Цоколевки Отечественных Транзисторов
При подборе аналогов деталей по схемам, всегда возникает вопрос правильного их монтажа на печатной плате. Цоколевка (распиновка) транзисторов. Вот сейчас хочу описать и выложить на одной странице цоколевки (распиновки) всех отечественных транзисторов, чтобы Вас вопрос расположения ножек транзисторов не вводило в заблуждение
.2Т709А2, 2Т709Б2, 2Т709В2, 2Т716А1, 2Т716Б1, 2Т716В1, КТ812А, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ805АМ, КТ805БМ, КТ805ВМ, КТ805ИМ, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ835А, КТ835Б, КТ837А, КТ837Б, КТ837В, КТ837Г, КТ837Д, КТ837Е, КТ837Ж, КТ837И, КТ837К, КТ837Л, КТ837М, КТ837Н, КТ837П, КТ837Р, КТ837С, КТ837Т, КТ837У, КТ837Ф
КТ858А, КТ859А, КТ812А, КТ829А, КТ829Б, КТ829В, КТ829Г, КТ850А, КТ850Б, КТ850В, КТ851А, КТ851Б, КТ851В, КТ852А, КТ852Б, КТ852В, КТ852Г, КТ853А, КТ853Б, КТ853В, КТ853Г, КТ854А, КТ854Б, КТ855А, КТ855Б, КТ855В, КТ857А, КТ863А, КТ899А, КТ8108А, КТ8108Б, КТ8109А, КТ8109Б, КТ8110А, КТ8110Б, КТ8110В, КТ8140А, КТ8116А, КТ8116Б, КТ8116В, КТ8118А, КТ8120А, КТ8121А, КТ8121Б, КТ8123А, КТ8124А, КТ8124Б, КТ8124В
КТ117А, КТ117Б, КТ117В, КТ117Г
КТ201А, КТ201Б, КТ201В, КТ201Г, КТ201Д, КТ203А, КТ203Б, КТ203В, КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е, КТ3102Ж, КТ3102И, КТ3102К, КТ3108А, КТ3108Б, КТ3108В, КТ3117А, КТ3117Б, КТ3127А, КТ3128А, КТ313А, КТ313Б, КТ316А, КТ316Б, КТ316В, КТ316Г, КТ316Д, КТ342А, КТ342Б, КТ342В, КТ347А, КТ347Б, КТ347В, КТ349А(исполнение1), КТ349Б(исполнение1), КТ349В(исполнение1), КТ363А, КТ363Б
КТ208А, КТ208Б , КТ208В , КТ208Г , КТ208Д , КТ208Е , КТ208Ж , КТ208И , КТ208К , КТ208Л , КТ208М , КТ339А , КТ339Б , КТ339В , КТ339Г , КТ339Д , КТ501А , КТ501Б , КТ501В , КТ501Г , КТ501Д , КТ501Е , КТ501Ж , КТ501И , КТ501К , КТ501Л , КТ501М
КТ201АМ, КТ201БМ, КТ201ВМ, КТ201ГМ, КТ201ДМ, КТ203АМ, КТ203БМ, КТ203ВМ, КТ208А1, КТ208Б1, КТ208В1, КТ208Г1, КТ208Д1, КТ208Е1, КТ208Ж1, КТ208И1, КТ208К1, КТ208Л1, КТ208М1, КТ209А, КТ209Б, КТ209Б1, КТ209В, КТ209В1, КТ209В2, КТ209Г, КТ209Д, КТ209Е, КТ209Ж, КТ209И, КТ209К, КТ209Л, КТ209М, КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е, КТ503А, КТ503Б, КТ503В, КТ503Г, КТ503Д, КТ503Е, КТ306АМ, КТ306БМ, КТ306ВМ, КТ306ГМ, КТ306ДМ, КТ3102АМ, КТ3102БМ, КТ3102ВМ, КТ3102ГМ, КТ3102ДМ, КТ3102ЕМ, КТ3102ЖМ, КТ3102ИМ, КТ3102КМ, КТ3107А, КТ3107Б, КТ3107В, КТ3107Г, КТ3107Д, КТ3107Е, КТ3107Ж, КТ3107И, КТ3107К, КТ3107Л, КТ3117А1, КТ3126А, КТ3126Б, КТ3128А1, КТ313АМ, КТ313БМ, КТ316АМ, КТ316БМ, КТ316ВМ, КТ316ГМ, КТ316ДМ, КТ349А(исполнение2), КТ349Б(исполнение2), КТ349В(исполнение2), КТ342АМ, КТ342БМ, КТ342ВМ, КТ342ГМ, КТ342ДМ, КТ345А, КТ345Б, КТ345В, КТ350А, КТ351А, КТ351Б, КТ352А, КТ352Б, КТ355АМ, КТ363АМ, КТ363БМ, КТ368АМ, КТ368БМ
КТ306А, КТ306Б, КТ306В, КТ306Г, КТ306Д
КТ601АМ, КТ601АМ, КТ602АМ, КТ602БМ, КТ814А, КТ814Б, КТ814В, КТ814Г, КТ815А, КТ815Б, КТ815В, КТ815Г, КТ816А, КТ816А2, КТ816Б, КТ816В, КТ816Г, КТ817А, КТ817Б, КТ817Б2, КТ817В, КТ817Г, КТ817Г2, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ8130А, КТ8130Б, КТ8130В, КТ8131А, КТ8131Б, КТ8131В, КТ940А, КТ940Б, КТ940В, КТ961А, КТ961Б, КТ961В, КТ969А, КТ972А, КТ972Б, КТ973А, КТ973Б, КТ997А, КТ997Б, КТ9115А
КТ3101А-2, КТ3115А-2, КТ3115В-2, КТ3115Г-2, КТ3123А-2, КТ3123Б-2, КТ3123В-2, КТ372А, КТ372Б, КТ372В, КТ391А-2, КТ391Б-2, КТ391В-2
КТ3109А, КТ3109Б, КТ3109В
КТ312А, КТ312Б, КТ312В, КТ325А, КТ325Б, КТ325В
КТ3120А, КТ371А, КТ382А, КТ382АМ, КТ382Б, КТ382БМ
КТ3129А-9, КТ3129Б-9, КТ3129В-9, КТ3129Г-9, КТ3129Д-9, КТ3130А-9, КТ3130Б-9, КТ3130В-9, КТ3130Г-9, КТ3130Д-9, КТ3130Е-9, КТ3130Ж-9, КТ3168А-9
КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Г1, КТ315Д, КТ315Е, КТ315Ж, КТ315И, КТ315Н, КТ315Р, КТ361А, КТ361Б, КТ361В, КТ361Г, КТ361Г1, КТ361Д, КТ361Е, КТ361Ж, КТ361И, КТ361К
КТ3157А, КТ325АМ, КТ325БМ, КТ325ВМ, КТ339АМ
КТ368А, КТ368Б, КТ399А, КТ399АМ
КТ504А, КТ504Б, КТ504В, КТ505А, КТ505Б, КТ506А, КТ506Б
КТ601А
КТ602А, КТ602Б, КТ602В, КТ602Г, КТ801А, КТ801Б
КТ807А, КТ807Б
КТ872А, КТ872Б, КТ872В, КТ8111А, КТ8111Б, КТ8111В, КТ8114А, КТ8114Б, КТ8114В
КТ879А, КТ879Б
КТ886А1, КТ886Б1, КТ8127А1, КТ8127Б1, КТ8127В1
КТ890А, КТ890Б, КТ890В, КТ896А, КТ896Б, КТ896В, КТ898А, КТ898Б, КТ8101А, КТ8101Б, КТ8102А, КТ8102Б, КТ8106А, КТ8106Б, КТ8117А
КТ898А1, КТ898Б1
КТ999А
ГТ313А, ГТ313Б, ГТ313В
ГТ328А, ГТ328Б, ГТ328В, ГТ346А, ГТ346Б, ГТ346В
ГТ906А
ГТ905А, ГТ905Б, ГТ906АМ
2Т713А, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ818АМ, КТ818БМ, КТ818ВМ, КТ818ГМ, 2Т818А, 2Т818Б, 2Т818В, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ710А, КТ808АМ, КТ808БМ, КТ808ВМ, КТ808ГМ, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ826А, КТ826Б, КТ826В, КТ827А, КТ827Б, КТ827В, КТ828А, КТ828Б, КТ834А, КТ834Б, КТ834В, КТ838А, КТ839А, КТ840А, КТ840Б, КТ841А, КТ841Б, КТ841В, КТ846А, КТ846Б, КТ846В, КТ847А, КТ848А, КТ8127А, КТ8127Б, КТ8127В, КТ878А, КТ878Б, КТ878В, КТ892А, КТ892Б, КТ892В, КТ897А, КТ897Б, КТ8104А, КТ8105А, КТ8107А, КТ8107Б, КТ8107В, КТ8129А, КТ945А
Если все же у меня получился не полный список цоколевки (распиновки) транзисторов, то прошу это указать в комментариях к данному посту, или если вы заметите какие-либо ошибки, отклонения описания цоколевки (распиновки) транзисторов.
SMD ТРАНЗИСТОРЫ
Привет друзья и читатели сайта «РАДИОСХЕМЫ», продолжаем вместе с вами знакомиться с современными SMD радиодеталями. Сегодняшний обзор — обзор SMD транзисторов, которые вы наверно уже видели в современных различных электронных устройствах.
Транзисторы в SMD корпусе, очень удобны, особенно где каждый миллиметр платы важен. Представьте, как бы изменился мобильный телефон (плата которого полностью из SMD деталей), если бы там использовали обычные выводные DIP детали.
Выше фото SMD транзистора на фоне обычного, в TO 92.
Это фото различных СМД транзисторов, справа — обычный в TO92. Как правило, цоколёвка всех таких транзисторов одинакова — это тоже огромный плюс.
Название различных корпусов, DIP и SMD. Фото можно увеличить.
Как сделаны планарные транзисторы, вы можете увидеть ниже.
У планарных, как и у обычных транзисторов, есть множество видов, составные (Дарлингтон), полевые, биполярные и IGBT (биполярные транзисторы с изолированным затвором).
Обратите внимание, на платах и схемах транзисторы маркируются «Q» и «VT» (так должно быть, хотя некоторые производители брезгуют этим), зачем я это пишу? Часто в один и тот-же корпус, изготовитель может впихнуть всё, что ему хочется — от диода и до линейного стабилизатора напряжения (78хх), даже различных датчиков. Ещё существует внутренняя маркеровка завода, к примеру детали фирмы Epcos. На такие детали очень трудно найти даташит, а иногда его вовсе нет в интернете.
Пайка
Паять такие транзисторы не трудно, особенно ускоряет и делает более легким, процесс пайки различных SMD деталек — микроскоп, пинцет (просто незаменимые вещи) различные флюсы и паяльные жиры с BGA-пастой. Сначала лудим контактные площадки нашего транзистора и платы (не перегрейте).
Затем позиционируем наш транзистор, я делаю это пинцетом.
Припаиваем любую из ножек. Отпускаем пинцет, и позиционируем нашу детальку как можно ровнее, для отличного вида, так сказать 🙂
Припаиваем оставшиеся «ножки» радиоэлемента.
И вот наш транзистор крепко и хорошо припаян к плате. В следующих статьях, буду писать об этом всём подробнее (флюсы, пинцеты, пайка и т.д). А по поводу обозначений и цоколёвок разных типов транзисторов — на форуме есть несколько очень полезных ссылок. Статью написал BIOS.
Форум по планарным деталям
Обсудить статью SMD ТРАНЗИСТОРЫ
Транзистор. Обозначение на схемах и внешний вид транзисторов.
Внешний вид и обозначение транзистора на схемах
На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.
Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.
Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.
Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.
Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.
Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).
Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.
Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.
Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.
Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.
На принципиальных схемах биполярные транзисторы обозначаются вот так.
Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.
Маленький совет.
Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.
Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).
Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.
Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.
Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.
А вот это уже современный импорт.
Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.
В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.
Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 900) к центральной черте – это вывод базы. А тот, что остался – это коллектор.
Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.
Далее узнаем, как найти транзисторы на печатной плате электронного прибора.
В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.
В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.
Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.
Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT
Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).
Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).
Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Обозначение на корпусе | Тип транзистора |
«15» на корпусе SOT-23 | MMBT3960(Datasheet «Motorola») |
«1A» на корпусе SOT-23 | BC846A(Datasheet «Taitron») |
«1B» на корпусе SOT-23 | BC846B(Datasheet «Taitron») |
«1C» на корпусе SOT-23 | MMBTA20LT(Datasheet «Motorola») |
«1D» на корпусе SOT-23 | BC846(Datasheet «NXP») |
«1E» на корпусе SOT-23 | BC847A(Datasheet «Taitron») |
«1F» на корпусе SOT-23 | BC847B(Datasheet «Taitron») |
«1G» на корпусе SOT-23 | BC847C(Datasheet «Taitron») |
«1H» на корпусе SOT-23 | BC847(Datasheet «NXP») |
«1N» на корпусе SOT-416 | BC847T(Datasheet «NXP») |
«1J» на корпусе SOT-23 | BC848A(Datasheet «Taitron») |
«1K» на корпусе SOT-23 | BC848B(Datasheet «Taitron») |
«1L» на корпусе SOT-23 | BC848C(Datasheet «Taitron») |
«1M» на корпусе SOT-416 | BC846T(Datasheet «NXP») |
«1M» на корпусе SOT-323 | BC848W(Datasheet «NXP») |
«1M» на корпусе SOT-23 | MMBTA13(Datasheet «Motorola») |
«1N» на корпусе SOT-23 | MMBTA414(Datasheet «Motorola») |
«1V» на корпусе SOT-23 | MMBT6427(Datasheet «Motorola») |
«1P» на корпусе SOT-23 | FMMT2222A,KST2222A,MMBT2222A. |
«1T» на корпусе SOT-23 | MMBT3960A(Datasheet «Motorola») |
«1Y» на корпусе SOT-23 | MMBT3903(Datasheet «Samsung») |
«2A» на корпусе SOT-23 | FMMBT3906,KST3906,MMBT3906 |
«2B» на корпусе SOT-23 | BC849B(Datasheet «G.S.») |
«2C» на корпусе SOT-23 | BC849C(Datasheet «G.S.») |
«2E» на корпусе SOT-23 | FMMTA93,KST93 |
«2F» на корпусе SOT-23 | FMMT2907A,KST2907A,MMBT2907AT |
«2G» на корпусе SOT-23 | FMMTA56,KST56 |
«2H» на корпусе SOT-23 | MMBTA55(Datasheet «Taitron») |
«2J» на корпусе SOT-23 | MMBT3640(Datasheet «Fairchild») |
«2K» на корпусе SOT-23 | FMMT4402(Datasheet «Zetex») |
«2M» на корпусе SOT-23 | MMBT404(Datasheet «Motorola») |
«2N» на корпусе SOT-23 | MMBT404A(Datasheet «Motorola») |
«2T» на корпусе SOT-23 | KST4403,MMBT4403 |
«2V» на корпусе SOT-23 | MMBTA64(Datasheet «Motorola») |
«2U» на корпусе SOT-23 | MMBTA63(Datasheet «Motorola») |
«2X» на корпусе SOT-23 | MMBT4401,KST4401 |
«3A» на корпусе SOT-23 | MMBTh34(Datasheet «Motorola») |
«3B» на корпусе SOT-23 | MMBT918(Datasheet «Motorola») |
«3D» на корпусе SOT-23 | MMBTH81(Datasheet «Motorola») |
«3E» на корпусе SOT-23 | MMBTh20(Datasheet «Motorola») |
«3F» на корпусе SOT-23 | MMBT6543(Datasheet «Motorola») |
«3J-» на корпусе SOT-143B | BCV62A(Datasheet «NXP») |
«3K-» на корпусе SOT-23 | BC858B(Datasheet «NXP») |
«3L-» на корпусе SOT-143B | BCV62C(Datasheet «NXP») |
«3S» на корпусе SOT-23 | MMBT5551(Datasheet «Fairchild») |
«4As» на корпусе SOT-23 | BC859A(Datasheet «Siemens») |
«4Bs» на корпусе SOT-23 | BC859B(Datasheet «Siemens») |
«4Cs» на корпусе SOT-23 | BC859C(Datasheet «Siemens») |
«4J» на корпусе SOT-23 | FMMT38A(Datasheet «Zetex S.») |
«449» на корпусе SOT-23 | FMMT449(Datasheet «Diodes Inc.») |
«489» на корпусе SOT-23 | FMMT489(Datasheet «Diodes Inc.») |
«491» на корпусе SOT-23 | FMMT491(Datasheet «Diodes Inc.») |
«493» на корпусе SOT-23 | FMMT493(Datasheet «Diodes Inc.») |
«5A» на корпусе SOT-23 | BC807-16(Datasheet «General Sem.») |
«5B» на корпусе SOT-23 | BC807-25(Datasheet «General Sem.») |
«5C» на корпусе SOT-23 | BC807-40(Datasheet «General Sem.») |
«5E» на корпусе SOT-23 | BC808-16(Datasheet «General Sem.») |
«5F» на корпусе SOT-23 | BC808-25(Datasheet «General Sem.») |
«5G» на корпусе SOT-23 | BC808-40(Datasheet «General Sem.») |
«5J» на корпусе SOT-23 | FMMT38B(Datasheet «Zetex S.») |
«549» на корпусе SOT-23 | FMMT549(Datasheet «Fairchild») |
«589» на корпусе SOT-23 | FMMT589(Datasheet «Fairchild») |
«591» на корпусе SOT-23 | FMMT591(Datasheet «Fairchild») |
«593» на корпусе SOT-23 | FMMT593(Datasheet «Fairchild») |
«6A-«,»6Ap»,»6At» на корпусе SOT-23 | BC817-16(Datasheet «NXP») |
«6B-«,»6Bp»,»6Bt» на корпусе SOT-23 | BC817-25(Datasheet «NXP») |
«6C-«,»6Cp»,»6Ct» на корпусе SOT-23 | BC817-40(Datasheet «NXP») |
«6E-«,»6Et»,»6Et» на корпусе SOT-23 | BC818-16(Datasheet «NXP») |
«6F-«,»6Ft»,»6Ft» на корпусе SOT-23 | BC818-25(Datasheet «NXP») |
«6G-«,»6Gt»,»6Gt» на корпусе SOT-23 | BC818-40(Datasheet «NXP») |
«7J» на корпусе SOT-23 | FMMT38C(Datasheet «Zetex S.») |
«9EA» на корпусе SOT-23 | BC860A(Datasheet «Fairchild») |
«9EB» на корпусе SOT-23 | BC860B(Datasheet «Fairchild») |
«9EC» на корпусе SOT-23 | BC860C(Datasheet «Fairchild») |
«AA» на корпусе SOT-523F | 2N7002T(Datasheet «Fairchild») |
«AA» на корпусе SOT-23 | BCW60A(Datasheet «Diotec Sem.») |
«AB» на корпусе SOT-23 | BCW60B(Datasheet «Diotec Sem.») |
«AC» на корпусе SOT-23 | BCW60C(Datasheet «Diotec Sem.») |
«AD» на корпусе SOT-23 | BCW60D(Datasheet «Diotec Sem.») |
«AE» на корпусе SOT-89 | BCX52(Datasheet «NXP») |
«AG» на корпусе SOT-23 | BCX70G(Datasheet «Central Sem.Corp.») |
«AH» на корпусе SOT-23 | BCX70H(Datasheet «Central Sem.Corp.») |
«AJ» на корпусе SOT-23 | BCX70J(Datasheet «Central Sem.Corp.») |
«AK» на корпусе SOT-23 | BCX70K(Datasheet «Central Sem.Corp.») |
«AL» на корпусе SOT-89 | BCX53-16(Datasheet «Zetex») |
«AM» на корпусе SOT-89 | BCX52-16(Datasheet «Zetex») |
«AS1» на корпусе SOT-89 | BST50(Datasheet «Philips») |
«B2» на корпусе SOT-23 | BSV52(Datasheet «Diotec Sem.») |
«BA» на корпусе SOT-23 | BCW61A(Datasheet «Fairchild») |
«BA» на корпусе SOT-23 | 2SA1015LT1(Datasheet «Tip») |
«BA» на корпусе SOT-23 | 2SA1015(Datasheet «BL Galaxy El.») |
«BB» на корпусе SOT-23 | BCW61B(Datasheet «Fairchild») |
«BC» на корпусе SOT-23 | BCW61C(Datasheet «Fairchild») |
«BD» на корпусе SOT-23 | BCW61D(Datasheet «Fairchild») |
«BE» на корпусе SOT-89 | BCX55(Datasheet » BL Galaxy El.») |
«BG» на корпусе SOT-89 | BCX55-10(Datasheet » BL Galaxy El.») |
«BH» на корпусе SOT-89 | BCX56(Datasheet » BL Galaxy El.») |
«BJ» на корпусе SOT-23 | BCX71J(Datasheet «Diotec Sem.») |
«BK» на корпусе SOT-23 | BCX71K(Datasheet «Diotec Sem.») |
«BH» на корпусе SOT-23 | BCX71H(Datasheet «Diotec Sem.») |
«BG» на корпусе SOT-23 | BCX71G(Datasheet «Diotec Sem.») |
«BR2» на корпусе SOT-89 | BSR31(Datasheet «Zetex») |
«C1» на корпусе SOT-23 | BCW29(Datasheet «Diotec Sem.») |
«C2» на корпусе SOT-23 | BCW30(Datasheet «Diotec Sem.») |
«C5» на корпусе SOT-23 | MMBA811C5(Datasheet «Samsung Sem.») |
«C6» на корпусе SOT-23 | MMBA811C6(Datasheet «Samsung Sem.») |
«C7» на корпусе SOT-23 | BCF29(Datasheet «Diotec Sem.») |
«C8» на корпусе SOT-23 | BCF30(Datasheet «Diotec Sem.») |
«CEs» на корпусе SOT-23 | BSS79B(Datasheet «Siemens») |
«CEC» на корпусе SOT-89 | BC869(Datasheet «Philips») |
«CFs» на корпусе SOT-23 | BSS79C(Datasheet «Siemens») |
«CHs» на корпусе SOT-23 | BSS80B(Datasheet «Infenion») |
«CJs» на корпусе SOT-23 | BSS80C(Datasheet «Infenion») |
«CMs» на корпусе SOT-23 | BSS82C(Datasheet «Infenion») |
«CLs» на корпусе SOT-23 | BSS82B(Datasheet «Infenion») |
«D1» на корпусе SOT-23 | BCW31(Datasheet «KEC») |
«D2» на корпусе SOT-23 | BCW32(Datasheet «KEC») |
«D3» на корпусе SOT-23 | BCW33(Datasheet «KEC») |
D6″ на корпусе SOT-23 | MMBC1622D6(Datasheet «Samsung Sem.») |
«D7t»,»D7p» на корпусе SOT-23 | BCF32(Datasheet «NXP Sem.») |
«D7» на корпусе SOT-23 | BCF32(Datasheet «Diotec Sem.») |
«D8» на корпусе SOT-23 | BCF33(Datasheet «Diotec Sem.») |
«DA» на корпусе SOT-23 | BCW67A(Datasheet «Central Sem. Corp.») |
«DB» на корпусе SOT-23 | BCW67B(Datasheet «Central Sem. Corp.») |
«DC» на корпусе SOT-23 | BCW67C(Datasheet «Central Sem. Corp.») |
«DF» на корпусе SOT-23 | BCW67F(Datasheet «Central Sem. Corp.») |
«DG» на корпусе SOT-23 | BCW67G(Datasheet «Central Sem. Corp.») |
«DH» на корпусе SOT-23 | BCW67H(Datasheet «Central Sem. Corp.») |
«E2p» на корпусе SOT-23 | BFS17A(Datasheet «Philips») |
«EA» на корпусе SOT-23 | BCW65A(Datasheet «Central Sem. Corp.») |
«EB» на корпусе SOT-23 | BCW65B(Datasheet «Central Sem. Corp.») |
«EC» на корпусе SOT-23 | BCW65C(Datasheet «Central Sem. Corp.») |
«EF» на корпусе SOT-23 | BCW65F(Datasheet «Central Sem. Corp.») |
«EG» на корпусе SOT-23 | BCW65G(Datasheet «Central Sem. Corp.») |
«EH» на корпусе SOT-23 | BCW65H(Datasheet «Central Sem. Corp.») |
«F1» на корпусе SOT-23 | MMBC1009F1(Datasheet «Samsung Sem.») |
«F3» на корпусе SOT-23 | MMBC1009F3(Datasheet «Samsung Sem.») |
«FA» на корпусе SOT-89 | BFQ17(Datasheet «Philips») |
«FDp»,»FDt»,»FDW» на корпусе SOT-23 | BCV26(Datasheet «Philips(NXP)») |
«FEp»,»FEt»,»FEW» на корпусе SOT-23 | BCV46(Datasheet «Philips(NXP)») |
«FFp»,»FFt»,»FFW» на корпусе SOT-23 | BCV27(Datasheet «Philips(NXP)») |
«FGp»,»FGt»,»FGW» на корпусе SOT-23 | BCV47(Datasheet «Philips(NXP)») |
«GFs» на корпусе SOT-23 | BFR92P(Datasheet «Infenion») |
«h2p»,»h2t»,»h2W» на корпусе SOT-23 | BCV69(Datasheet «Philips(NXP)») |
«h3p»,»h3t»,»h3W» на корпусе SOT-23 | BCV70(Datasheet «Philips(NXP)») |
«h4p»,»h4t» на корпусе SOT-23 | BCV89(Datasheet «Philips(NXP)») |
«H7p» на корпусе SOT-23 | BCF70 |
«K1» на корпусе SOT-23 | BCW71(Datasheet «Samsung Sem.») |
«K2» на корпусе SOT-23 | BCW72(Datasheet «Samsung Sem.») |
«K3p» на корпусе SOT-23 | BCW81(Datasheet «Philips(NXP)») |
«K1p»,»K1t» на корпусе SOT-23 | BCW71(Datasheet «Philips(NXP)») |
«K2p»,»K2t» на корпусе SOT-23 | BCW72(Datasheet «Philips(NXP)») |
«K7p»,»K7t» на корпусе SOT-23 | BCV71(Datasheet «Philips(NXP)») |
«K8p»,»K8t» на корпусе SOT-23 | BCV72(Datasheet «Philips(NXP)») |
«K9p» на корпусе SOT-23 | BCF81(Datasheet » Guangdong Kexin Ind.Co.Ltd») |
«L1» на корпусе SOT-23 | BSS65 |
«L2» на корпусе SOT-23 | BSS69(Datasheet «Zetex Sem.») |
«L3» на корпусе SOT-23 | BSS70(Datasheet «Zetex Sem.») |
«L4» на корпусе SOT-23 | 2SC1623L4(Datasheet «BL Galaxy El.») |
«L5» на корпусе SOT-23 | BSS65R |
«L6» на корпусе SOT-23 | BSS69R(Datasheet «Zetex Sem.») |
«L7» на корпусе SOT-23 | BSS70R(Datasheet «Zetex Sem.») |
«M3» на корпусе SOT-23 | MMBA812M3(Datasheet «Samsung Sem.») |
«M4» на корпусе SOT-23 | MMBA812M4(Datasheet «Samsung Sem.») |
«M5» на корпусе SOT-23 | MMBA812M5(Datasheet «Samsung Sem.») |
«M6» на корпусе SOT-23 | MMBA812M6(Datasheet «Samsung Sem.») |
«M6P» на корпусе SOT-23 | BSR58(Datasheet «Philips(NXP)») |
«M7» на корпусе SOT-23 | MMBA812M7(Datasheet «Samsung Sem.») |
«P1» на корпусе SOT-23 | BFR92(Datasheet «Vishay Telefunken») |
«P2» на корпусе SOT-23 | BFR92A(Datasheet «Vishay Telefunken») |
«P4» на корпусе SOT-23 | BFR92R(Datasheet «Vishay Telefunken») |
«P5» на корпусе SOT-23 | FMMT2369A(Datasheet «Zetex Sem.») |
«Q2» на корпусе SOT-23 | MMBC1321Q2(Datasheet «Motorola Sc.») |
«Q3» на корпусе SOT-23 | MMBC1321Q3(Datasheet «Motorola Sc.») |
«Q4» на корпусе SOT-23 | MMBC1321Q4(Datasheet «Motorola Sc.») |
«Q5» на корпусе SOT-23 | MMBC1321Q5(Datasheet «Motorola Sc.») |
«R1p» на корпусе SOT-23 | BFR93(Datasheet «Philips(NXP)») |
«R2p» на корпусе SOT-23 | BFR93A(Datasheet «Philips(NXP)») |
«s1A» на корпусах SOT-23,SOT-363,SC-74 | SMBT3904(Datasheet «Infineon») |
«s1D» на корпусе SOT-23 | SMBTA42(Datasheet «Infineon») |
«S2» на корпусе SOT-23 | MMBA813S2(Datasheet «Motorola Sc.») |
«s2A» на корпусе SOT-23 | SMBT3906(Datasheet «Infineon») |
«s2D» на корпусе SOT-23 | SMBTA92(Datasheet «Siemens Sem.») |
«s2F» на корпусе SOT-23 | SMBT2907A(Datasheet «Infineon») |
«S3» на корпусе SOT-23 | MMBA813S3(Datasheet «Motorola Sc.») |
«S4» на корпусе SOT-23 | MMBA813S4(Datasheet «Motorola Sc.») |
«T1″на корпусе SOT-23 | BCX17(Datasheet «Philips(NXP)») |
«T2″на корпусе SOT-23 | BCX18(Datasheet «Philips(NXP)») |
«T7″на корпусе SOT-23 | BSR15(Datasheet «Diotec Sem.») |
«T8″на корпусе SOT-23 | BSR16(Datasheet «Diotec Sem.») |
«U1p»,»U1t»,»U1W»на корпусе SOT-23 | BCX19(Datasheet «Philips(NXP)») |
«U2″на корпусе SOT-23 | BCX20(Datasheet «Diotec Sem.») |
«U7p»,»U7t»,»U7W»на корпусе SOT-23 | BSR13(Datasheet «Philips(NXP)») |
«U8p»,»U8t»,»U8W»на корпусе SOT-23 | BSR14(Datasheet «Philips(NXP)») |
«U92» на корпусе SOT-23 | BSR17A(Datasheet «Philips») |
«Z2V» на корпусе SOT-23 | FMMTA64(Datasheet «Zetex Sem.») |
«ZD» на корпусе SOT-23 | MMBT4125(Datasheet «Samsung Sem.») |
КТ315 характеристики транзистора, цоколевка и российские аналоги
Характеристики транзистора КТ315 – сделали его самым популярным и самый известным во времена СССР, изготовлялся в пластиковом корпусе по эпитаксиально-планарной технологии. По своему устройству является кремниевым, биполярным, NPN-транзистором, малой мощности и высокой частоты. Начал выпускаться в далеком 1967 г., а в уже 1968 г. на его основе стали производить первые электронные приборы.
С ростом современных технологий популярность этого транзистора начала резко таять. Однако на многих форумах молодые радиолюбители продолжают спорить со старожилами о качестве данного устройства и возможности его применения. Сравнения ведутся зачастую с современными зарубежными решениями. На наш взгляд такое сравнение некорректно. Несомненно, современные аналоги обгоняют кт315 по своим свойствам и параметрам. Однако стоит признать, что для своего времени он был действительно прорывным и технически совершенным.
Распиновка
В советское и перестроечное время производился в корпусе КТ-13, который никогда не использовался зарубежными производителями. Притом, что КТ315 рабочая лошадка советской радиопромышленности. В наши дни, его продолжают выпускать в корпусе КТ-26 (TO-92) и КТ-46А (SOT-23), а так же в ограниченных количествах в КТ-13. Посмотрите внимательней на фотографии цоколевки КТ315 в разных корпусах и на буквы обозначающие назначение его электродов.
Несмотря на внешние различия транзисторов, их распиновка совпадает. Так, если смотреть на маркировку любого из них, то электроды слева на право будут всегда иметь следующее назначение: эмиттер (Э), коллектор (К) и база (Б), соответственно. Исходя из этого, становится понятной аббревиатура из трех букв «ЭКБ», которая встречается на технических форумах.
Характеристики
Технические свойства этого биполярника на удивление хороши, даже по сегодняшним меркам. К сожалению, в даташит современного производителя КТ315, представлена только основная информация. В них не найти графиков, отражающих поведение устройство в различных условиях эксплуатации, которыми наполнены современные технические описания на другие подобные устройства от зарубежных производителей.
Максимальные характеристики
Максимальные значения допустимых электрических режимов эксплуатации КТ315 до сих пор впечатляют начинающих радиолюбителей. Например, максимальный ток коллектора может достигать уровня в 100 мА, а рабочая частота у некоторых экземпляров превышает заявленные 250 МГц. Его более дорогие современники из серии КТ2xx/3xx, даже имея металлический корпус, не могли похвастаться такими показателями. КТ315 был долгое время своеобразным техническим лидером, пока ему на смену не пришёл усовершенствованный КТ3102. Рассмотрим максимально допустимые электрические режимы эксплуатации КТ315, в корпусе ТО-92, белорусского ОАО «Интеграл». В конце обозначения таких приборов присутствует цифра «1».
Основные электрические параметры
Будьте внимательны, несмотря на свои достаточно хорошие характеристики, КТ315 не может конкурировать с современными устройствами по некоторым параметрам. Так у современной серии КТ315, как и 50 лет назад, относительно небольшой диапазон рабочих температур от — 45 до + 100°C. А коэффициент шума (КШ) достигает 40 Дб, что уже много для современного устройства, предназначенного для усиления в низкочастотных трактах.
Классификация
Кроме основных параметров, в техническом описании можно найти распределение устройств по группам. Таблица классификации дает представление о параметрах всей серии КТ315. Используя её можно подобрать нужное устройство, путем сравнения основных характеристик всей серии.
Комплементарная пара
У КТ315 имеется комплементарная пара – КТ361. Эти устройства довольно часто применялись вместе, особенно в бестрансформаторных двухтактных схемах. Совместное применение данной пары безусловно вошло в историю российской электроники.
Историческая справка
Созданию первого транзистора по планарной технологии способствовали знания и опыт, полученные СССР при разработке интегральных микросхем. Их разработка в 60-е годы велась в НИИ «Пульсар», НИИ-35 и различных опытно-конструкторских бюро на предприятиях советской промышленности. В 1962 году в НИИ «Пульсар» перешли на планарную кремневую технологию, которая в последующем дала жизнь КТ315.
В 1962 году, под руководством инженера Осокина Ю.Н., были созданы первые советские германиевые микросхемы Р12–2 (Рижский завод полупроводниковых приборов). Эти микросхемы были своеобразным ответом СССР на первые подобные устройства появившиеся в США у компании Texas Instruments.
Небольшой временной период от разработки до серийного выпуска этого устройства, позволяет судить о высоком уровне развития электронной промышленности СССР в те времена. Судите сами, на сколько быстро и оперативно это было сделано. В 1966 г. министр энергетической промышленности Шокин А.И. узнал о появлении в США технологии промышленного изготовления транзисторов по планарной технологии. Уже в 1967 г. Фрязинский завод полупроводниковых приборов так же начинает выпускать первый в СССР высокочастотник в пластиковом корпусе, по аналогичной технологии – КТ315.
В 1968 г. начался выпуск первого электронного калькулятора — «Электроника-68», в котором насчитывалось около 400 транзисторов данного вида. А к 1973 он стал основой для разработки более 20 подобных полупроводниковых устройств. Примерно до начала 90-х годов КТ315 оснащалась почти вся отечественная электроника, так как, несмотря на свою дешевизну, он получился весьма надежным и технологичным. В настоящее время, в мире насчитывается более 7 миллиардов этих транзисторов. Они были выпущены не только в нашей стране, но и за рубежом по государственной лицензии от СССР.
Аналоги
Зарубежные аналоги КТ315, с похожими параметрами являются: BC547, 2SC9014, 2N3904, PN2222. Российской заменой можно считать усовершенствованный КТ3102 (ТО-92), но он имеет другую цоколевку. Зарубежных аналогов в корпусе КТ-13 в настоящее время не существует. Для министерства обороны СССР выпускались идентичные устройства в метало-стеклянных корпусах с маркировкой 2Т312, 2Т316.
Маркировка
По маркировке кт315 можно точно понять, что перед нами именно он, рассмотрим его в корпусе КТ13. Он имеет цифробуквенное обозначение и может отличается от своих собратьев цветом. Чаще всего встречается в оранжевом исполнении. В правом верхнем углу корпуса размещен знак завода-изготовителя, а в левом группа коэффициента усиления. Под условными обозначениями группы и предприятия-изготовителя указана дата выпуска. Вот их фотографии во всем цветовом разнообразии.
Устройства в таком исполнении до 1986 года имели золоченные контакты. После 1986 года количество содержания драгметаллов в них значительно снизилось. А в современных устройствах его практически нет. Усовершенствованный KT315 выпускается в корпусах для дырочного КТ-26 (TO-92) и поверхностного монтажа КТ-46А (SOT-23). На фотографии пример такого устройства — КТ315Г1 (TO-92).
Цифра «1», в конце указывает на современный КТ315(TO-92), а предпоследняя буква «Г» на группу, к которой относится транзистор из этой серии. На основе значений параметров в группе, можно определить его основное назначение. Например, КТ315Н1 использовался ранее в цветных телевизорах, а KT315P и КТ315Р1 применялись в видеомагнитофонах «Электроника ВМ».
Схема мультивибратора
Этот транзистор до сих пор применяется в учебных целях в различных радиолюбительских кружках. В сети интернет представлено множество схем, собранных на его основе. Наиболее популярная у начинающих радиолюбителей схема мультивибратора на кт315.
Проверка мультиметром
С помощью мультиметра можно проверить кт315, да и собственно любой полупроводниковый триод в два этапа. На первом этапе надо посмотреть состояние p-n переходов между базой и другими выводами. Как известно, p-n переходы у транзистора представляют собой два диода. Для их проверки надо установить на мультиметре режим измерения для диодов.
Далее приложите положительный щуп «+» мультиметра к базе, а отрицательны «-» на любой из электродов. Если переходы рабочие, то падение напряжения на них должно быть в пределах 500-700 милливольт. При подключения тестера по другому, когда отрицательный щуп установлен на базе, на экране мультиметра должна отображается единица. Единица указывает на бесконечно большое сопротивление перехода. Если эти условия не выполняются, то транзистор не проходит первый этап проверки и считается не исправным.
Падение напряжения на переходе база-эммитер должно быть больше чем на базе-коллектор. Обычно так определяют его контакты.
На втором этапе проверяется проводимость между выводами коллектора и эммитера. Щупы прикладываются разными способами между этими электродами, при этом на мультиметре должна отображаться единица. Если это не так –полупроводниковый прибор не исправен.
Нестандартное применение
А вот пример нестандартного применения нашего героя. На одном из технических форумов выложена интересная поделка из радиодеталей. Таким изящным образом радиолюбители продлевают жизнь давно вышедшим из строя, но дорогим сердцу радиодеталям.
Производители
В настоящее время производство данного транзистора значительно снизилось. Многие предприятия больше его не выпускают, в связи растущим применением в электронике более современных решений. Небольшими партиями транзистор КТ315 иногда впускается в корпусе КТ-13 компанией СКБ «Элькор» в Республике Кабардино-Балкария г. Нальчик. Белорусский конкурент ОАО «Интеграл» (холдинг завод «Транзистор») производит его в корпусе ТО-92. Скачать полную версию datasheet на этот прибор в формате pdf можно по ссылке.
Как определить выводы транзистора, цоколевка
Как определить выводы транзистора мультиметром
Иногда бывают ситуации, когда необходимо определить выводы транзистора, где находится база, коллектор и эмиттер, а справочной информации об этом под рукой нет. Но здесь нет ничего сложного если под рукой есть мультиметр или тестер.
Итак, как определить выводы у транзистора, базу, коллектор и эмиттер мультиметром?
В первую очередь, нужно определить вывод базы. Для этого плюсовым (красным) щупом мультиметра касаемся, одного из выводов транзистора, например левого, а минусовым (черным) касаемся остальных выводов. При этом смотрим, какую величину сопротивления показывает мультиметр. Затем касаемся плюсовым среднего вывода, а минусовым левого и правого. Продолжаем менять местами щупы до тех пор пока не найдем такое положение щупов, при котором касаясь щупом одного из выводов, а другим двух остальных, мультиметр будет показывать некоторое сопротивление.
Например на фотографии видно, что касаясь плюсовым щупом среднего вывода, а минусовым левого и правого, мультиметр показывает сопротивление переходов.
Отсюда делаем вывод, от то базой данного транзистора является средний вывод.
Теперь анализируя значение сопротивлений переходов нетрудно определить где у транзистора находится эмиттер. Дело в том, что значения сопротивлений база — эмиттер и база — коллектор неодинаковое. У перехода база — эмиттер это значение будет больше. На фотографии видно, что между базой (средний вывод) и правым выводом сопротивление перехода больше, значит это и есть эмиттер.
У транзисторов имеющих теплоотвод для установки на радиатор, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Зная расположение коллектора, базу и эмиттер определить будет и вовсе легко.
Отсюда можно определить, что это за транзистор (его структуру), p-n-p (прямой) или n-p-n (обратный). База определилась плюсовым выводом
n-p-n обратный транзистор
(красным), это соответствует n-p-n обратному транзистору.
p-n-p прямой транзистор
Если база определилась минусовым щупом, то это p-n-p транзистор. Рис. выше.
data-matched-content-rows-num=»4,8″ data-matched-content-columns-num=»1,4″ data-matched-content-ui-type=»image_stacked» data-ad-format=»autorelaxed»>
описание, типы, устройство, маркировка, применение.
В этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/
Что такое транзистор.
Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.
В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.
Биполярный (обычный) транзистор
Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.
Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).
Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.
Устройство и структура.
Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.
Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.
Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.
Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.
Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.
Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.
Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).
Изготовление транзисторов.
Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.
Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.
В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.
- Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
- Второй элемент — буква Т — начальная буква слова «транзистор».
- Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
- Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.
Вот некоторые примеры расшифровки обозначений по этой системе :
ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;
ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;
КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.
Применение транзисторов
Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.
Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.
Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.
Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.
Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.
КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.
Рис. 4 Внешний вид некоторых транзисторов.
Советую просмотреть обучающий фильм:
Схемы включения и основные параметры биполярных транзисторов
Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).
- Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.
- Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
- Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.
Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.
- Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
- Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
- Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.
При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.
Полевой транзистор
В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).
И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.
Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.
Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.
В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.
Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).
Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.
Кодовая и цветовая маркировка транзисторов
Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.
Рис. 1
Рис. 2
Рис. 3
Рис. 4
Рис. 5 — КТ315, КТ361
И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора