Что такое трансформатор напряжения и для чего он нужен: Что такое трансформатор напряжения и для чего он нужен – Трансформатор — Википедия

Что такое трансформатор напряжения и для чего он нужен

Содержание:

Понятие

В первую очередь необходимо разобраться: трансформатор напряжения — что это такое. Это особое устройство, которое необходимо для образования гальванической развязки. Иными словами, без прямого контакта с помощью данного устройства соединяются цепи высокого и низкого напряжения. С помощью него можно удешевить эксплуатацию оборудования, а также сделать его надежнее и проще в работе одновременно. Также необходим трансформатор для того, чтобы обеспечить безопасность.

Чаще всего подобный агрегат работает на холостом ходу. Он не предназначен для огромных потоков мощности и их преобразования, а всего лишь правильно соединяет вторичные обмотки в любых электрических системах. Это простое действие дает серьезный результат. Оно достаточно сильно может понизить или повысить напряжение в зависимости от того, что необходимо в данный момент.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Принцип действия ↑

В основе лежит тот же принцип, что и в обычном понижающем трансформаторе. В центре располагается листовой сердечник с обмоткой. Сделан он по максимально точным, выверенным расчетам, с многослойными металлами и слюдой, а также с учетом того, что в результате получается правильная амплитуда и угол. Тщательно продуманная конструкция необходима для того, чтобы без лишних проблем подключить к сети абсолютно любой прибор. Трансформатор обязан нормализовать напряжение: он «играет» с этой величиной так, как это необходимо в данный момент, выставляя свой личный коэффициент, независимо от начальных данных.

Наиболее популярным сегодня становится трехфазный трансформатор. Основной принцип его действия заключается в том, что чем ближе действие к холостому ходу, на котором чаще всего и работает подобное устройство, тем коэффициент трансформации все ближе к номинальному значению. Таким образом, получается, что наиболее эффективен подобный трансформатор именно на холостом ходу, как бы странно это не звучало. Это помогает прибору работать максимально безопасно и стабильно, практически полностью исключая любые непредвиденные поломки.

Необходимо правильно настроить это устройство, потому что трансформатор может работать одновременно в нескольких классах точности. А именно в половину, единицу, а также в три единицы измерения.

Следует подумать и о мерах безопасности. Это означает  — прежде всего — высокое качество самого прибора. Трансформатор «из Китая» или же самодельный совершенно необязательно будет четко выполнять свои функции, более того — иногда может произойти самовозгорание.

Предназначение ↑

Чтобы четко понять, что же представляет из себя трансформатор напряжения, необходимо рассмотреть его назначение.

Основная особенность данной техники в том, что она легко преобразует низкое напряжение в высокое или наоборот — в зависимости от вида и настройки конкретного аппарата. В повседневной жизни это отличные предохранители.

Именно с помощью трансформаторов каждое устройство получает необходимое напряжение, будь то болгарка или же простой кипятильник. Аналогично работает техника и в промышленных масштабах, когда разница становится еще более значительной.

Виды ↑

На самом деле трансформаторов напряжения достаточно много. Каждый из них может пригодиться в определенной ситуации. Потому необходимо тщательно рассмотреть все характеристики, положительные и отрицательные стороны, чтобы понять, для чего нужен трансформатор напряжения конкретного типа. Они отличаются, прежде всего, конструкцией: именно она накладывает определенные особенности на эксплуатацию.

Заземляемый

Этот трансформатор напряжения представляет собой однофазное или трехфазное устройство. Обязательно один его конец должен быть заземлен, именно поэтому он и получил подобное название. В землю уходит нейтраль первичной обмотки.

Наземляемый

Этот вариант трансформатора не нуждается в заземлении. Вся его конструкция находится на поверхности. Обязательно должны быть изолированы все уровни, особенно это касается зажимов. В зависимости от уровня напряжения необходимо поднимать некоторые части на определенную высоту.

Каскадный

Трансформатор здесь состоит из первичной обмотки, которая строго разделена на несколько секций. Они располагаются на разном уровне от земли и имеют вид каскада. Соединены между собой все эти части с помощью дополнительных связующих обмоток.

Емкостный

Подобный трансформатор имеет дополнительную деталь — емкостный делитель, из-за него и появилось название.

Двухобмоточный

Помимо первичной обмотки, здесь имеется и вторичная.

Трехобмоточный

Подобная модель трансформатора мало отличается от предыдущей, но вторичных обмоток две.

Каждый тип создан специально для определенной ситуации. В случае необходимости можно любой трансформатор приспособить под определенную электрическую систему, но лучше всего следовать рекомендациям, которые гарантируют полноценную и стабильную работу с минимальными затратами ресурсов.

Трансформатор напряжения — это… Что такое Трансформатор напряжения?

        измерительный Трансформатор электрический, предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков, устройств автоматического управления и контроля и т.д. от цепи высокого напряжения и создаёт возможность стандартизации номинального напряжения контрольно-измерительной аппаратуры (чаще всего его принимают равным 100
в
). Т. н. подразделяются на трансформаторы переменного напряжения (обычно их называют просто Т. н.) и трансформаторы постоянного напряжения.         Первичная обмотка (ПО) трансформатора переменного напряжения (см. рис. 1, а, б) состоит из большого числа (w1) витков и подключается к цепи с измеряемым (контролируемым) напряжением U1 параллельно. К зажимам вторичной обмотки (ВО) с числом витков w2 (w2 1) подсоединяют измерительные приборы (или контрольные устройства). Так как внутреннее сопротивление последних относительно велико, Т. н. работает в условиях, близких к режиму холостого хода, что позволяет (пренебрегая потерями напряжения в обмотках) считать
U
1 и U2 приблизительно равными соответствующим эдс и пропорциональными w1 и w2, то есть U1w2U2w1. Зная отношение (Трансформации коэффициент), можно по результатам измерения низкого напряжения в ВО определять высокое первичное напряжение. Приближённый характер соотношения между U1 и U2 обусловливает наличие погрешности по напряжению и угловой погрешности найденной величины U1. В компенсированных Т. н. производится компенсация этих погрешностей. Т. н. устанавливают главным образом в распределительных устройствах (См. Распределительное устройство) высокого напряжения. Их выпускают в однофазном и трёхфазном исполнении. Большинство Т. н. на напряжения свыше 6
кв
— маслонаполненные. Т. н. на напряжения свыше 100 кв делают, как правило, каскадными. Лабораторные Т. н. — обычно многопредельные.

         Лит.: Вавин В. Н., Трансформаторы напряжения и их вторичные цепи, Л., 1967; Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

         Г. М. Вотчицев.

        Измерительный трансформатор напряжения. Схема включения.

        Рис. 1б. Измерительный трансформатор напряжения. Трансформатор напряжения на 400

кв.

Трансформаторы напряжения — устройство, принцип работы, расчет и характеристики

Как работает трансформатор напряжения

Трансформатор — устройство для преобразования величины напряжения переменного тока. Работа трансформатора основывается на законе электромагнитной индукции.

Ток, протекающий по одной из обмоток, вызывает возникновение переменного магнитного поле в сердечнике, а оно наводит ЭДС в остальных обмотках.

Именно наличие переменного магнитного поля создает условия для работы трансформатора. На постоянном токе трансформатор работать не может. В случае подключения трансформатора к источнику постоянного напряжения, переменное магнитное поле не создается, следовательно нет причины для образования ЭДС.

В таком случае ток первичной обмотки определяется только ее омическим сопротивлением.

Трансформатор преобразует напряжение при сохранении частоты и баланса мощностей на входе и выходе с учетом КПД. Также при помощи трансформаторов осуществляется гальваническая развязка по цепям питания.

Большинство электронной аппаратуры требует питания, отличного от напряжения сети. В большинстве случаев это напряжение значительно ниже и может иметь несколько различных значений.

Трансформатор с несколькими вторичными обмотками позволяет выполнить максимально простое преобразование величины напряжения с той оговоркой, что питающее напряжение переменное.

В случае необходимости преобразовывать постоянное напряжение, приходится сначала преобразовывать его в переменное, что требует определенных схемотехнических решений. В таком случае использование трансформаторов оправдано только наличием гальванической развязки между обмотками.

УСТРОЙСТВО ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Основные узлы, которые входят в трансформатор это сердечник и обмотки. Сердечники трансформаторов бывают двух типов — броневые и стержневые. Для работы с низкочастотными напряжениями, в том числе и 50 Гц применяются стержневые магнитопроводы. В свою очередь они подразделяются на:

  • Ш-образные;
  • П-образные;
  • тороидальные.

Для изготовления сердечника используется специальное трансформаторное железо. От качества железа во многом зависят параметры трансформатора, такие как ток холостого хода (ТХХ) и КПД. Сердечник набирается из тонких листов железа, изолированных друг от друга слоем окиси или лака. Это делается для того, чтобы уменьшить потери в сердечнике за счет вихревых токов.

Как Ш-образный, так и П-образный сердечники могут собираться из отдельных пластин, а могут быть использованы уже готовые половинки, сделанные из навитых на специальную оправку сплошных лент железа, поклеенных и разрезанных на две части — витые сердечники. Такие сердечники называются ПЛ.

У каждого из типов свои достоинства и недостатки:

Наборные сердечники.
Наиболее часто используются для сборки магнитопровода произвольного сечения, которое ограничивается только шириной пластин. Следует иметь ввиду, что наилучшие параметры имеют трансформаторы с поперечным сечением сердечника, близким к квадратному.

Недостатки — необходимость в плотном стягивании, повышенное магнитное поле рассеивания трансформатора и низкий коэффициент заполнения окна катушки (реальная площадь металла в сердечнике меньше геометрических размеров из-за неплотного прилегания пластин).

Витые.
Собираются еще проще, поскольку весь сердечник состоит из двух частей для П-образного магнитопровода и четырех для Ш-образного. Характеристики значительно лучше, чем у наборного магнитопровода. Недостатки — соприкасающиеся поверхности должны иметь минимальный зазор во избежание ослабления магнитного поля.

При ударах пластины половинок зачастую отслаиваются и их очень трудно совместить для плотного прилегания. Существует только определенный ряд размеров магнитопроводов.

Тороидальные.
Представляют собой кольцо, свитое из ленты трансформаторного железа Имеют самые лучшие характеристики из всех типов сердечников, минимальный ТХХ и практически полное отсутствие магнитного поля рассеивания.

Основной недостаток — сложность намотки, особенно проводов большого диаметра.

Классический трансформатор имеет одну первичную обмотку и одну или несколько вторичных. Обмотки изолируются друг от друга для исключения вероятности между обмоточного пробоя. Как первичная, так и вторичные обмотки могут иметь отводы.

В Ш-образных трансформаторах все обмотки наматываются на центральном стержне, а в П-образном первичная может размещаться на одном стержне, а вторичная на другом. Гораздо чаще обмотки делятся пополам и наматываются на обеих стержнях. Затем обе половины обмоток соединяются последовательно.

Такая намотка улучшает характеристики трансформатора и сокращает количество провода для обмоток.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные характеристики трансформатора:

  • входное напряжение;
  • значения выходных напряжений;
  • мощность;
  • напряжение и ток холостого хода.

Отношение напряжений на первичной и вторичной обмотках представляет собой коэффициент трансформации. Он зависит только от соотношения количества витков в обмотках и остается постоянным в любых режимах работы.

Мощность трансформатора зависит от сечения сердечника и диаметра проводов в обмотках (соответственно — допустимого тока). Мощность со стороны первичной обмотки всегда равна сумме мощностей вторичных за вычетом потерь в обмотках и сердечнике.

Напряжение холостого хода — это напряжение на вторичных обмотках без нагрузки. Разница между ним и напряжением под нагрузкой характеризует потери в обмотках за счет сопротивления провода. Таким образом, чем толще проводники в обмотках, тем меньше будут потери и меньше разница в напряжениях.

Величина тока холостого хода зависит, в основном от качества сердечника. В идеальном трансформаторе ток, проходящий через первичную обмотку, создает переменное магнитное поле в сердечнике, которое, в свою очередь, за счет магнитной индукции создает ЭДС противоположного направления.

Индуцированная ЭДС компенсирует подаваемое напряжение и ТХХ равен нулю. В реальных условиях, за счет потерь в сердечнике, величина ЭДС всегда меньше первичного напряжения, в результате чего возникает ТХХ. Для уменьшения тока для изготовления сердечника нужен материал высокого качества, между пластинами должен отсутствовать немагнитный зазор.

Последнему требованию в максимальной степени соответствуют тороидальные сердечники — в них немагнитный зазор отсутствует.

РАСЧЕТ ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Как показывает опыт и практика, точный расчет трансформатора напряжения себя не оправдывает. Точность нужна только при определении количества витков для получения нужного коэффициента трансформации. Диаметр проводов обмоток должен соответствовать или превосходить минимально допустимому по условиям нагрева.

Общая последовательность расчета трансформатора такова:

  • определение мощности трансформатора;
  • подбор сердечника с сечением максимально близкого к расчетному, но не меньше его;
  • определение количества витков катушек, приходящихся на один вольт напряжения;
  • расчет количества витков для каждой обмотки;
  • расчет сечения проводов обмоток.

Мощность трансформатора определяется суммированием мощностей всех обмоток за исключением первичной. Для каждой из них — это произведение напряжения на максимальный ток потребления. Для расчета сечения сердечника нужна габаритная мощность трансформатора, которая учитывает КПД.

Рассматриваемые трансформаторы имеют КПД от 70% при мощности до 150 Вт и до 90 % при большей мощности. Таким образом, чтобы получит габаритную мощность нужно мощность вторичных обмоток умножить на коэффициент 1.3 — 1.1.

Площадь поперечного сечения можно найти как квадратный корень из габаритной мощности. Имея значение площади можно подобрать из таблиц готовый сердечник. Если планируется разборный, то исходя из размеров имеющихся пластин можно вычислить необходимую толщину набора. Как уже говорилось выше, сечение должно быть близким к квадрату.

Наибольшие затруднения вызывает нахождение числа витков. Для этого нужно сначала рассчитать сколько витков должно приходиться на один вольт напряжения. Это значение будет различаться в зависимости от площади сечения сердечника. Следует иметь ввиду, что при одинаковом сечении у магнитопроводов разных типов это значение также будет различно.

Можно воспользоваться следующей формулой: N = К/S,

где N — количество витков на вольт, S — площадь сечения сердечника в см2, K — коэффициент, зависящий от материала и типа сердечника.

Значение коэффициента К:

  • для наборных сердечников — 60;
  • для типов ПЛ — 50;
  • для тороидальных сердечников 40.

Как видим, количество витков у тороидального трансформатора будет минимальным. Умножая число витков на вольт на требуемое напряжение каждой обмотки, получим значение количества витков. Для компенсации потерь напряжения, количество витков вторичных обмоток нужно увеличить на 5%.

У мощных трансформаторов (более 150 Вт) этого делать не нужно.

Сечение проводов также определяется по упрощенной формуле: 0.7√I, где I — ток обмотки.

Провод нужно брать ближайшего к расчетному сечения (можно больше, но не меньше).

В случае сомнений по поводу того, поместится ли провод в обмотке, можно посчитать, сколько витков уложится в один слой и определить количество слоев и их общую толщину для каждой из обмоток. Это справедливо только для Ш-образных и П-образных трансформаторов.

В тороидальных количество витков в каждом последующем случае будет меньше, чем в предыдущем за счет уменьшения внутреннего диаметра.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Трансформаторы напряжения: описание, принцип действия

Все трансформаторы тока — это конструкции, которые изменяют переменный ток и стабильно защищают от перепадов высокого напряжения. Он является механизмом только переменного тока, который не может работать с источником постоянного тока, так как при этом в его обмотках не будет электромагнитной индукции. Сейчас трансформаторы напряжения, работающие на маленьких мощностях, практически вытеснены более мощными модификациями.

Описание и составляющие

Трансформатор состоит из трех частей:

  • Электро-обмотка может быть первичной подводящей напряжение и вторичной снимающей напряжение. Первичная обвивка подключается по порядку и подсоединяется к ключу переменного тока. Вторичная обвивка должна быть замкнута на нагрузку и ее противодействие не превышает установленного значения, она никак не сопряжена с первичной. На вторичной обмотке вызывается крайне высокое напряжение и вследствие этого она обязана быть заземлена.
  • Системы охлаждения: естественное воздушное, масляное (трансформаторное масло циркулирует и отдает запасенное тепло через заднюю стенку бака в окружающую среду, охлаждаясь), по тому же принципу циркуляции происходит охлаждение водой и естественное жидким диэлектриком.
  • Сердечник. А еще его называют магнитопровод, чаще всего изготавливается из специальных сплавов штампованных пластин в виде буквы Ш и О. Могут быть броневые (катушки установлены на одной оси) и стержневые (занимают большую часть сердечника и сердечники являются раздельными их стягивают при сборке).

Принцип действия

Отдача мощности из одной обмотки во вторую совершается электромагнитным путем и основана на электромагнитной индукции. Непостоянный ток, идя по первичной обмотке, формирует электромагнитное течение в магнитопроводе и индуцирует во вторичной обмотке, пронизывая ее витки. В результате он становиться замкнутым в магнитопроводе и сцепляется с двумя обмотками. Витки обмотки имеют равное усилие и в случае если повысить количество витков на 2–ой обмотке, объединяя их поочередно между собою, то можно повысить вольтаж на выходе трансформатора. Таким же образом уменьшая количество витков уменьшить выходное напряжение. В сердечнике трансформатора неизбежны потери энергии за счет выделения тепла, но в современных мощных моделях эти потери невелики и не превышают 3%. Однофазные трансформаторы напряжения могут работать, на нагрузку, в режиме холостого хода и короткого замыкания. Как три отдельных однофазных трансформатора можно рассматривать трехфазные, но они работают на больших мощностях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *