Диодный мост — Википедия
Материал из Википедии — свободной энциклопедии
Дио́дный мо́ст — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий. Такое выпрямление называется двухполупериодным[1].
Схема включенияВыполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.
Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.
Порядок работы
На вход (Input) схемы подаётся переменное напряжение (не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:
Выпрямление положительной полуволны | ←{\displaystyle \leftarrow } →{\displaystyle \rightarrow } | Выпрямление отрицательной полуволны |
В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:
Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодноеЭта же схема может быть использована при питании ответственных нагрузок постоянным током в целях их защиты от переполюсовки.
Выпрямитель
Подключение конденсатораПреимущества
Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:
- получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе
- избежать постоянного тока подмагничивания в питающем трансформаторе
- увеличить коэффициент использования габаритной мощности трансформатора (для однополупериодного выпрямителя он составляет около 0,45, так как через нагрузку протекает только один полупериод переменного тока), что позволяет сделать его магнитопровод меньшего сечения.
Недостатки
- Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно в низковольтных схемах. Одновременно удваиваются потери энергии (рассеяние тепла) на выпрямительных диодах, что ощутимо снижает КПД мощных низковольтных (на напряжение в несколько вольт) выпрямителей. Частично этот недостаток может быть преодолён за счет использования диодов Шоттки с малым падением напряжения. Также меньшими потерями энергии при мощном низковольтном выпрямлении обладает двухполупериодный выпрямитель со средней точкой, в котором ток в каждом полупериоде протекает не через два, а через один диод.
- При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.
Конструкция
Внешний вид однокорпусных мостовМосты могут быть изготовлены из отдельных диодов, и могут быть выполнены в виде монолитной конструкции (диодная сборка).
Монолитная конструкция, как правило, предпочтительнее — она дешевле и меньше по объёму (хотя не всегда той формы, которая требуется). Диоды в ней подобраны на заводе и наверняка имеют одинаковые параметры и при работе находятся в одинаковом тепловом режиме. Сборку проще монтировать.
В монолитной конструкции при выходе из строя одного диода приходится менять весь монолит. В конструкции из отдельных диодов может меняться только один диод.
При выпрямлении больших токов на диодах рассеивается значительная тепловая энергия, поэтому применяются дискретные диоды средней или большой мощности, допускающие установку на внешний теплоотвод.
Маркировка
В СССР/России:
- материал диодов:
- Ц — мост
- число (2…4 цифры) Обозначают порядковый номер разработки данного типа моста.
- буква
См. также
Ссылки
Примечания
- ↑ Однополупериодным выпрямителем называется выпрямление с помощью 1 диода.
Диодный мост: схема, принцип работы
Что такое диоды
Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.
ДиодРаньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее. А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению. А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент. В одну сторону ток он пропускает, а в другую — нет.
Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.
Весь секрет в N-P-переходе полупроводника.
Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства. Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон. И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот. И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу. Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.
В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике. Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь). А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.
А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.
Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).
Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.
Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С. Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами. Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.
Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.
И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное. Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок. А вот в N-P переходе эти два вида токов встречаются.
На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию. Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости. И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет. Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.
СхемаПрямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.
А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.
Вот на таких приборах и строятся выпрямительные мосты.
Выпрямительные мосты
Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U–< 0, то наш диод начнет «срезать» все напряжения, которые для него будут «обратными».
Работа диодаВ случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).
Синусоидальный сигналВесь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.
Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.
Диодный мост: принцип работыУже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.
Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.
Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.
СхемаВ результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.
Выпрямительный мостВыпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус. На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов. VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.
Диодный мостТакие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.
СхемаТрехфазный диодный мост
Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.
Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет. Разобраться с концами здесь почти так же просто. Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.
Похожие статьи:Диодный мост Википедия
Дио́дный мо́ст — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный). Такое выпрямление называется двухполупериодным[1].
Схема включенияВыполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.
Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.
Порядок работы[ | ]
На вход (Input) схемы подаётся переменное напряжение (не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:
Выпрямление положительной полуволны | ←{\displaystyle \leftarrow } →{\displaystyle \rightarrow } | Выпрямление отрицательной полуволны |
В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:
Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), сДиодный мост – энциклопедия VashTehnik.ru
Диодный мост – конструкция, позволяющая выпрямить ток результативно. Диодный мост считается двухполупериодным выпрямителем.
Диод, мосты и трудности выпрямления тока
Первоначально диодами называли электронные лампы с двумя электродами. Нагретый катод испускал электроны, способные лететь в единственном направлении – на анод. А в обратном направлении ток не тек. Это позволяло отсечь часть периода переменного напряжения. В результате ток становился выпрямленным.
Недостаток конструкции очевиден – часть времени, половину интервала, схема бездействует. По указанной причине создать высокую эффективность сложно. Говорим не о КПД, скорее, затрагиваем общую мощность. Напряжение в сети ограничено по номиналу, требуется действенно использовать имеющееся. Если повышать потребление через единственный диод, он перегреется и сгорит. Здесь на помощь приходит диодный мост.
Конструкция моста на схеме
Конструкции, рассмотренные в статье, как раз направлены на улучшение определённых свойств. Иначе давно применялся бы диодный мост единственной конфигурации. Известный диодный мост на четырёх вентилях далеко не единственный по простой причине – предназначен для работы с одной фазой напряжения. Это ущербный вариант, поставляемый в наши дома из целей экономии проводов, и в промышленности не применяется.
Начнём с Николы Тесла. Этот человек первым придумал вращающееся магнитное поле. Прежде переменный ток использовался, но при помощи единственной фазы озвученное явление создать нельзя. Внутри двигателя нужно, чтобы поле вращалось. Единственная фаза физически обеспечить это не в силах. Никола Тесла изобрёл асинхронный двигатель, со множеством полюсов. Отметим, что коллекторные разновидности моторов способны работать от переменного и постоянного тока, но рекомендуется избегать конструкций с постоянными магнитами. Ротор и статор собираются из медных обмоток. Полагаем, что в 19 веке подобных разновидностей двигателей не было.
Вернёмся к фазам. Изобретя асинхронный (индукционный) двигатель переменного тока, Никола Тесла попутно отметил в патенте возможность дальнейшего увеличения фаз, но дальше не пошёл. Позднее Доливо-Добровольский доказал, что гораздо результативнее использовать три фазы. Сегодня промышленные конструкции используют этот вариант. Заметим, любой двигатель может работать на потребление и генерацию тока, читатели поймут, что однофазный диодный мост не станет идеальным решением. Это ущербный, урезанный вариант для бытовой техники. Не более.
Бортовые системы несут в составе генератор на три фазы, это самая результативная конструкция сегодня из возможных. Используется уже схема Ларионова. Так достигается наилучшее соотношение экономии и эффективности. Неплохими характеристиками обладают выпрямительные схемы Миткевича. Школьные и ВУЗовские курсы физики имеют упрощённую структуру ввиду слишком сильного развития науки: невозможно за семестр вместить в головы учащихся всю информацию.
Диодный мост Гретца для бытовой техники не считается единственно возможным. Известны варианты на три фазы, гораздо более распространенные, чем кажется изначально. Диоды по конструкции и характеристикам сильно отличаются друг от друга. Это обусловливает специфику применения. Допустим, силовые разновидности мощные, но несут большие потери. Потому в выходных цепях импульсных блоков питания применяются диоды Шоттки с малым падением напряжения на p-n-переходе.
Конструкции диодных мостов
Единственная конструкция диодного моста не в силах обеспечить всех потребностей. Поэтому в автомобилях применяются схемы Ларионова. Сейчас обсудим конструкции, вначале проясним, почему диодный мост так называется. В 1833 году предложена схема для измерения сопротивления, основанная на выравнивание потенциала средних выводов двух ветвей:
- Четыре сопротивления соединяются в квадрат (по одному на сторону геометрической фигуры).
- К двум углам подаётся питающее напряжение от аккумулятора или другого источника.
- С двух других углом снимаются показания любым регистратором напряжения или тока.
Смысл работы заключается в том, чтобы при помощи потенциометра показания индикатора обратить в нуль. Тогда говорят – наступило равновесие моста. В то время (до публикации законов Кирхгофа) уже знали, что падение напряжение на двух резисторах пропорционально их величине, значит, справедливо, что: R1/R2 = R3/Rx, где R2 – потенциометр, R1 и R3 – постоянные сопротивления известного номинала, Rx – исследуемый элемент. Потом из простой пропорции находится искомая величина.
Мостовой схему в англоязычной литературе называют по причине, что между двумя ветвями электрической цепи, состоящих из сопротивлений R1, R2 и R3, Rx, соответственно, перекинуты перемычка – измерительный прибор. Людям это напомнило мост, схему назвали соответственно.
Диодный мост Гретца
В 1897 году журнал Elektronische Zeitung (часть 25) опубликовал заметку Лео Гретца об исследовании диодного моста. Отдельные читатели решили, что указанный человек стал изобретателем устройства. Поныне (на 2016 год) русский домен Википедии продолжает утверждать неоспоримый факт. В действительности изобретателем диодного моста Гретца стал польский электротехник Карол Поллак. Авторам обзора не удалось найти биографии учёного мужа на русском языке. Неудивительно, что о патенте под номером 96564 от 14 января 1896 года мало известно.
Схема диодного моста
Из рисунка видно объяснение названия схемы – диодный мост, налицо все признаки:
- Две ветки из диодов по центру закорочены цепью нагрузки.
- Питание переменным током подаётся к двум сторонам квадрата.
- На выходе присутствует постоянное напряжение.
К недостаткам схемы относится факт: падение напряжение на p-n-переходе удваивается. В любой момент времени ток проходит через пару диодов, а не один, как в случае однополупериодного выпрямителя. При большом вольтаже потерями возможно пренебречь, чтобы схема не сгорела, её снабжают большими изрезанными металлическими радиаторами. Автомобилисты уже поняли, о чем речь, простым смертным заметим, что для бытовой техники это не всегда справедливо (радиатор отсутствует). Причина не в мощности в цепи легковой машины. Скорее, при постоянном напряжении 12 В бортовой сети высоким оказывается ток, указанный факт приводит к столь сильному выделению тепла.
Поясним. По закону Джоуля-Ленца теплота от протекания электрического тока пропорциональна квадрату величины тока. В низковольтных цепях по этой причине приходится медные провода делать толстыми. Это причина, почему промышленное напряжение выше 12 В. В силовых линиях идут киловольты, что помогает снизить сечение кабелей и сэкономить на материалах. Для преобразования между линиями служит трансформатор, он, как правило, стоит на входе любого бытового прибора.
Это нужно, чтобы быстро создать номиналы напряжений, близкие к требуемым. Особенно ярко утверждение прослеживается на примере телевизоров с электронно-лучевой трубкой. Трансформатор на входе несёт множество выходных обмоток по числу цепей. Остаётся только выпрямить ток при необходимости, что позволяет снизить сложность аппаратуры. Для этого после выходной обмотки трансформатора ставится диодный мост Гретца (речь идёт об однофазных сетях 220 В).
В современных импульсных блоках питания по-другому. Диодный мост ставится прямо после входного фильтра, потом выпрямленное напряжение нарезается на тиристорном (транзисторном) ключе на высокочастотные импульсы, подаваемые на трансформатор. Это позволяет многократно уменьшить размеры сердечника и обмоток. Посмотрите на адаптер для сотового телефона: внутри стоит импульсный трансформатор. По размеру не сравнить с блоком питания телевизора. Порекомендуем обратить внимание на системный блок персонального компьютера, где источник выдаёт не менее 350 Вт. Этого хватит для телевизора с электронно-лучевой трубкой.
Схема моста Гретца
После импульсного трансформатора снова стоит выпрямитель. Иногда это диодный мост на базе диодов Шоттки с низким падением напряжения на p-n-переходе. Вспомним о перечисленных ранее недостатках. Для низких выходных напряжений импульсного блока питания применение диодных мостов невыгодно, удваивается количество вентилей. В результате потери выше, что закономерно снижает КПД. Дополнительным фактором считается выделение тепла: при низких напряжениях приходится использовать радиаторы при большом сопротивлении p-n-перехода.
Сопротивление p-n-перехода
Диодные мосты Гретца де-факто являются доминирующими сегодня в бытовых приборах. Сделаем маленькое отступление по поводу сопротивления p-n-перехода.
Как известно, характеристика диода напоминает в положительной части оси абсцисс параболу. Неважна форма, важен факт, что в любой точке графика становится возможным найти сопротивление. Потребуется просто поделить напряжение на ток. Получается, сопротивление диода зависит от приложенного вольтажа и в типичном случае постоянно меняется. Найдём аналогично действующему значению напряжения (220 В) среднюю цифру и для этого параметра. От неё зависят потери. Чем сопротивление p-n-перехода ниже, тем лучше. Поэтому выгодно использовать диоды Шоттки.
Однофазные выпрямители по схеме Миткевича
Схема не смотрится мостом, за исключением отдельных черт сходства. Из рисунка видно, что нагрузка словно закорачивает ветви обмотки трансформатора и диодов. Это уже натяжка. Так любую цепь можно назвать мостом. В любой момент времени у схемы Миткевича работает половина конструкции. Вторая заперта.
Аналогичное говорится про диодный мост Гретца, но здесь утверждение распространяется на обмотку трансформатора, чего нельзя отметить в предыдущем случае.
Трёхфазные выпрямители
Выпрямитель Ларионова (см. рисунок) мостом не считается, хотя так его упорно называют водители. Известны две разновидности конструкции, по терминологии трёхфазных линий называемые звезда и треугольник. Автомобилисты чаще контактируют с первым вариантом, где напряжением чуть выше, а потери меньше. Это обусловлено соображениями экономичности.
Параллельная и последовательная схемы
Выпрямители Миткевича и Ларионова
Известна схема, дающая упомянутой сто очков форы. Это истинный диодный мост, параллельное либо последовательное соединение трёх полных диодных мостов.
Как проверить диодный мост? — Diodnik
Диодный мост — важный элемент в цепи питания любого устройства, без него редко обходится работа любого блока питания или выпрямителя. Процесс проверки диодного моста будет интересный не только радиолюбителям, но и автомобилистам. Состоит это устройство из четырех диодов, собранных по мостовой схеме, и может быть выполнено как в едином корпусе, так с помощью отдельных диодов. В автомобиле мост состоит из шести диодов, если генератор трехфазный. О том, как проверить диодный мост читаем далее.
Более подробно о принципе работы диодного моста можно ознакомиться в предыдущей нашей статье.
Как проверить диодный мост?
В случае, если мост состоит из отдельных диодов, необходимо поочередно их выпаивать и проверять. Принцип проверки детально читаем в статье о том, как проверить диод.
Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.
Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе. Она поможет протестировать каждый диод и не запутаться с выводами.
Тест диода D1 – выводы 1;3.
Тест диода D2 – выводы 3;4.
Тест диода D3 – выводы 1;2.
Тест диода D4 – выводы 2;4.
В данном случае все диоды работают исправно, такой диодный мост рабочий.
Как проверить диодный мост без мультиметра?
Есть еще несколько способов, как проверить диодный мост если нет под рукой мультиметра. Например, стоит подать постоянное напряжение на вход диодного моста и измерить его потом на выходе. Поменяв после этого полярность напряжения, на входе смотреть на показатели вольтметра. Если показатели напряжения не изменяются в зависимости от полярности, в принципе можно сказать, что мост выполняет свою функцию.
Вконтакте
Одноклассники
comments powered by HyperComments