Диапазон величин внешнего сопротивления: Электрическое сопротивление — Википедия – ГОСТ Р 8.669-2009 ГСИ

Содержание

часть вторая. Сопротивление небесполезно / Радио / Сообщество EasyElectronics.ru

Итак, вторая статья из цикла, про которую я уже неоднократно упоминал. Сегодня постараюсь упихать в головы читателей несколько ключевых моментов, без которых нельзя жить на свете. До сих пор я говорил про согласование, согласованную нагрузку. Что-то упоминал про ширину линии, которая вроде как должна быть строго определенной. Пришло время расставить точки. Вам потребуется пластиковая бутылка и ножницы бесконечная пара проводов и немного терпения, добро пожаловать под кат!

Зайдем издалека.
Возьмем генератор с внутренним сопротивлением R. И к нему подключим нагрузку R1. Обычная такая схема.

Вопрос в том, насколько эта схема эффективна? При каком сопротивлении на нагрузке можно получить максимальную мощность?

Немного расчетов:

Чтобы получить максимум мощности вспомним производную и приравняем к нулю.

и вот мы уже получаем, что максимальная мощность выделяется, когда R = R1
. В этом случае говорят, что система генератор-нагрузка согласована.

Ну а теперь пошли фокусы. Подаем в нашу схему большую частоту. В прошлый раз мы видели, что в разных частях линии напряжение может быть совсем разным. Вот пусть на нашей схеме будет вот так:

да, забудьте пока про узлы-пучности, стоячих волн нет, рассматриваем только падающую. В любом случае «в лоб» закон ома для этой картинки уже не применить. Вот когда начинается такая беда, значит мы имеем дело с длинной линией. Заодно можно вспомнить наши сопли из припоя и 1206 конденсаторы, которые начинают вести себя как попало на каких то частотах, опять же из-за того, что размеры сравнимы с длиной волны и там появляются всякие шлейфы, стоячие волны и резонансы. Все это называют

устройствами с распределенными параметрами. Обычно говорят про распределённые параметры, когда размеры элементов превышают λ/10 (т. е. одну десятую длины волны) (спасибо EW1UA за удачную фразу)
Так что же нам делать с нашей схемой? В прошлый раз мы говорили про длину линий, не затрагивая другие параметры. Пора исправить это недоразумение.
Представьте, что генератор (или выходной каскад, например), качает в линию мощность. Никакой отраженной волны (пока) нет, наш генератор вообще не знает, что с той стороны линии, качает в никуда. Это как будто берем динамик, подносим к трубе и в трубу уходят звуковые волны.

Параметры такой системы можно определить по-разному. Можно определить(пока, правда, не понятно, как) ток и напряжение. А можно определить мощность (произведение тока на напряжение) и отношение напряжения к току в линии. Последняя величина имеет смысл сопротивления. Ее так и называют — волновое сопротивление. И величина эта для конкретно взятой линии (и на конкретной частоте, если быть точным) всегда одинаковая, от генератора не зависит.

Если вы возьмете бесконечную линию с каким-то заданным Z (так обычно обозначают волновое сопротивление) и подключите к ней ваш мультиметр, он это сопротивление и покажет. Хотя, казалось бы, просто пара проводов. А вот если пара будет конечной, как это обычно и бывает в нашей жизни, возникнет отражение на конце линии, стоячая волна. Поэтому ваш мультиметр покажет бесконечное сопротивление (это будет, в принципе, пучность).

Итак, по линии бежит волна. Волновое сопротивление линии не меняется (говорят, что линия регулярна), отношение напряжения к току одинаковое. А теперь — бах! — сопротивление линии совершает скачок.

Так как дальше соотношения между током и напряжением будут уже другие, «лишний» или недостающий ток в точке скачка формирует отраженную волну. Для более подробного понимания процесса неплохо бы записать для точки телеграфные уравнения, но для начала достаточно помнить, что
При отражении от ХХ фаза не меняется

При отражении от КЗ фаза переворачивается на 180°

Ну и осталось сказать про подключение линии к нагрузке. В принципе, нагрузку, можно рассматривать как бесконечную линию с волновым сопротивлением равным сопротивлению нагрузки. Прошлый пример с мультиметром, я думаю, это показывает весьма наглядно тем, кто в начале поста запасся бесконечным проводом. Так что если сопротивление нагрузки равно сопротивлению линии, система согласована, ничего не отражается, КСВ равно единице. Ну а если сопротивления отличаются, справедливы все вышеописанные рассуждения про отражение.
Собственно, в прошлый раз мы рассматривали КЗ и ХХ, вот на эти вещи можно смотреть как на нагрузки с нулевым или бесконечным сопротивлением.

Используя переотражения на скачках волнового сопротивления и линии с разным волновым сопротивлением, можно получить множество разных вещей в СВЧ. Нужно рассказывать про диаграмму смита и комплексное волновое сопротивление, это не сегодня. Приведу только пару примеров:
1. Если отрезок линии имеет длину в половину длины волны, его волновое сопротивление не важно. Волновое сопротивление на входе равно волновому сопротивлению на выходе. То есть сопротивление со стороны входа такой нагруженной линии равно той самой нагрузке подключенной на другой стороне линии.

2. Для отрезка в четверть волны c волновым сопротивлением линии Z волновое сопротивление на входе рассчитывается по формуле

Так можно согласовывать линии с разным волновым сопротивлением в узком диапазоне (в котором одна-три-пять-… четвертей длины волны соответствует длине шлейфа)

А теперь посмотрим на линию передачи поближе.

В прошлой статье мы уже говорили, что линия — просто два провода, говорили, что они бывают балансные и небалансные, и даже рассмотрели микрополосковую линию:

У микрополоски два основных параметра: толщина диэлектрика и ширина проводника (ширина дорожки).
Следующая небалансная линия. Если экран убрать снизу и разместить справа и слева от дорожки, мы получим копланарную линию (от слова co-planar — в одной плоскости, нет в этом слове буквы «м»).

Вариантов еще целая куча:

  • Можно в многослойной плате сделать экран снизу и сверху и получится симметричная микрополоска.
  • Если прорезать в полигоне щель, получится щелевая линия.
  • Можно сделать на плате две дорожки рядом и получится дифференциальная пара
  • Можно эту диффпару снабдить снизу землей
  • Можно объединить копланар и микрополоску:


Здесь у линии есть экран на нижнем слое, а рядом с линией делается множество отверстий для связи с верхним слоем. Это дополнительно экранирует линии друг от друга.

Из «не на плате» линий стоит вспомнить коаксиальный кабель (пример небалансной линии)

Цифрой 1 показан токоведущий проводник, 3 — экранный. 2 и 4 — изоляция. Для волнового сопротивления важна толщина внутреннего проводника, эпсилон диэлектрика 2 и диаметр экрана.

И витую пару, конечно же, как пример балансной линии.

У всех этих линий есть некоторые геометрические параметры, толщина провода, различные расстояния, зазоры. Ну и как у любой линии у каждой из них есть волновое сопротивление. Задача состоит в том, чтобы определить как-то это волновое сопротивление.
Для этого неплохо линию представить эквивалентной схемой:

Посмотрите, куча индуктивностей символизируют собой провода, а емкости — связь между проводами. В этой эквивалентной схеме кроется глубокий смысл: любая железка имеет и индуктивность и емкость, и вкупе они описывают волновое сопротивление линии. Если мы делаем проводники тоньше, увеличивается индуктивность и волновое сопротивление увеличивается. Если мы приближаем провода друг к другу, увеличивается емкость и волновое сопротивление уменьшается. Так что можно делать линии с разной шириной, толщиной и получать разное волновое сопротивление. Пример использования этого явления будет в конце этой статьи!

Ладно, все это занятно, но как же считать волновое сопротивление, спросите вы?
Я бы вам насоветовал кучу формул, будь мы в «быдловузе» как тут некоторые любят выражаться, но я их и сам не знаю. Есть замечательная программка: TxLine. Кроме того есть несколько программ для андроида, их уж сами ищите, у меня WM5.

Забиваете параметры вашей платы и нужное волновое и получаете ширину дорожки. Или наоборот. То же самое для кабеля и других видов линий.

Ах да, хотел сказать что классическое волновое сопротивление в «гражданской» технике типа телевизоров и радио — 75 Ом. В военной технике, а теперь и в системах радиосвязи, используется волновое 50 Ом. Говорят, что это было сделано чтобы уменьшить число выносимого за пределы проходной кабеля и разъемов =)
Так что все разъемы и кабели, многие устройства рассчитываются на волновое сопротивление 50 Ом.

На самом деле, как подсказывают в комментариях, 50 уменьшает потери из-за скин-эффекта а 75 ом проще согласовывать с антеннами.

Вернемся к нашим индуктивностям и емкостям. На частотах диапазона СВЧ больших емкостей и индуктивностей не надо: пикофарады, наногенри уже влияют. Так что паразитная индуктивность вывода микросхемы или паразитная емкость между витками катушки могут сильно подпортить ваши ожидания. В начале статьи я говорил, что линия с высоким волновым имеет большую индуктивную составляющую, так что можно считать ее индуктивностью. А линия с низким волновым может считаться емкостью. Давайте это проверим и используем!

Я думаю, почти все знают, что такое фильтр, в частности фильтр нижних частот. Надо вам сигнал сгладить, убрать высокие гармоники или отрезать ВЧ компоненты — тут-то вам и пригодиться ФНЧ.
Я построил классический LC ФНЧ в плагине iFilter, которая входит в состав AWR Design Environment c частотой среза 1 ГГц.

Если вы считаете, что можно просто взять и запаять кондеры и катушки по схеме — вы зря читали мои статьи, если вообще читали. Во-первых, не всякая индуктивность будет адекватно работать из-за паразитных емкостей между витками. Во-вторых, потребуются компоненты как минимум в 0402 корпусе, аккуратная пайка и минимальные расстояния между элементами (может, конечно, найдется человек который сделал все на выводных компонентах, катушки мотал на карандаше и паял на макетной плате и у него заработало, только сколько он просидел с настройкой этого чуда, как правило, умалчивается). В-третьих, схема достаточно чувствительна к разбросу параметров и я сомневаюсь, что вы подберете все компоненты по нужным номиналам.

Что же делать? Нужно делать свои индуктивности и емкости, как иначе! Используем тот факт, что тонкий проводник (или линия с высоким Z) похожа на индуктивность, а широкая линия (с низким Z) — близка к емкости.

Вот исходная схема:

А вот схема, в которой мы уже заменили элементы, как написано выше:

не, это не резисторы, так AWR обозначает линии передачи

Вот как это выглядит:

И в 3D:

Данный фильтр подвергся достаточно разностороннему анализу. Была промоделирована схема, схема на линиях, затем нарисована топология которую промоделировали 3-мя разными симуляторами в 3D. Ну и с реального фильтра была снята АЧХ. Результаты показаны на графиках:

Здесь коричневый график — исходная схема из iFilter (как видите, я вас немного обманул, фильтр считался на 1300 МГц), серый, синий и черный графики — разные 3D модели. Красная линия — результаты измерений на панорамном измерителе. Ну пару слов можно сказать: HFSS «угадал» параметры в начале диапазона и увидел резонансы на высоких частотах. EMSight из пакета AWR очень точно промоделировал спад характеристики фильтра. Axiem’у наверное не хватило точности, там сетка разбивается вручную.

Все рассчеты производились в демо-версии AWR Design Environment версии 9.0.

Как всегда, жду комментариев, на этот раз думаю, что будет не так много эмоций и больше обсуждения по-существу.

Ну и я продолжаю участвовать в конкурсе:

upd: кто-то наверняка заметит: «аа, да видно же, ты емкости на плате подрезал!» Верно, подрезал, в последний момент обнаружилось, что фильтр (а он делался как учебное пособие) почти не видно на универских приборах и пришлось сдвигать частоту среза до 1500 МГц. Получилось. Но все результаты я здесь привел до обрезки, модели действительно соответствуют реальности без какой-то настройки.

Диапазон — измерение — сопротивление

Диапазон — измерение — сопротивление

Cтраница 1

Диапазон измерения сопротивлений состоит из шести поддиапазонов.  [1]

Диапазон измерения сопротивлений от 0 01 ом до 1 Мом состоит из шести поддиапазонов.  [2]

Диапазон измерений сопротивлений мостовым методом теоретически безграничен и практически лежит в пределах от долей микроома до 1014 ом.  [3]

Диапазон измерения сопротивлений состоит из восьми поддиапазонов.  [4]

Диапазон измерения сопротивлений состоит из шести поддиапазонов.  [5]

Диапазон измерения сопротивлений состоит из восьми поддиапазонов.  [6]

Сопротивления 10, 39 и 1 000 ом, включенные в цепь питания через переключатель Яб, служат для уменьшения чувствительности моста на средних участках диапазона измерения сопротивлений.  [7]

Чтобы лучше представить себе возможные диапазоны измерения приборов, целесообразно воспользоваться табл. 1.1. и 1.2, в которых указаны значения сопротивления резистора RB и емкости конденсатора Cg, a также соответствующие им диапазоны измерения сопротивления и емкости.  [9]

Техническая характеристика: тип конструкции — стационарный; питание — от сети трехфазного переменного тока 380 В; максимальная мощность нагрузки проверяемых генераторов не более 1 0 кВт; диапазоны бесступенчатого регулирования частоты вращения генераторов 500 — 5000; 1000 — 10000 об / мин; диапазоны измерения частоты вращения генераторов 0 — 5000; 0 — 10000 об / мин; диапазоны измерения постоянного тока 20 — 0 — 20; О-50; 0 — 100 А; диапазоны измерения постоянного напряжения 0 — 20; О-40 В; диапазоны измерения сопротивления постоянному току 1 — 102; 10 — 103; 102 — 104; 103 — 105; 104 — 10е Ом; габаритные размеры 1547Х X 1265X820 мм; масса не более 350 кг.  [10]

Диапазон измерения напряжений переменного тока синусоидальной формы от 0 1 до 1000 в разбит на 7 поддиапазонов: 1, 3, 10, 30, 150, 300, 1000 в. Диапазон измерения сопротивлений постоянному току от 1 ом до 100 Мом разбит на 7 поддиапазонов.  [11]

Цифровые омметры и мосты постоянного тока предназначены для измерения сопротивления и отклонения сопротивления постоянному току от установленного номинального значения. Эти приборы охватывают диапазон измерения сопротивлений от 0 001 ом до, 104 — Мом при основной погрешности измерения от 0 05 до 1 % и быстродействии 0 2 — 2 сек.  [12]

Цифровые омметры и мосты постоянного тока предназначены для измерения сопротивления и отклонения сопротивления постоянному току от установленного номинального значения. Эти приборы охватывают диапазон измерения сопротивлений от 0 001 ом до 10 Мом при основной погрешности измерения от 0 05 до 1 % и быстродействии 0 2 — 2 сек.  [13]

Цифровые мосты отличаются простотой и универсальностью по сравнению с цифровыми омметрами, содержащими преобразователи сопротивления в промежуточные величины — напряжение, интервал времени, частоту. Различают цифровые мосты с диапазоном измерения сопротивления от нуля до некоторого максимального значения и с узким диапазоном для измерения сравнительно небольших отклонений измеряемого сопротивления от номинального значения. Мосты узкого диапазона используют для измерения неэлектрических величин, а также для определения отклонения в процентах от номинального значения.  [15]

ВЛИЯНИЕ ВЕЛИЧИНЫ ВНЕШНЕГО СОПРОТИВЛЕНИЯ

НА ПОКАЗАНИЯ МВ

 

Снимают перемычку 4 и к клеммам 5-6 подключают МС. При этом магазин сопротивлений МС включается в линию связи МВ и эталонного калибратора. Двухполюсный переключатель 6 устанавливают в положение 1.

На магазине сопротивлений МС выставляют значение внешнего сопротивления, увеличенное на + . Величина + указывается преподавателем. Следовательно, R¢ВН= RВН+ DRВН. Производят поверку показаний МВ в трех точках шкалы (начальной, средней и конечной). Данные заносят в таблицу 1.

Рассчитывают абсолютные погрешности по формулам (4) и сравнивают их с погрешностями, полученными при = 5 Ом. Делают вывод о влиянии на показания МВ.

По данным протокола и таблицы 1 строят график абсолютных погрешностей МВ при = 5 Ом, и основной допускаемой абсолютной погрешности в координатах е [мВ] – t [0С]: по оси абсцисс откладывают значения температуры, а по оси ординат – значения абсолютных погрешностей.

 

Таблица 1. Влияние на показания МВ

Отметка шкалы поверяемого прибора Отсчет по эталонному калибратору Погрешности поверяемого МВ
При увеличении показаний При уменьшении показаний При увеличении показаний При уменьшении показаний
0С мВ мВ
           

Вывод: ______________________________________________________

 

СОДЕРЖАНИЕ ОТЧЕТА

 

Отчет по лабораторной работе должен содержать следующие разделы:

1. Описание принципа действия и устройства пирометрического МВ.

2. Описание установки для поверки пирометрических МВ.

3. Поверка пирометрического милливольтметра.

4. Протокол поверки (выполняется на отдельной странице).

5. Влияние изменения значения внешнего сопротивления на показания пирометрического милливольтметра.

6. Ответы на контрольные вопросы.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Перечислите источники погрешностей при измерении ТЭДС

милливольтметром.

2. Как учитывается влияние температуры окружающей среды на

показания МВ?

3. Назначение корректора и арретира.

4. С какими первичными преобразователями работают МВ?

5. Для чего применяются компенсационные провода?

6. Какими метрологическими показателями определяется годность

МВ к эксплуатации?

7. Для чего предназначены противодействующие пружины в МВ?

8. Как определяется предел допускаемой вариации показаний МВ?

ПРОТОКОЛ

поверки милливольтметра типа _______, № _____класса точности____ ,

НСХ __________ с диапазоном измерения от _____ до _________0С.

Поверка проведена по эталонному калибратору типа _______________ ,

№__________ , класса точности ________.

Внешнее сопротивление ____________________________________ Ом.

Внутреннее сопротивление _____________________________ Ом.

 

 

Предел допускаемой основной Максимальная абсолютная

погрешности Dедоп= ______ мВ. погрешность ________ мВ.

 

Предел допускаемой Максимальная вариация

вариации = ______ мВ. ________ мВ.

 

Вывод _____________________________________________________ .

 

 

Муза Михайловна Григорьева

 

Изучение и поверка пирометрических милливольтметров.

Методические указания к выполнению лабораторной работы по дисциплине «Технические измерения и приборы» для студентов направления 140100 – Теплоэнергетика и теплотехника Энергетического института.

 

 

Подписано к печати_____________.

Формат 60х84/16. Бумага офсетная.

Печать RISO. Усл. печ. л. 0.75. Уч.-изд. л. 0.7.

Тираж______экз. Заказ_______. Цена свободная.

Издательство ТПУ. 634050, Томск, пр. Ленина 30.

 

диапазон сопротивления — это… Что такое диапазон сопротивления?


диапазон сопротивления
resistance range

Большой англо-русский и русско-английский словарь. 2001.

  • диапазон слышимости
  • диапазон срабатывания

Смотреть что такое «диапазон сопротивления» в других словарях:

  • диапазон (измерения) сопротивления — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN resistance range …   Справочник технического переводчика

  • диапазон значений параметров цепей нагрузки (операционного усилителя) — Интервал значений емкости нагрузки, активного сопротивления нагрузки и емкости, включенной на входе операционного усилителя, в котором обеспечивается устойчивость усилителя при любых возмущающих воздействиях и гарантируется время установления… …   Справочник технического переводчика

  • диапазон — 3.9 диапазон (range): Диапазон между пределами, выраженными заявленными значениями нижнего и верхнего пределов. Примечание Термин «диапазон», как правило, используют в различных модификациях. Он может представлять собой различные характеристики,… …   Словарь-справочник терминов нормативно-технической документации

  • диапазон измерений — 3.18 диапазон измерений (specified measuring range): Область значений величины, в пределах которой нормированы допускаемые пределы погрешности газоанализатора. Примечания 1. Газоанализатор может иметь несколько диапазонов измерений. 2. Диапазон… …   Словарь-справочник терминов нормативно-технической документации

  • диапазон измерений термопреобразователя сопротивления — 3.7 диапазон измерений термопреобразователя сопротивления: Диапазон температур, в котором выполняется нормированная в соответствии с настоящим стандартом зависимость сопротивления термопреобразователя сопротивления от температуры в пределах… …   Словарь-справочник терминов нормативно-технической документации

  • диапазон измерений термометра сопротивления — 3.7 диапазон измерений термометра сопротивления : Диапазон температур, в котором выполняется нормированная в соответствии с настоящим стандартом зависимость сопротивления ТС от температуры в пределах соответствующего класса допуска. Источник …   Словарь-справочник терминов нормативно-технической документации

  • диапазон значений параметров цепей — 67 диапазон значений параметров цепей нагрузки (операционного усилителя): Интервал значений емкости нагрузки, активного сопротивления нагрузки и емкости, включенной на входе операционного усилителя, в котором обеспечивается устойчивость усилителя …   Словарь-справочник терминов нормативно-технической документации

  • Рабочий диапазон — 3.10 Рабочий диапазон интервал температур, измеряемых конкретным ТП, находящийся внутри диапазона измеряемых температур. Источник: ГОСТ 6616 94: Преобразователи термоэлектрические. Общие технические условия ор …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 6651-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ 6651 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 8.625-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ Р 8.625 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции : Время …   Словарь-справочник терминов нормативно-технической документации

  • Термометр сопротивления — Условное графическое обозначение термометра сопротивления Термометр сопротивления  электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления …   Википедия


Отрицательное дифференциальное сопротивление — Википедия

Материал из Википедии — свободной энциклопедии

Если через отдельные элементы или узлы электрической цепи протекает ток I, и при увеличении тока I уменьшается напряжение V на этих элементах, то сопротивление R таких элементов называют отрица́тельным дифференциа́льным.

dV/dI = R < 0.

Характер изменения I(V) можно наблюдать на вольт-амперной характеристике (ВАХ) (см. рисунок). C точки зрения радиотехники такие элементы являются активными, позволяют преобразовать энергию источника питания в незатухающие колебания, могут использоваться в схемах переключения.

В общем случае отрицательное внутреннее сопротивление является функцией напряжения (тока) и частоты ω, то есть понятие отрицательного дифференциального сопротивления сохраняет смысл для соответствующих компонент разложения в ряд Фурье:

R(ω)=dV(ω)/dI(ω).{\displaystyle R(\omega )=dV(\omega )/dI(\omega ).}

Понятие отрицательного дифференциального сопротивления используют при рассмотрении устойчивости различных радиотехнических цепей. Такое сопротивление может компенсировать некоторую часть потерь в электрической цепи, если его абсолютная величина меньше активного сопротивления; в противоположном случае состояние становится неустойчивым, возможен переход в другое состояние (состояние устойчивого равновесия) (переключение) или возникновение колебаний (генерация). В однородном образце полупроводника в области существования отрицательного дифференциального сопротивления неустойчивость может приводить к разбиению образца на участки сильного и слабого поля (доменная неустойчивость) для характеристики N-типа или шунтированию тока по сечению образца для характеристики S-типа.

Элемент цепи с отрицательным сопротивлением называют негатроном[1]. Такие элементы могут иметь различную физическую реализацию.

Примеры элементов с отрицательным внутренним сопротивлением[править | править код]

  • Электронно-дырочный переход в вырожденных полупроводниках (туннельный диод) имеет вольтамперную характеристику N-типа. Включение его в цепь приводит к возникновению в цепи неустойчивости и генерации колебаний. Амплитуда и частотный спектр колебаний определяются параметрами внешней цепи и нелинейностью вольт-амперной характеристики с отрицательным дифференциальным сопротивлением. Наличие такого участка позволяет использовать туннельный диод в качестве быстродействующего переключателя.
  • Полупроводники типа GaAs или InP в сильных электрических полях позволяют реализовать характеристику N-типа в объёме материала за счёт зависимости подвижности электронов от напряжённости электрического поля (эффект Ганна). В сильном электрическом поле образец становится неустойчивым, переходит в резко неоднородное состояние — разбивается на области (домены) слабого и сильного поля. Рождение домена (на катоде), его движение по образцу и исчезновение (на аноде) сопровождаются колебаниями тока во внешней цепи, частота которых в простейшем случае определяется длиной образца L и скоростью v дрейфа электронов в поле (ω ~ v/L) и может достигать ~ 100 ГГц.
  • В транзисторных и ламповых генераторах электромагнитных колебаний транзистор (лампа) вместе с цепью положительной обратной связи (и источником питания) играет роль отрицательного дифференциального сопротивления, соединённого последовательно с сопротивлением контура, что эквивалентно поступлению энергии в контур. Если абсолютная величина действующего отрицательного внутреннего сопротивления превышает активные потери, происходит самовозбуждение генератора; стационарные колебания соответствуют состоянию, когда активные потери полностью компенсируются за счёт отрицательного внутреннего сопротивления.
  • Газоразрядная лампа имеет отрицательное дифференциальное сопротивление. После зажигания лампы протекающий в ней ток многократно возрастает. Если ток не ограничить, лампа выйдет из строя.
  1. ↑ Биберман Л. И. Широкодиапазонные генераторы на негатронах. – М.: Радио и связь, 1982. – 89 с.
  1. Бонч-Бруевич А. М. Радиоэлектроника в экспериментальной физике.
  2. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников.
  3. Бенинг 3. Ф. Отрицательные сопротивления в электронных схемах. — М., 1975.

Внутреннее сопротивление — это… Что такое Внутреннее сопротивление?

Двухполюсник и его эквивалентная схема

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

В соответствии с законом Ома при источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведенном примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.

Эквивалентная схема активного двухполюсника

Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — комплексного импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Этот генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку. Это воображаемое сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть реального «резистора» внутри двухполюсников обычно нет. Хотя в реальных гальванических элементах это внутреннее сопротивление есть. Это суммарное сопротивления плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти реальные материалы имеют вполне конечное сопротивление, отличное от нуля. В прочих источниках эту функцию исполняют обмотки и контакты, которые также снижают характеристики источников напряжения. Контактные разности потенциалов имеют иную природу падения напряжения и носят неомический характер, то есть все затраты энергии идут на работу выхода носителей заряда.

Сопротивление и внутреннее сопротивление

Основной характеристикой двухполюсника является его сопротивление (или импеданс[1]). Однако характеризовать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=Ir не выполняется[2].

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

  • Входное сопротивление — внутреннее сопротивление двухполюсника, которым является вход системы[источник не указан 147 дней].
  • Выходное сопротивление — внутреннее сопротивление двухполюсника, которым является выход системы.

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему, внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

  • Внутреннее сопротивление невозможно убрать из двухполюсника[4]
  • Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Если к источнику с ЭДС[5] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:

Нахождение внутреннего сопротивления

Расчёт

Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).

Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

(Напряжения)

где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:

где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

(ВнутрСопр)

Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:

  • Рассчитать выходное напряжение двухполюсника в режиме холостого хода
  • Рассчитать выходной ток двухполюсника в режиме короткого замыкания
  • На основании полученных значений найти r и U по формуле (ВнутрСопр).

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

  • Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
  • Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
  • Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r). В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
  • Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы. Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

  • Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
  • Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
  • Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от 0,05 Ом до 1 Ом и более (зависит от качества электропроводки). Сопротивление 1 Ом и более соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети может достигать 3 тысяч ампер, что требует применения автоматических предохранителей, выдерживающих подобные токовые удары.
  • Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[6]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).

Большое внутреннее сопротивление

Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).

  • Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
  • Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[7] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
  • Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.

См. также

Входной импеданс антенны

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
  • Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5

Примечания

  1. Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
  2. Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
  3. Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
  4. Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
  5. То же самое, что и напряжение
  6. Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
  7. В рабочем диапазоне частот
  8. Похоже, что в графике ошибка: внутреннее сопротивление аккумулятора должно измеряться в миллиомах, а не в омах, как на графике.

диапазон (измерения) сопротивления — это… Что такое диапазон (измерения) сопротивления?


диапазон (измерения) сопротивления

 

диапазон (измерения) сопротивления

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

Тематики

  • электротехника, основные понятия

Справочник технического переводчика. – Интент. 2009-2013.

  • диапазон (изменения) ёмкости
  • диапазон (углов) в направлении горизонта

Смотреть что такое «диапазон (измерения) сопротивления» в других словарях:

  • диапазон — 3.9 диапазон (range): Диапазон между пределами, выраженными заявленными значениями нижнего и верхнего пределов. Примечание Термин «диапазон», как правило, используют в различных модификациях. Он может представлять собой различные характеристики,… …   Словарь-справочник терминов нормативно-технической документации

  • диапазон измерений — 3.18 диапазон измерений (specified measuring range): Область значений величины, в пределах которой нормированы допускаемые пределы погрешности газоанализатора. Примечания 1. Газоанализатор может иметь несколько диапазонов измерений. 2. Диапазон… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 61557-1-2005: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 61557 1 2005: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть …   Словарь-справочник терминов нормативно-технической документации

  • Рабочий диапазон — 3.10 Рабочий диапазон интервал температур, измеряемых конкретным ТП, находящийся внутри диапазона измеряемых температур. Источник: ГОСТ 6616 94: Преобразователи термоэлектрические. Общие технические условия ор …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 24453-80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин — Терминология ГОСТ 24453 80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин оригинал документа: 121. Абсолютная спектральная характеристика чувствительности средства измерений… …   Словарь-справочник терминов нормативно-технической документации

  • Термометр сопротивления — Условное графическое обозначение термометра сопротивления Термометр сопротивления  электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления …   Википедия

  • Требования к средствам измерения и контроля — 4.1. Требования к средствам измерения и контроля 4.1.1. Общие требования 4.1.1.1. Используемая измерительная аппаратура должна перекрывать весь диапазон частот, используемый в морской подвижной службе и подвергаемый контролю. Допускается… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52319-2005: Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования — Терминология ГОСТ Р 52319 2005: Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования оригинал документа: 3.2.5. барьер: Часть оборудования, обеспечивающая его защиту от прямого… …   Словарь-справочник терминов нормативно-технической документации

  • ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… …   Энциклопедия Кольера

  • ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… …   Словарь-справочник терминов нормативно-технической документации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *