Датчик температурный цифровой – Цифровой датчик температуры DS18B20: описание, подключение, схема, характеристики

Содержание

Цифровые датчики температуры | 2 Схемы

Для измерения температуры различных сред — воздуха, жидкостей, твёрдых веществ, современная электроника использует специальные цифровые датчики, представляющие из себя готовые модули, подключаемые не только к Arduino, но и любой аналогичной микроконтроллерной платформе. Про их ассортимент на известных китайских (и не только) площадках, а также возможности каждого из модулей, мы сейчас и узнаем.

Датчик температуры KY-001 с интерфейсом 1-Wire

Этот датчик служит для точного измерения температуры. Связь с датчиком осуществляется по интерфейсу 1-Wire [1-2], что позволяет подключить к плате Arduino несколько подобных устройств, используя один вывод микроконтроллера [3-4]. Основой модуля является микросхема ds18b20 [5].

Размер модуля 24 х 15 х 10 мм, масса 1,3 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

На плате имеется красный светодиод, который загорается, когда совершается обмен информации.

Потребляемый ток 0,6 мА при обмене информации и 20 мкА в ждущем режиме.

Подключение данного типа датчиков к Arduino хорошо описано во многих источниках [6-8]. В данном случае снова проявляются основные достоинства Arduino – универсальность и наличие огромного количества справочной информации. Для работы с датчиком потребуется библиотека OneWire Library [9]. Загрузив программу из [8] (в первом варианте программы есть ошибка – в заголовке кода нет подключения библиотеки #include <OneWire.h>) можно наблюдать в мониторе последовательного порта следующую информацию.

Так же автор тестировал код из [7], тут все заработало сразу, в мониторе последовательного порта можно прочитать информацию о типе подключенного датчика и собственно данные о температуре.

В целом очень полезный датчик, дающий возможность познакомиться на практике с интерфейсом 1-Wire. Корректные данные о температуре датчик выдает сразу, пользователю не нужно производить калибровку.

Модуль датчика температуры KY-013

Модуль представляет собой делитель напряжения, в одно из плеч которого включен терморезистор. Сопротивление датчика меняется при изменении температуры, второе плечо делителя образует резистор сопротивлением 10 кОм [10]. Подключение датчика аналогично фоторезистору [11].

Размер модуля 30 х 15 мм, масса 1 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

При изменении температуры происходит изменение сопротивления терморезистора, что приводит к изменению уровня напряжения на сигнальном выводе модуля. Если загрузить в Arduino программу AnalogInput2, то в мониторе последовательного порта среды разработки Arduino IDE можно наблюдать, как меняются показания, снимаемые с аналогового входа платы Arduino. На иллюстрации изменение показаний обусловлено нагревом терморезистора подушечками пальцев.

В общем, это один из простейших аналоговых датчиков, наряду с фоторезистором и потенциометром это датчик с которого обычно начинается изучение работы со встроенным АЦП.

Модуль датчика влажности и температуры KY-015 [12-13]

Модуль позволяет измерять температуру и влажность, передача информации осуществляется по интерфейсу 1-Wire [1-2].

Размер модуля 27 х 15 х 8 мм, масса 2,2 г. Для подключения служит стандартный трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

В ждущем режиме модуль потребляет около 60 мкА, и до 3 мА при обмене данными.

Для работы датчику необходима специальная библиотека [14], для проверки работоспособности датчика был использован код, взятый из следующего источника [15]. После загрузки можно наблюдать в мониторе последовательного порта данные о температуре и влажности. Изменения показаний датчика обусловлены тем, что автор поднес его ко рту.

Следует иметь в виду, что показания датчика влажности при быстром понижении влажности становятся корректными с задержкой, достигающей 2 мин. В целом этот модуль так и просится в состав простой метеостанции или системы умного дома.

Модуль датчика температуры KY-028 [16-17]

Этот датчик предназначен для грубого измерения температуры и обнаружения превышения заданного температурного порога.

Датчик имеет габариты 45 х 15 х 13 мм, массу 2,7 г, в печатной плате модуля предусмотрено крепежное отверстие диаметром 3 мм. Чувствительным элементом датчика является терморезистор. Индикация питания осуществляется светодиодом L1.

При срабатывании датчика загорается светодиод L2.

На плате датчика расположено четыре контакта. «A0» — аналоговый выход, выходное напряжение на котором меняется при изменении сопротивления терморезистора. Если в память Arduino UNO загрузить программу AnalogInput2, то можно наблюдать следующее изменение показаний датчика при его прижатии к коже человека.

Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, если температура не превышает заданного порога, при срабатывании датчика низкий уровень меняется на высокий. Регулировать положение порога срабатывания датчика можно подстроечным резистором. В дежурном режиме датчик потребляет около 4 мА, при срабатывании ток возрастает до 6 мА

Модуль можно легко настроить на срабатывание от тепла тела (используется программа LED_with_button).

В целом данная часть набора оставляет весьма приятное впечатление. Во всяком случае, ни один из датчиков температуры не является просто радиоэлементом без какой-либо обвязки, непонятно зачем приделанным к плате.

Литература

1) http://cxem.net/comp/comp53.php
2) http://cxem.net/comp/comp54.php
3) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi-ds18b20

4) http://www.zi-zi.ru/module/module-ky001
5) http://cxem.net/ckfinder/userfiles/comments/43118_ds18b20-rus.pdf
6) http://mypractic.ru/urok-26-podklyuchenie-termodatchikov-ds18b20-k-arduino-biblioteka-onewire-tochnyj-arduino-termometr-registrator.html
7) http://arduino-diy.com/arduino-tsifrovoy-datchik-temperatury-DS18B20
8) http://it-chainik.ru/podklyuchenie-datchika-temperatury-ds18b20-k-arduino/
9) https://www.pjrc.com/teensy/td_libs_OneWire.html
10) http://www.zi-zi.ru/module/module-ky013
11) http://robocraft.ru/blog/arduino/68.html
12) http://arduino-kit.ru/catalog/id/modul-datchika-vlajnosti-i-temperaturyi
13) http://www.zi-zi.ru/module/module-ky015
14) https://drive.google.com/file/d/0B-DqglGyhA7eVlAyYkhUaXYwWGc/view
15) http://роботехника18.рф/датчик-температуры-и-влажности/
16) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi_
17) http://www.zi-zi.ru/module/modul-ky-028

Все файлы (прошивки и документация) в едином архиве. Материал подготовил специально для сайта 2 Схемы — Denev.

Цифровой датчик температуры и влажности: принцип работы

Датчики температуры в настоящее время используются повсеместно. Это и системы отопления и климат-контроля. Холодильники, чайники, компьютеры – везде используются различные виды датчиков температур. Это всё только в бытовом применении. В промышленном использовании их сфера применения куда шире.

Методы измерений температур

Физические тела благодаря своим свойствам зависят от температуры, и если знать, как влияет температура на тот или иной материал. Выбор метода и материала для измерений определяется диапазоном измеряемых температур, требований к условиям работы, чувствительности и точности измерения.

Загрузка ...Загрузка ... Загрузка …

Цифровой датчик температурыЦифровой датчик температуры

Существует два варианта измерений: контактные и бесконтактные.

Бесконтактные – осуществляют измерения на основе теплового излучения тел. Такой метод позволяет проводить измерения, находясь на удалении. Помимо этого они применяются для измерения высочайших температур, при которых контактные датчики работать не смогут. Однако к проблемам таких измерителей относят низкую точность измерения низких температур. Нередко и вовсе становиться невозможно, измерить такие температуры.

Контактные – проводят измерения, основываясь на принципе теплового равновесия между измеряемым объектом и чувствительным элементом измерительного прибора. К таким относятся термопары, терморезисторы и др.

Термопары обладают очень высоким диапазоном измеряемой температуры, практически от самого абсолютного нуля до показателей достигающих отметки в три тысячи градусов Цельсия. Однако в виду особого свойства работы термопары (она измеряет разницу между двумя спаями) для измерения второго спая придется придумать иной способ замера.

Проблемы с точностью измерений термопары создает и используемые материал, наличие в нем примесей и способ обработки. Всё это может влиять на термоэдс прибора в целом.

Терморезисторы использует проволочный и полупроводниковый метод измерения. В зависимости от изменения сопротивления металла во время нахождения в определенной температурной среде. Иными словами от изменений температуры окружающей среды, изменяется число сопротивляемости измерительного элемента.

К минусам терморезисторов относят не очень высокую точность и подверженность к износу измерительного материала вызывающее еще большее падение точности со временем.

Существуют датчики в виде микросхем. Они имеют встроенной к чувствительному элементу структурой формирования исходящего сигнала. Такие датчики бывают аналоговые и цифровые. Подключение таких аппаратов к микроконтроллерам является очень простым. Аналоговые подключаются к ADC, а цифровые с любой популярный интерфейс (чаще IC).

Подобные устройства обладают неплохой точностью и малой ценой. Их использование удобно в большинстве случаев и имеет свою нишу, где используют только их. Однако есть и недостатки такие как – зависимость от питания, большое количество выводов требует большого количества проводников. Питающий их ток снижает точность измерений. Область температур сильно ограничена вышеназванными условиями, и рассчитана на температуры не ниже -55 и не выше 125 градусов Цельсия.

Цифровые технологии измерений

Цифровые датчики являются на текущий момент самым оптимальным решением для работы с микроконтроллерами, если нет каких-то специфических условий. В отличии от аналоговых, цифровые могут работать в длинной проводной линии и их сигнал более устойчив к помехам.

Рабочий интерфейс позволяет подключать одновременно несколько цифровых датчиков на линию, осуществляя покрытие большой территории датчиками, и считывая градиент изменения температур на площади. Цифровые измерители способны работать даже с самыми примитивными интерфейсами.

Цифровой датчик температурыЦифровой датчик температуры

Аналого-цифровые измерители могут иметь достаточно долгое время преобразования сигнала от измерительного элемента в цифру (до 1 секунды в высоком разрешении), но точность при этом остается весьма высокой (погрешность около +- 0.5 градусов Цельсия при измерении в районе комнатных температур).

В заключении следует перечислить все преимущества цифры:

  • отличные показатели точности;
  • высокая повторяемость характеристик;
  • линейность;
  • устойчивость перед лицом внешних помех;
  • низкая цена;
  • подключение нескольких измерителей к одной рабочей шине;
  • проста в эксплуатации.

Основные модели

  1. DS18B20.

Бюджетная модель, обладающая хорошей точностью. Для подключения использует 1-Wire, что позволяет подключать измерители по трехпроводной линии.

  1. LM75A.

Имеет фиксированное время преобразования. Обладает возможностью подключать до 8 устройств на шину. Обладает точностью до 0.125 градуса Цельсия.

  1. STTS75.

Также как и LM75A имеет возможность подключить до 8 устройств, при этом обладает большей скоростью работы, чем DS18B20, таким образом, собирая всё лучшее от всех моделей.

Гигрометры

Цифровой датчик температуры – это далеко не весь потенциал цифры. В таком датчике также может быть совмещен и измеритель влажности воздуха. А благодаря возможности программировать цифровое устройство, аппарат становиться и своего рода реле для климатических установок и вентиляций.

Требования к гигрометру всегда одни: точность, чувствительность, легкий монтаж и заменимость. Второстепенным, но немаловажным будет стоимость гигрометра, на которую также обращает внимание среднестатистический покупатель.

Виды гигрометров:

Они представлены в виде конденсатора с воздушным зазором. Когда изменяется число водяного пара, изменяется и емкость конденсатора. Прибор достаточно точен для измерения влажности в бытовых условиях, хотя и не удовлетворит специфических требований по особо точным измерениям низкой влажности. Среднее отклонение у таких устройств 2% при разбросе измеряемой влажности в 5-95%.

Полезная информация
1Резистивные

Принцип работы основан на измерении влажности гигроскопической среды. В датчике находится подложка, на которую при помощи фоторезистора наложили пару электродов и накрыли проводящим полимером.

Срабатывает система каждые 10-30 секунд. Устройство не требовательно к настройке и легко заменяется. Исправная работа устройства обеспечивается до 5 лет при условии отсутствия в воздухе высокого содержания вредных химических примесей.

  • Теплопроводящие.

Такие чаще всего используются в бытовых приборах. Суть их работы в связанных между собой в одном мосту нескольких термисторов. Один из термисторов изолирован, в то время как другой открыт, разнится между ними и преобразуется в необходимый результат.

Цифровой измеритель в отличии от аналогов собрать самостоятельно намного сложнее, он требует настройки от специалиста. Его преимуществом является выносной дисплей с элементами программирования датчика. Такими как установка таймеров измерения, срабатывание на движение (при оборудовании его еще и датчиком движения), и в целом цифровой датчик является своего рода конструктором который можно собрать в нечто намного большее, чем просто гигрометр. Или же расширять его возможности постепенно по мере необходимости. Из минусов помимо проблем с первоначальной настройкой – отсутствие вентиляции при выключенном электричестве.

Рекомендуем купить

Области применения цифровых датчиков

Как уже стало ясно, цифровые измерители сейчас набирают всё большую популярность и используются практически во всех сферах, как более простые, дешевые и гибкие датчики. Устройства на основе цифры чаще всего используют в овощехранилищах и подвалах. Благодаря их тесной работе с программатором ими легко управлять. Настраивать необходимую температуру и поддерживать ее при помощи функций реле, которые также может обеспечивать датчик при дополнительных настройках.

Цифра полностью автоматизирует любое измерение и регулирование температуры или влажности. Она же используется повсеместно в компьютерных технологиях, обеспечивая работу внутренних систем охлаждения и выдавая показания датчиком пользователю машины.

Не смотря на то, что цифра обладает возможностью подстраиваться под желания пользователя, она тяжело работает в уникальных условиях. Слишком требовательна к какому-то климатическому минимуму, при котором будет исправно работать. Тем не менее, наиболее распространенной сейчас является именно она за счет возможности повсеместного бытового применения.

Обладая минимальными понятиями в электронике и программировании, вы можете собрать свои аппараты под ваши требования на базе плат Arduino и использовать их, так как сами хотите.

Всю необходимую защиту от влаги или иных воздействий среды могут обеспечить герметичные корпусы или иные элементы защиты основной микросхемы, сами же измерительные элементы не так критичны к среде.

Цифровой датчик температурыЦифровой датчик температуры

Современные производители цифровых датчиков активно контактируют с покупателями и стараются потакать их всевозможным желаниям. Развивая отрасль цифры с всё более неожиданных ракурсов.

Цифра легко интегрируется практически с любой техникой. Есть возможность соединить работу датчика и вентилятора или системы включения света, или угол поворота камеры наблюдения. Цифровые датчики благодаря своей гибкости и «пронырливости» способны заменять собой многие менее продвинутые компоненты и существенно экономить ресурсы и деньги в бытовых условиях.

Датчик температуры для Лада Гранта

Датчики температуры охлаждающей жидкости, наружного воздуха, влажности

Для контроля климата в жилом помещении и температуры во время производственных процессов используются специальные устройства. Предлагаем рассмотреть, как работают датчики температуры, всасываемого воздуха на впуске, воды, газов, топлива и влажности, их принцип работы и виды.

Общие сведения про датчики

Датчики температуры представляют собой устройства, используемые для измерения температуры среды. Типы температурных датчиков:

  1. накладные контактные датчики. Накладные контактные датчикиФото — Накладные контактные датчики
  2. бесконтактные датчики. Бесконтактные датчики температурыФото — Бесконтактные датчики температуры

Тем не менее, известны еще 3 дополнительных типа информаторов: термометры, резистивные датчики температуры и термопара (терморегулятор). Все эти контроллеры работают при помощи измерения физических свойств (т.е. объема жидкости, текущей через провод), который изменяется в зависимости от температуры.

Видео: обзор датчиков температуры

Контактные датчики

Датчики контакта температуры могут измерять температуру объекта, в контакте с которым находится датчик, но если предположить, что датчик и объект находятся в тепловом равновесии, то между ними нет теплового потока.

Данный подвид информаторов представлен следующими устройствами:

  • Термопары
  • Датчики сопротивления температуры (работают при помощи указателя, у них наиболее оптимальное соотношение цена/качество)
  • Заполненные термометры
  • Полупроводниковые биметаллические термометры
  • Промышленные бесконтактные и беспроводные датчики температуры.
 Датчики сопротивления температурыФото — Датчики сопротивления температуры

Большинство коммерческих и научных бесконтактных датчиков температуры и измерения внешней тепловой мощностью излучения инфракрасного или оптического излучения, работают от известной или расчетной области на поверхности или объеме измеряемой жидкости.

Примером бесконтактного датчика температуры является пирометр.

Термометры являются наиболее распространенными датчиками температуры, эксплуатируемые в простых, повседневных измерениях температуры, их используются для котлов, в сигнализациях. Самые популярные биметаллические термометры.

Комнатный термометр с жидкостью

До сих пор одними из самых доступных датчиков измерения температуры считаются заполненные термометры. В тубу добавляется жидкость, которая чувствительна к изменению температуры, чаще всего это окрашенный спирт или ртуть. Под изменением температурного уровня снаружи тубы, жидкость расширяется и поднимается, по таблице-циферблату можно определить, какой уровень температуры сейчас в помещении. Этот способ хорош, если не требуется высокая точность, ведь при использовании такого измерителя возможна погрешность почти в градус, к тому же, спиртовые модели очень быстро теряют показатели при резком изменении температур, их сложно зафиксировать.

Комнатный термометр с жидкостьюФото — Комнатный термометр с жидкостью

Жидкость должна иметь относительно большой коэффициент теплового расширения, так что небольшие изменения в температуре приведет к обнаруживаемым изменениям в объеме. Материал трубки – стекло, иногда закаленное, но обязательно прозрачное, чтобы можно было видеть маркированную таблицу. Раньше ртуть была более распространена, но её уровень токсичности слишком высок, что может привести к непоправимому ущербу при бытовом использовании.

Хотя заполненные регуляторы являются самыми простыми и дешевыми вариантами для измерения температуры, они также отличаются недолговечностью в виду своей хрупкости. Также их редко применяют при осуществлении даже небольших производственных процессов, т.к. нет возможности регулировать их работу в автоматическом режиме.

В биметаллическом термометре используется два металла (обычно сталь и медь) с различными коэффициентами теплового расширения, они крепятся друг к другу с помощью заклепок или сварки. По мере повышения температуры, увеличивается расстояние между полосами, металл с высшим коэффициентом теплового расширения расширяется в большей степени, в результате чего появляется напряжение в материалах и отклонение в полосе. Величина этого отклонения является разницей температуры.

Биметаллический термометрФото — Биметаллический термометр

Температурные разности, для которых эти термометры могут быть использованы, ограничивается диапазоном, в котором металлы имеют существенно различные коэффициенты теплового расширения. Биметаллические полосы часто свернутые в трубах и помещены в термостаты. Перемещаемый конец полосы представляет собой электрический контакт, который передает температуру термостата. Поэтому они могут контролироваться специальными автоматическими устройствами.

Датчики сопротивления температуры

На производственных работах обычно используется механический или электронный погружной резистивный датчик температуры наружного воздуха (также известный как термометр сопротивления). В отличие от заполненных термометров, индикатор сопротивления выдает электрический сигнал измерения температуры, тем самым делая его более удобным для использования с компьютеризированной системой.

Датчики сопротивления температурыФото — Датчики сопротивления температуры

Устройство сопротивления использует зависимость между электрическим сопротивлением и температурой, которая может быть линейной или нелинейной. Главным отличием этих приборов является их высокая точность, у них допустимая погрешность около 0,01 градуса по Цельсию. Однако при высоких температурах (выше 700 градусов С), они становятся очень неточными из-за деградации наружной оболочки, которая содержит термометр. Таким образом, использование датчиков сопротивления является предпочтительным при более низких температурных диапазонах, где они могут быть наиболее точными, к тому же их проверка осуществляется гораздо проще, чем у биметаллических.

Бывает несколько видов датчиков: с терморезистором и традиционные. Традиционные термометры сопротивления использую чувствительные металлические элементы, которые приводят к линейной зависимости между температурой и сопротивлением. Так как температура металла увеличивается, увеличение случайного молекулярного движения препятствует потоку электронов. Повышенное сопротивление давления измеряется через металл как снижение тока, образуется фиксированное напряжение. Выносной электронный термистор использует полупроводниковый датчик, что дает функцию зависимости мощности между температурой окружающей среды, отопления и сопротивлением.

Термопара

Другой цифровой датчик температуры двигателя и выхлопных газов, который часто используются в промышленности – это термопара. Среди различных датчиков температуры, доступных, термопара широко используется датчик температуры масла и впускного воздуха. Как и аналоговые устройства сопротивления, данные приборы работают при помощи электронной схемы.

ТермопараФото — Термопара

Конструкция термопары

Термопара представляет собой тубу, продолговатой, стержнеобразной формы, что позволяет размещать устройство в труднодоступных местах. К примеру, в котлах, двигателях, узких вентиляционных проходов.

Любой (уличный и бытовой) датчик температуры воздуха содержит внешнюю оболочку или гильзу. Гильза защищает содержимое термопары от механического и химического повреждения.

В гильзе находится металлическая проволока, иногда две, каждая состоит из различных металлов. Возможны различные комбинации материалов для этих металлических проволок. Монтаж осуществляется при помощи специальных креплений и планок для жесткой фиксации термометрических систем.

Все счетчики имеют индивидуальные технические характеристики. Рассмотрим, какие показатели имеет электронный канальный датчик температуры охлаждающей жидкости и контроля окружающей среды:

  • Размер: три провода в TO-92 корпусе (0,2″х 0,2″х 0,2″)
  • Температурный диапазон: начальный в -40 градусов Цельсия и составляет до 150 градусов (в зависимости от типа температура может быть более высокой). Если превысить эти показатели, то возникнет неисправность.
  • Диапазон температур перед выходом: после 125 градусов С, точность падает. 2,0 В при 150 градусов С и 0,1 В при температуре -40 градусов С.
  • Требуемая мощность: максимум 5,5 В питания, 0.05 А тока.

Подключение всех аналоговых приборов не имеет никаких сложностей. В большинстве случаев достаточно просто включить устройство в сеть питания, проверить разъем и напряжение. Единственное замечание – это продумать его расположение, чтобы датчик максимально точно определил колебания температуры.

Как подобрать датчик температуры

Датчики температуры на снегоход, в шинах для автомобиля или прочих движущихся устройств выбираются сугубо индивидуально (в большинстве случаев можно воспользоваться продукцией фирмы-изготовителя техники, это PT100, Гольф 2, ВАЗ 2110, PT1000, Калина, NTC, Приора).

Датчик для компьютераФото — Датчик для компьютера

Для компьютера информаторы подбираются строго исходя от параметров оргтехники, в этом случае температурные датчики (реле) служат для предотвращения перегревания процессора, и представлены марками DS18B20, G62, GSM. Таким же образом выбираются устройства для измерения выделяемого теплого воздуха для холодильников, их изготавливает компания Siemens, ТСМ и УМЗ. Иногда для более точного контроля температуры необходимы инфракрасные контроллеры (на химических, биологических и сталелитейных заводах).

Датчик воздуха в салонеФото — Датчик воздуха в салоне

Для измерения температуры на борту и за бортом автомобиля, снегоходов и т.д. Вам также понадобится купить специальные датчики, они представлены марками Лада, Ланос, Дэу Нексия, Метран, Рено Логан, Шевроле, Ауди, Фокус Форд, Грант, Фольсваген Пассат, ВАЗ Нива, Мерседес, Хонда, Газель. При выборе модели для салона учитывайте, чтобы она была размещена как можно дальше от печи, и на 20 см выше пола. При необходимости замена прибора легко осуществляется своими руками, схема к каждому датчику идет вместе с инструкцией.

Цифровой датчик температуры LMT01 / Деталька / Сообщество EasyElectronics.ru

Решил написать заметку про убийцу вариант замены всеми полюбившегося датчика ds18b20.
Все мы знаем ds18b20 — это цифровой датчик температуры, который позволяет делать замеры с достаточно высокой точностью и обмениваться данными с окружающим миром по протоколу 1 wire. И все хорошо в этом датчике, да вот только протокол 1 wire не всегда реализован в железе МК и как часто это бывает, приходится городить свой трехколесный или же пользоваться сторонними либами. При этом больше всего обидно, когда нам нужно сделать устройство, которое питается от батарейки и должно работать миллисекунды, а потом засыпать на часы, а для банального замера температуры приходится общаться с датчиком, тратить на это клоки МК, ждать и «засорять» флеш и RAM кодом, который можно было бы использовать более оптимально.
Читатель может возразить — так можно поставить термопару или другой аналоговый прибор и замерять через АЦП — и будет прав, но при этом возрастает количество элементов на схеме и плате, а так же всегда есть шанс ошибиться при монтаже и т.д.
И вот на помощь нам пришла компания Texas instruments которая разработала цифровой датчик LMT01, который по своим характеристикам не уступает народному ds18b20, а в некоторых случаях его даже превосходит (даташит).
Но самое главное — у датчика всего две ноги, они же служат ему питанием и коммуникацией с внешним миром. А коммуникация у него проста как двери — подаем на него питание и через мгновение датчик начинает дрыгать ногой. Сколько раз дрыгнул — столько и насчитал единиц температуры! Один «дрыг» = 0.0625°С. т.е. нам нужно всего-то подключить одну ногу к МК, подать в нужный момент на него питание и посчитать сколько раз датчик дёрнет за нашу ногу. Как считать — думаю что тут уже каждый сам для себя придумает. Самый простой способ — прерывание на ноге. Способ посложнее — подсчет таймером. Согласитесь — просто до неприличия. Даже примеры коды приводить смысла нет.
Длинна проводников, которыми он может быть подключен к МК может достигать двух метров, тут конечно не сравнить с шиной 1 wire но это не сильно критический минус.

Единственный критический минус, который может оттолкнуть — это пока его цена. Колеблется она начиная от 1,5 вечнозеленых президентов и на китайских барахолках он пока не доступен. Но, видимо китайцы скоро наделают его клонов.
Как оказалось на терраэлектронике этот датчик дешевле далласа.

Ну и для тех кому лень лезть в даташит немного характеристик:

Основные характеристики:
Корпус: TO-92/LPG(2)
Тип датчика: Цифровой
Диапазон измеряемых температур: -50…150 С
Точность измерения ±: 0,5 С
Разрешение: 0,0625 С

UPD:
Для сравнения с ds18b20:
Только включил и через 54мс получаем температуру, ничего не нужно отправлять, инициализировать и конфигурировать.
Время получения данных о температуре максимум 50мс. при 150 C, минимум 0мс при -50С.
Итого суммарное время получения макс. 104мс.
В далласе при двуногом подключении нужно выдерживать интервалы из даташита, для 12 бит это уже 750мс. + время на отправку команд для измерения и чтение данных.
Ну и разница в потреблении питания миллиамперы у далласа против микроампер у LMT01.
Так же, для некоторых специфических задач можно получать непрерывное измерение температуры со интервалом 104мс если не отключать датчик…

Минусы:
одна нога — один датчик.
не везде цена адекватная, но как писал выше — есть дешевле далласа.
короткий провод до датчика — не более 2 м. по даташиту.
протокол не совсем протокол, скорее тупое получение данных.

Простая схемка подключения. В ДШ есть и другие.

Полупроводниковые датчики температуры

Полупроводниковые датчики температуры

Полупроводниковые датчики температуры предназначены для измерения температуры от -55° до 150°С. В этот диапазон попадает огромное количество задач, как в бытовых, так и в промышленных приложениях. Благодаря высоким характеристикам, простоте применения и низкой стоимости полупроводниковые датчики температуры оказываются очень привлекательными для применения в микропроцессорных устройствах измерения и автоматики.

Принцип работы

Полупроводниковые датчики температуры

Физический принцип работы полупроводникового термометра основан на зависимости от температуры падения напряжения на p-n переходе, смещенном в прямом направлении. Данная зависимость близка к линейной, что позволяет создавать датчики, не требующие сложных схем коррекции. В качестве чувствительных элементов на практике используются диоды, либо транзисторы, включенные по схеме диода. Для проведения измерений, необходимо протекание стабильного тока через чувствительный элемент. Выходным сигналом является падение напряжения на датчике.

Схемы, использующие одиночный p-n переход, отличаются низкой точностью и большим разбросом параметров, связанных с особенностями изготовления и работы полупроводниковых приборов. Поэтому промышленность выпускает множество типов специализированных датчиков, имеющих в своей основе вышеописанный принцип, но дополнительно оснащенных цепями, устраняющими негативные особенности и значительно расширяющими функционал приборов.

Аналоговые полупроводниковые датчики

Типовая схема включения полупроводникового термометра с коррекцией 

Простые аналоговые полупроводниковые датчики практически в чистом виде реализуют идею измерения температуры, с помощью определения падения напряжения на p-n переходе. Для устранения всех отрицательных явлений, связанных с работой такого перехода, используется специальная схема, содержащая в своем составе два чувствительных элемента (транзистора) с различными характеристиками. Выходной сигнал формируется как разность падений напряжения на каждом чувствительном элементе. При вычитании значительно сокращаются негативные моменты. Дальнейшее повышение точности измерения осуществляется калибровкой датчика с помощью внешних цепей.


 Основной характеристикой датчика температуры является точность измерений. Для полупроводниковых моделей она колеблется от ±1°С до ±3.5°С. Самые точные модели редко обеспечивают точность лучше чем ±0.5°С. При этом данный параметр сильно зависит от температуры. Как правило, в суженном диапазоне от  -25° до 100°С точность в полтора раза выше, чем в полном диапазоне измерений -40°С до +125°С. Большинство аналоговых датчиков температуры, иначе называемых интегральными датчиками, содержит три вывода и включается по схеме диода. Третий вывод обычно используется для целей калибровки. Выходной сигнал датчика представляет собой напряжение, пропорциональное температуре. Величина изменения напряжения различна и, например, составляет 10мВ/градус. Для точного определения значения температуры необходимо знать падение напряжения при каком-либо ее фиксированном значении. Обычно в качестве такового используется значение начала диапазона измерений либо 0°С.

Примеры аналоговых датчиков температуры

Модель Диапазон измерений Точность Температурный коэффициент Производитель
LM35 от -55°С до +150°С  ±2°С  10 мВ/°С   National Semiconductor
LM135 от -50°С до +150°С  ±1.5°С  10 мВ/°С   National Semiconductor
LM335 от -40°С до +100°С  ±2°С  10 мВ/°С   National Semiconductor 
TC1047 от -40°С до +125°С  ±2°С  10 мВ/°С   Microchip
TMP37  от -40°С до +125°С  ±2°С 20 мВ/°С   Analog Devices

Кроме простых датчиков, производители предлагают также готовые интегральные системы термостатирования. Подобные микросхемы, например LM56 от National Semiconductor, оснащены выходом для управления нагрузкой. Температура срабатывания выхода задается в виде заводской установки, либо с помощью навесных элементов, подключаемых к специальным входам задания. Невысокое качество регулирования, обеспечиваемое данными элементами, компенсируется их простотой использования и сверхнизкой стоимостью готовых систем управления.

Полупроводниковые датчики с цифровым выходом

Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики можно встретить в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Также использование стандартных интерфейсов позволяет интегрировать датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей, что обусловило огромную популярность применения этих элементов в любительской практике и мелкосерийном производстве.

Примеры датчиков температуры с цифровым выходом 

Модель 

Диапазон

Точность

Разрешение

Интерфейс

Производитель 

 LM75

от -55°С до +125°С

±3°С

 9 бит

I2C 

 National Semiconductor

LM76 

от -55°С до +150°С

±1.5°С 

13 бит 

 I2C

 National Semiconductor

DS18B20

от -55°С до +125°С

±2°С 

9-12 бит 

1-Wire 

MAXIM 

DS1621

от -55°С до +125°С

±1°С 

 9 бит

 I2C

 MAXIM

DS1722 

от -55°С до +120°С

±2°С 

 12 бит

SPI 

Dallas Semiconduction

MCP9800

от -55°С до +125°С

±3°С 

12 бит 

 I2C

 Microchip

MSP9808 

от -40°С до +125°С

±1°С 

12 бит 

 I2C

 Microchip

ADT7320 

от -40°С до +150°С

±0.25°С 

 16 бит

 SPI

Analog Devices

Характеристики интегральных датчиков температуры с цифровым выходом в целом соответствуют характеристикам аналоговых вариантов. При этом в виду применения АЦП, добавляется такой параметр, как разрешение выходных данных. Сегодня можно встретить датчики с разрешением от 9 до 16 бит. Часто данный параметр указывается в виде температуры, определяемой младшим разрядом АЦП. Например, для высокоточного датчика LM76, предоставляющего пользователю 13-битные данные, он составляет 0.0625°С. Не следует путать этот параметр с точностью измерений, так как вес младшего разряда АЦП определяет только точность работы аналогово-цифрового преобразователя, без учета характеристики датчика. Для того же LM76, заявленная точность измерений не превышает ±1°С.

Типовая схема использования цифрового датчика температуры

Кроме непосредственного измерения температуры, многие цифровые датчики обладают дополнительными функциональными возможностями. Наибольшее распространение получил дополнительный выход термостатирования, позволяющий использовать микросхемы без внешних устройств управления. Также можно встретить входы подключения дополнительных внешних температурных датчиков и дискретные порты ввода вывода. 

Другие статьи:

Датчики температуры. Общий обзор.

Термометр на микроконтроллере PIC12F629

Терморегулятор на микроконтроллере PIC16F676

You have no rights to post comments

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *