя переменного тока вы видите на (рис. 4, а). На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямительного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке. При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диода закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть форма выпрямленного переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока. Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутках между импульсами, поэтому мерцания света будут едва заметными. А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор (Сф) большой емкости, это показано на (рис. 4, б). Заряжаясь: от импульсов тока, конденсатор (Сф) в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на (рис. 4, б) сплошной волнистой линией. Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы. В выпрямителе, с работой которого мы сейчас разбираемся, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Рис. 4 Схемы однополупериодного выпрямителя.
Рис. 5 Двухполупериодный выпрямитель с трансформатором.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление. В выпрямителе на (рис. 5) четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1 — 2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Постарайтесь вникнуть и запомнить классическую схему диодного моста! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными. Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40%. Именно такой выпрямитель я позже буду рекомендовать вам для питания транзисторных конструкций. Теперь о точечном диоде. Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на (рис. 6). Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм квадратных) пластина полупроводника германия или кремния типа n и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов. После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно — дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Рис. 6 Схематическое устройство и внешний вид точечного диода серии Д9.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50мкм. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами. Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р — n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В. Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя. Основные параметры наиболее распространенных точечных и плоскостных полупроводниковых диодов можно найти здесь.

Стабилитрон и его применение

Стабилитрон это тоже диод, но предназначен он не для выпрямления переменного тока, хотя и может выполнять такую функцию, а для стабилизации, т.е. поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры. Внешний вид одной из конструкций наиболее распространенных среди радиолюбителей стабилитронов и его графическое обозначение показаны на (рис. 8). По устройству и принципу работы кремниевые стабилитроны широкого применения аналогичны плоскостным выпрямительным диодам. Но работает стабилитрон не на прямом участке вольт — амперной характеристики, как выпрямительные или высокочастотные диоды, а на обратной ветви вольт — амперной характеристики, где незначительное обратное напряжение вызывает значительное увеличение обратного тока через прибор. Разобраться в сущности действия стабилитрона вам поможет его вольт — амперная характеристика, показанная на (рис. 8, а). Здесь (как и на рис. 2) по горизонтальной оси отложены в некотором масштабе обратное напряжение Uобр., а по вертикальной оси вниз — обратный ток Iобр. Напряжение на стабилитрон подают в обратной полярности, т. е. включают так, чтобы его анод был соединен с отрицательным полюсом источника питания. При таком включении через стабилитрон течет обратный ток Iобр. По мере увеличения обратного напряжения обратный ток растет очень медленно — характеристика идет почти параллельно оси Uобр. Но при некотором напряжении Uобр. (на рис. 8, а — около 8 В) р — n переход стабилитрона пробивается и через него начинает течь значительный обратный ток. Теперь вольт — амперная характеристика резко поворачивает и идет вниз почти параллельно оси Iобр. Этот участок и является для стабилитрона рабочим. Пробой же р — n перехода не ведет к порче прибора, если ток через него не превышает некоторого допустимого значения.

Рис. 8 Стабилитрон и его графическое обозначение на схемах.
Рис. 9 Вольт — амперная характеристика стабилитрона (а) и схема параметрического стабилизатора напряжения (б).

На (рис. 8 ,б) приведена схема возможного практического применения стабилитрона. Это так называемый параметрический стабилизатор напряжения. При таком включении через стабилизатор V течет обратный ток Iобр., создающийся источником питания, напряжение которого может изменяться в значительных пределах. Под действием этого напряжения ток Iобр., текущий через стабилитрон, тоже изменяется, а напряжение на нем, а значит, и на подключенной к нему нагрузке Rн остается практически неизменным — стабильным. Резистор R ограничивает максимально допустимый ток, текущий через стабилитрон. Со стабилизаторами напряжения вам неоднократно придется иметь дело на практике. Вот наиболее важные параметры стабилитрона: напряжение стабилизации Uст., ток стабилизации Iст., минимальный ток стабилизации Icт.min и максимальный ток стабилизации Icт.max. Параметр Uст. — это то напряжение, которое создается между выводами стабилизатора в рабочем режиме. Наша промышленность выпускает кремниевые стабилитроны на напряжение стабилизации от нескольких вольт до 180 В. Минимальный ток стабилизации Iст. min — это наименьший ток через прибор, при котором начинается устойчивая работа в режиме пробоя (на рис. 8, а — штриховая линия Iст.min), с уменьшением этого тока прибор перестает стабилизировать напряжение. Максимально допустимый ток стабилизации Iст.max — это наибольший ток через прибор (не путайте с током, текущим в цепи, питающейся от стабилизатора напряжения), при котором температура его р — n перехода не превышает допустимой (на рис. 8, а — штриховая линия Icт.max) — Превышение тока Iст.max ведёт к тепловому пробою р — n перехода и, естественно, к выходу прибора из строя.

Для лучшего понимания материала данного урока и чтобы лучше закрепить в памяти ваше представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л (в народе называю квадратной батареей) или кроны, лампочки накаливания, рассчитанной на напряжение 3,5 В или 6.3 В если это крона и ток накала 0,28 А, включите любой Диод из серии Д7, Д226, КД226, КД220, и др. так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод — с отрицательным выводом (рис. а). Лампочка должна гореть почти так же, как если бы диода небыло в цепи. Измените порядок включения электродов диода в цепь на обратный (рис. б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р — n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался. Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпp., сопротивление диода было мало и через него протекал прямой ток Iпр., значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр., равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр., который не мог накалить нить лампочки. В этом опыте лампочка выполняла двоякую функцию. Она, во — первых, была индикатором наличия тока в цепи, а во — вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

 

Опыт с диодом.

 

Переходим к следующему уроку !

устройство и принцип действия разных видов, работа в схемах

Понятие диода и его особенности Диод — это элемент, имеющий различную проводимость. Такое его свойство имеет применение в различных электротехнических и радиоэлектронных схемах. На его основе создаются устройства, имеющие применение в различных областях.

Типы диодов: электровакуумные и полупроводниковые. Последний тип в настоящее время применяется в подавляющем большинстве случаев. Никогда не будет лишним знать о том, как работает диод, для чего он нужен, как обозначается на схеме, какие существуют типы диодов, применение диодов разных видов.

Электровакуумные диоды

Приборы этого типа выполнены в виде электронных ламп. Лампа выглядит как стеклянный баллон, внутрь которого помещены два электрода. Один из них анод, другой катод. Они находятся в вакууме. Конструктивно анод выполнен в виде тонкостенного цилиндра. Внутри расположен катод. Он имеет обычно цилиндрическую форму. Изолированная нить накала проложена внутри катода. Все элементы имеют выводы, которые соединены со штырьками (ножками) лампы. Ножки лампы выведены наружу.

Принцип работы

При прохождении электрического тока по спирали она нагревается и разогревает катод, внутри которого находится. С поверхности разогретого катода электроны, покинувшие его, без дополнительного ускоряющего поля накапливаются в непосредственной близости от него. Часть из них затем обратно возвращается на катод.

При подаче на анод положительного напряжения электроны, испускаемые катодом, устремляются к нему, создавая анодный ток электронов.

Катод обладает пределом эмиссии электронов. При достижении этого предела анодный ток стабилизируется. Если на анод подать небольшое отрицательное напряжение по отношению к катоду, то электроны прекратят своё движение.

Материал катода, из которого он изготовлен, обладает высокой степенью эмиссии.

Вольт- амперная характеристика (ВАХ)

ВАХ диодов этого типа графически показывает зависимость тока анода от прямого напряжения, приложенного к выводам катода и анода. Она состоит из трёх участков:

  • Медленное нелинейное нарастание тока;
  • Рабочая часть характеристики;
  • Область насыщения тока анода.

Нелинейный участок начинается после области отсечки анодного тока. Его нелинейность связана с небольшим положительным потенциалом катода, который покинули электроны при его разогреве нитью накала.

Активный участок определяет из себя почти вертикальную линию. Он характеризует зависимость анодного тока от возрастающего напряжения.

Участок насыщения представляет собой линию постоянного значения тока анода при увеличивающемся напряжении между электродами лампы. Электронную лампу на этом участке можно сравнить с проводником электрического тока. Эмиссия катода достигла своего наивысшего значения.

Полупроводниковые диоды

Однофазный выпрямительСвойство p — n перехода пропускать электрический ток одного направления нашло применение при создании приборов этого типа. Прямое включение — это подача на n -область перехода отрицательного потенциала, по отношению к p -области, потенциал которой положительный. При таком включении прибор находится в открытом состоянии. При изменении полярности приложенного напряжения он окажется в запертом состоянии, и ток сквозь него не проходит.

Классификацию диодов можно вести по их назначению, по особенностям изготовления, по типу материала, используемого при его изготовлении.

В основном для изготовления полупроводниковых приборов используются пластины кремния или германия, которые имеют электропроводность n -типа. В них присутствует избыток отрицательно заряженных электронов.

Применяя разные технологии изготовления, можно на выходе получить точечные или пластинчатые диоды.

При изготовлении точечных приборов к пластинке n -типа приваривают заострённый проводник (иглу). На его поверхность нанесена определённая примесь. Для германиевых пластин игла содержит индий, для кремниевых пластин игла покрыта алюминием. В обоих случаях создаётся область p — n перехода. Её форма напоминает полусферу (точку).

Для плоскостных приборов применяют метод диффузии или сплавления. Площадь переходов, получаемых таким методом, варьируется в широких пределах. От её величины зависит в дальнейшем назначение изделия. К областям p — n перехода припаивают проволочки, которые в виде выводов из корпуса готового изделия используют при монтаже различных электрических схем.

На схемах полупроводниковые диоды обозначаются в виде равностороннего треугольника, к верхнему углу которого присоединена вертикальная черта, параллельная его основанию. Вывод черты называется катодом, а вывод основания треугольника анодом.

Прямым называется такое включение, при котором положительный полюс источника питания соединён с анодом. При обратном включении «плюс» источника подключается к катоду.

Вольт- амперная характеристика

ВАХ определяет зависимость тока, протекающего через полупроводниковый элемент, от величины и полярности напряжения, которое приложено к его выводам.

В области прямых напряжений выделяют три области: небольшого прямого тока и прямого рабочего тока через диод. Переход из одной области в другую происходит при достижении прямым напряжением порога проводимости. Эта величина составляет порядка 0,3 вольт для германиевых диодов и 0,7 вольт для диодов на основе кремния.

При приложении к выводам диода обратного напряжения ток через него имеет очень незначительную величину и называется обратным током или током утечки. Такая зависимость наблюдается до определённого значения величины обратного напряжения. Оно называется напряжением пробоя. При его превышении обратный ток нарастает лавинообразно.

Предельные значения параметров

Для полупроводниковых диодов существуют величины их параметров, которые нельзя превышать. К ним относятся:

  • Максимальный прямой ток;
  • Максимальное обратное напряжение пробоя;
  • Максимальная мощность рассеивания.

Полупроводниковый элемент может выдержать прямой ток через него ограниченной величины. При его превышении происходит перегревание p-n перехода и выход его из строя. Наибольший запас по этому параметру имеют плоскостные силовые приборы. Величина прямого тока через них может достигать десятков ампер.

Превышение максимального значения напряжения пробоя может превратить диод, имеющий однонаправленные свойства, в обычный проводник электрического тока. Пробой может иметь необратимый характер и варьируется в широких пределах, в зависимости от конкретного используемого прибора.

Мощность — это величина, напрямую зависящая от тока и напряжения, которое приложено при этом к выводам диода. Как и превышение максимального прямого тока, превышение предельной мощности рассеивания приводит к необратимым последствиям. Диод просто выгорает и перестаёт выполнять своё предназначение. Для предотвращения такой ситуации силовые приборы устанавливают приборы на радиаторы, которые отводят (рассеивают) избыток тепла в окружающую среду.

Виды полупроводниковых диодов

Свойство диода пропускать ток в прямом направлении и не пропускать его в обратном нашло применение в электротехнике и радиотехнике. Разработаны и специальные виды диодов для выполнения узкого круга задач.

Выпрямители и их свойства

Что такое диод Их применение основано на выпрямительных свойствах этих приборов. Их используют для получения постоянного напряжения путём выпрямления входного переменного сигнала.

Одиночный выпрямительный диод позволяет получить на его выходе пульсирующее напряжение положительной полярности. Используя их комбинацию, можно получить форму выходного напряжения, напоминающую волну. При использовании в схемах выпрямителей дополнительных элементов, таких как электролитические конденсаторы большой емкости и катушки индуктивности с электромагнитными сердечниками (дроссели), на выходе устройства можно получить постоянное напряжение, напоминающее напряжение гальванической батареи, столь необходимое для работы большинства аппаратуры потребителя.

Полупроводниковые стабилитроны

Эти диоды имеют ВАХ с обратной ветвью большой крутизны. То есть, приложив к выводам стабилитрона напряжение, полярность которого обратная, можно с помощью ограничительных резисторов ввести его в режим управляемого лавин пробоя. Напряжение в точке лавинного пробоя имеет постоянное значение при значительном изменении тока через стабилитрон, величину которого ограничивают в зависимости от применённого в схеме прибора. Так получают эффект стабилизации выходного напряжения на нужном уровне.

Технологическими операциями при изготовлении стабилитронов добиваются различных величин напряжения пробоя (напряжения стабилизации). Диапазон этих напряжений (3−15) вольт. Конкретное значение зависит от выбранного прибора из большого семейства стабилитронов.

Принцип работы детекторов

Для детектирования высокочастотных сигналов применяют диоды, изготовленные по точечной технологии. Задача детектора состоит в том, чтобы ограничить одну половину модулированного сигнала. Это позволяет в последующем с помощью высокочастотного фильтра оставить на выходе устройства только модулирующий сигнал. Он содержит звуковую информацию низкой частоты. Этот метод используется в радиоприёмных устройствах, принимающих сигнал, модулированный по амплитуде.

Особенности светодиодов

Эти диоды характеризуются тем, что при протекании через них тока прямого направления кристалл испускает поток фотонов, которые являются источником света. В зависимости от типа кристалла, применённого в светодиоде, спектр света может находиться как в видимом человеческим глазом диапазоне, так и в невидимом. Невидимый свет — это инфракрасное или ультрафиолетовое излучение.

При выборе этих элементов необходимо представлять цель, которую необходимо достигнуть. К основным характеристикам светодиодов относятся:

  • Потребляемая мощность;
  • Номинальное напряжение;
  • Ток потребления.

Ток потребления светодиода, применяемого для индикации в устройствах широкого применения, не более 20 мА. При таком токе свечение светодиода является оптимальным. Начало свечения начинается при токе, превышающем 3 мА.

Номинальное напряжение определяется внутренним сопротивлением перехода, которое является величиной непостоянной. При увеличении тока через светодиод сопротивление постепенно уменьшается. Напряжение источника питания, используемое для питания светодиода, необходимо применять не меньше напряжения, указанного в паспорте на него.

Потребляемая мощность — это величина, зависящая от тока потребления и номинального напряжения. Она увеличивается при увеличении величин, её определяющих. Следует учесть, что мощные световые диоды могут иметь в своём составе 2 и даже 4 кристалла.

Перед другими осветительными приборами светодиоды имеют неоспоримые преимущества. Их можно перечислять долго. Основными из них являются:

  • Высокая экономичность;
  • Большая долговечность;
  • Высокий уровень безопасности из-за низких питающих напряжений.

К недостатку их эксплуатации относится необходимость наличия дополнительного стабилизированного источника питания постоянного тока, а это увеличивает стоимость.

ПРИНЦИП РАБОТЫ ДИОДА

   Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении — очень плохо. У диода есть два вывода — анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио — видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых видов диодов. 

фотографии некоторых видов диодов

   На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения — около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод — полупроводниковый прибор с односторонней проводимостью электрического тока. 

ЦОКОЛЁВКА ДИОДА

   Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному — катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п — типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая — проводимости н — типа, то есть содержит избыток электронов, границу между ними называют п — н переходом, п — в латыни первая буква слова позитив, н — первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное — то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное — диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением. 

РАБОТА ДИОДА

   Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички — А. Касьян (АКА).

   Форум для начинающих

   Обсудить статью ПРИНЦИП РАБОТЫ ДИОДА


Прекращаем ставить диод / Habr


Нет, это не очередной «вечняк»

После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?


При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса


Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)


Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.

Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)


При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)


После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой беcтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)


Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)


Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

Архив с файлами схемы и разводки для EAGLE.

Спасибо за внимание.

Выпрямительный диод | Volt-info

Рисунок 1. Вольтамперная характеристика выпрямительного диода.

Вольтамперная характеристика выпрямительного диода

   На рисунке в первом квадранте расположена прямая, в третьем – обратная ветвь характеристики диода. Прямая ветвь характеристики снимается при действии прямого напряжения, обратная соответственно – обратного напряжения на диод. Прямым напряжением на диоде называется такое напряжение, при котором на катоде образуется более высокий электрический потенциал по отношению к аноду, а если говорить языком знаков —  на катоде минус (-), на аноде плюс (+), как показано на рисунке 2.

Рисунок 2. Схема для изучения ВАХ диода при прямом включении.

 

   На рисунке 1 приведены следующие условные обозначения:

– рабочий ток диода;

– падение напряжения на диоде;

– обратное напряжение диода;

Uпр – напряжение пробоя;

– ток утечки, или обратный ток диода.

Понятия и обозначения характеристик

   Рабочий ток диода (Iр), это прямой электрический ток, длительное время проходящий через диод, при котором прибор не подвергается необратимому температурному разрушению, и его характеристики не претерпевают значительных качественных изменений. В справочниках может указываться как прямой максимальный ток.    Падение напряжения на диоде (Uд) – напряжение на выводах диода, возникающее при прохождении через него прямого рабочего тока. В справочниках может быть обозначено как прямое напряжение на диоде.

   Прямой ток течёт при прямом включении диода.

   Обратное напряжение диода (Uо) – допустимое обратное напряжение на диоде, приложенное к нему длительное время, при котором не происходит необратимое разрушение его p-n перехода. В справочной литературе может называться максимальным обратным напряжением.

   Напряжение пробоя (Uпр) – обратное напряжение на диоде, при котором происходит необратимый электрический пробой p-n перехода, и, как следствие, выход прибора из строя.

   Обратный ток диода, или ток утечки (Iу) – обратный ток, длительное время не вызывающий необратимого разрушения (пробоя) p-n перехода диода.

   При выборе выпрямительных диодов обычно руководствуются указанными выше его характеристиками.

Работа диода

   Тонкости работы p-n перехода, тема отдельной статьи. Упростим задачу, и рассмотрим работу диода с позиции односторонней проводимости. И так, диод работает как проводник при прямом, и как диэлектрик (изолятор) при обратном включении. Рассмотрим две схемы на рисунке 3.

Рисунок 3. Обратное (а) и прямое (б) включение диода.

 

   На рисунке изображены два варианта одной схемы. На рисунке 3 (а) положение переключателей S1 и S2 обеспечивают электрический контакт анода диода с минусом источника питания, а катода через лампочку HL1 с плюсом. Как мы уже определились, это обратное включение диода. В этом режиме диод будет вести себя как электрически изолирующий элемент, электрическая цепь будет практически разомкнута, лампа гореть не будет.

   При изменении положения контактов S1 и S2, рисунок 3 (б), обеспечивается электрический контакт анода диода VD1 с плюсом источника питания, а катода через лампочку – с минусом. При этом выполняется условие прямого включения диода, он «открывается» и через него, как через проводник, течёт ток нагрузки (лампы).

   Если Вы только начали изучать электронику, Вас может немного смутить сложность с переключателями на рисунке 3. Проведите аналогию по приведённому описанию, опираясь на упрощённые схемы рисунка 4. Это упражнение позволит Вам немного понять и сориентироваться относительно принципа построения и чтения электрических схем.

Рисунок 4. Схема обратного и прямого включения диода (упрощённая).

 

   На рисунке 4 изменение полярности на выводах диода обеспечивается изменением положения диода (переворачиванием).

Однонаправленная проводимость диода

Рисунок 5. Диаграммы напряжений до и после выпрямительного диода.

 

   Примем условно, что электрический потенциал переключателя S2 всегда равен 0. Тогда на анод диода будет подаваться разность напряжений –US1-S2 и +US1-S2 в зависимости от положения переключателей S1 и S2. Диаграмма такого переменного напряжения прямоугольной формы изображена на рисунке 5 (верхняя диаграмма). При отрицательной разности напряжений на аноде диода он заперт (работает как изолирующий элемент), при этом через лампу HL1 ток не течёт и она не горит, а напряжение на лампе практически равно нулю. При положительной разности напряжений диод отпирается (действует как электрический проводник) и по последовательной цепочке диод-лампа течёт ток. Напряжение на лампе возрастает до UHL1. Это напряжение немного меньше напряжения источника питания, поскольку часть напряжения падает на диоде. По этой причине, разность напряжений в электронике и электротехнике иногда называют «падением напряжения». Т.е. в данном случае, если лампу рассматривать как нагрузку, то на ней будет напряжение нагрузки, а на диоде — падение напряжения.

   Таким образом, периоды отрицательной разности напряжения как бы игнорируются диодом, обрезаются, и через нагрузку течёт ток только в периоды положительной разности напряжений. Такое преобразование переменного напряжения в однополярное (пульсирующее или постоянное) назвали выпрямлением.

что такое диод? и зачем он нужен? в электрической цепи.

В разных схемах диод по разному применяется. например, на прямом участке ВАХ диод можно применять как источник опорного напряжения около 0,8 вольт для кремниевых и 0,2 вольт для германиевых диодов. Можно использовать и в качестве варикапа 9изменение ёмкости перехода в зависимости от напряжения), но чаще всего диод используют для выпрямления тока.

О, у диодов десятки разновидностей и каждый что-то делает! Всего навсего один кристаллик с двумя зонами, в которые введены 2 разные примеси может служить управляемой ёмкостью, стабилизатором, выпрямителем, генератором, усилителем, светоизлучателем, датчиком температуры, освещения, радиации, это так, на вскидку… обычно диод применяется для отсечки тока, текущего в одном направлении, но сохранения тока, текущего в другом, например для преобразования переменного тока сети в постоянный ток для питания приборов. Не редко он применяется для создания напряжения смещения, так как напряжение на нём слабо зависит от протекающего тока, так же он служит для вычитания напряжения, приложенного к участку-внутри диода есть своё электрическое поле, направленное против приложенного извне, так что на выходе напряжение на 0,5-1,5 вольта ниже, чем на входе. Не редко применяется и для ограничения напряжения. Как я уже сказал, напряжение на нём слабо зависит от протекающего тока в зоне насыщения, так что если включить его на вход усилителя, параллельно ему, то если на ход будет подан слишком сильный сигнал, то его примет на себя диод, защитив входной каскад усилителя.

какой ток у тебя при 3.7 вольтах? для чего он тебе?

важно какой будет протекать через него ток. а это не указано чем меньше диод по габаритам тем меньший способен выдерживать прямой ток, тебе пойдут самые распостраненные диоды типа 1n4001 . выдерживает 50 вольт 1 ампер

ОДНОСТОРОННИЙ ПРОВОДНИК ПОТОЧНЫХ НАПРАВЛЕНИЙ МОДУЛЬНЫХ ЧАСТИЦ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *