Что такое шим контроллер в блоке питания: РЕМОНТ БП АТХ: ШИМ КОНТРОЛЛЕР – Как работает шим контроллер в блоке питания

Что такое ШИМ-контроллер PWM и для чего он нужен

шим контроллер pwmшим контроллер pwm

Любой радиолюбитель, начинающий телемастер или электрик рано или поздно столкнётся с такой штукой, как ШИМ-контроллер. За рубежом он маркируется как PWM. Поэтому сегодня я хочу остановиться на вопросе что такое ШИМ-контроллер, как он работает и для чего нужен. Даже если Вы не планируете заниматься ремонтом электронной техники, всё равно эта статья будет интересна для общего ознакомления.

Широтно-импульсный модулятор — принцип работы

Аббревиатура ШИМ расшифровывается, как широтно-импульсный модулятор. На английском это будет так — pulse-width modulation или PWM. В теле- и радио-технике ШИМ-контроллеры используются для преобразования напряжения, их можно встетить даже в качестве узлов системы управления скоростью электроприводов в бытовых приборах, меняя скорость электродвигателя. PWM-контроллер есть даже в обычных импульсных блоках питания.

шим контроллер pwmшим контроллер pwm

Там постоянное напряжение на входе преобразуется в импульсы прямоугольной формы, которые формируются с определенной частотой и с определённой скважностью. На выходе, с помощью управляющих сигналов, получается регулировать работу целого транзисторного модуля большой мощности. Таким образом разработчики получили блок управления напряжением регулируемого типа, который значительно меньше и удобнее старых, которые используют понижающий трансформатор, диодный мост и фильтр помех.

Главные плюсы ШИМ:

- маленькие габариты;
- отличное быстродействие;
- высокая надёжность;
- низкая стоимость.

В Интернете Вы можете встретить ШИМ-контроллер на Arduino или NE555. Это не совсем контроллер, а скорее уже генератор ШИМ-импульсов, в которых нет возможности подключения цепи обратной связи. Такие устройства подходят больше для регуляторов напряжения, чем для обеспечения стабильного питания приборов, ведь они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Выходы ШИМ-контроллера

Стандартная схема ШИМ-контроллера, который используется в теле-, радио- и иной электронной аппаратуре, характеризуется наличием нескольких выходов.

Общий вывод (GND) — контакт подключается к общему проводу схемы питания контролера. Он соединен с аналогичным контактом схемы подачи питания модуля и контроллирует напряжение на выходе схемы, отключая ее при снижении значения ниже пороговой величины.

Вывод питания (VC) — этот вывод ШИМ-контроллера отвечает за энергоснабжение схемы и подключение питания. Как правило, вывод контроля питания и вывод питания располагаются рядом друг с другом. Не перепутайте его с выводом VCC.

Вывод контроля питания (VCC)

— следит, чтобы напряжение питания микросхемы было выше определенного значения. Обычно этот контакт соединяют с VC. Если напряжение на этом выводе падает ниже заданного порогового значения для данного PWM-контроллера, то контроллер выключается. Если этого не делать, то при снижении напряжение на выходе схемы, то транзисторы начнут открываться не полностью и будут быстро нагреваться, что приведёт к поломке.

Выход контроллера OUT – это выходное управляющее напряжение, другими словами отсюда подаётся управляющий ШИМ-сигнал для силовых ключей. Тут надо отметить, что микросхемы бывают разные. Например, есть с друмя выходами — двухтактные, которые применяются для управления двухплечевыми каскадами. Да и сам выходной каскад может быть одно- и двухтактным. Тут главное не запутаться!

Вывод VREF — Опорное напряжение. Обеспечивает работу функции формирования стабильно опорного напряжения. Как правило, екомендуется соединять его с общим проводом конденсатором 1 мкФ для повышения качества и стабильности опорного напряжения.

Вывод ILIM — Ограничитель выходного тока. Это сигнал с датчика тока. Если напряжение на этом выводе превышает заданный порог (как правило, это 1 Вольт), то ШИМ-контроллер закрывает силовые ключи. Если же превышается ещё больший порог (обычно 1.5 Вольта), то PWM-контроллер сбрасывает напряжение на ножке мягкого старта и импульсы на выходе прекращаются.

Вывод ILIMREF — задаёт значение ограничения выходного тока на выводе ILIM.

Вывод SS — так называемый «мягкий старт». Напряжение на этом контакте ограничивает максимально возможную ширину импульсов. Сюда ШИМ-контроллер подает ток фиксированной силы.

Вывод RtCt – используется для подключения времязадающей RC-цепи, используемой для определения частоты ШИМ-сигнала.

Вывод RAMP – это ввод сравнения. Рабоает это так. На контакт подаётся пилообразное напряжение. Как только оно превышает значение напряжение на выходе усиления ошибки, вывод OUT появляется отключающий сигнал. Это основа ШИМ-регулирования.

Вывод CLOCK – тактовые импульсы. Используются для синхронизации между собой сразу нескольких ШИМ-контроллеров. В этом случае RC-цепь подключается только к ведущему контроллеру, RT ведомых соединяется с Vref, а CT ведомых соединяюся с общим.

Вывод INV — это инвертирующий вход компаратора. На нём построен усилитель ошибки. Чем больше напряжение на INV, тем длиннее выходные импульсы.

Вывод NONINV – это неинвертирующий вход компаратора. Его обычно подключают к общему проводу — GND.

Вывод EAOUT — выход усилителя ошибки — Error Amplifier Output. С этого вывода осуществляется частотная коррекция усилителя ошибки, путём подачи сигналов на INV через частотозависимые цепи. Дело в том, что PWM-контроллер достаточно медленно реагирует на воздействие через вход усилителя ошибки и потому схема может сгореть из-за возбуждения. Поэтому и применяется вывод EAOUT.

Как проверить ШИМ-контроллер

Есть несколько способов как сделать проверку ШИМ-контроллера. Можно, конечно это сделать без мультиметра, но зачем так мучаться, если можно воспользоваться нормальным прибором.

Прежде, чем проверять работу ШИМ-контроллера, необходимо выполнить базовую диагностику самого блока питания. Она выполняется так:

Шаг 1. Внимательно осмотреть в выключенном состоянии сам источник питания, в котором установлен PWM. В частности надо тщательно осмотреть электролитические конденсаторы на предмет вздутости.

Шаг 2. Провести проверку предохранителя и элементов входного фильтра блока питания на исправность.

Шаг 3. Провести проверку на короткое замыкание или обрыв диодов выпрями­тельного моста. Прозвонить их можно не вы­паивая из платы. При этом надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором. Если есть на это подозрение, то всё таки придётся выпаивать элементы и проверять уже по отдельности.

Шаг 4. Провести проверку исправностм выходных цепей, а именно электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов, диодных сборок и т.п.

Шаг 5. Провести проверку силовых транзисторов высокочастотного преобразователя и тран­зисторов каскада управления. При этом в обязательном порядке проверьте возвратные диоды, которые включенны параллельно электродам коллектор-эмиттер силовых транзисторов.

Проверка ШИМ-контроллера — видео инструкции:

Таблицы характеристик шим контроллеров блоков питания. Что такое шим контроллер, как он устроен и работает, виды и схемы

Что вообще такое — инвертор.
Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.

Инвертор состоит из двух основных узлов.
ШИМ контроллера.

А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.

Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.

Микросхема, жменька деталей, вот и весь ШИМ контроллер.

В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.

Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.

Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.

Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память:)
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.

Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.

При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.

Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.

Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.

По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.

Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.

Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.

Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.

Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.

В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.

Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.

Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.

Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.

Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.

Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.

Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.

Затем ШИМ контроллер проверяет, в

Контроллер шим импульсного блока питания

Контроллер шим импульсного блока питания типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США), выпускается так же фирмой SHARP (Япония) под названием IR3M02, фирмой SAMSUNG (Корея) – КА7500, фирмой FUJITSU (Япония) – МВ3759, так же есть и отечественный аналог – КР1114ЕУ4.

Микросхема широко применяется в импульсных блоках питания, в частности, в блоках питания персональных компьютеров, а также в DC/DC преобразователях.

На рисунке показана цоколевка микросхемы.

Цоколевка микросхемы

Микросхема специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.):

Узлы микросхемы

генератор пилообразного напряжения Oscillator; частота которого определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и рассчитывается по формуле: F=1,1/RtCt

– источник опорного стабилизированного напряжения Reference Regulator (Uref=+5B) с внешним выходом на выводе 14;

–              компаратор “мертвой зоны” Deadtime Comparator;

–              компаратор ШИМ PWM Comparator;

–              усилитель ошибки по напряжению 1;

–              усилитель ошибки по сигналу ограничения тока 2;

–              два выходных транзистора Q1 и Q2 с открытыми коллекторами и эмиттерами;

–              динамический двухтактный D-триггер в режиме деления частоты на 2 – Flip-Flop;

–              вспомогательные логические элементы;

–              источник постоянного напряжения с номиналом 0.12V;

–              источник постоянного тока с номиналом 0,7mA.

ИMC запускается в том случае если на 12-вывод поступает питающее напряжение в пределах от +7 до 40V. Выводы 1 и 2 – соответственно прямой и инвертирующий входы усилителя ошибки по сигналу обратной связи. Вывод 4 – вход регулировки “мертвой зоны” (это время, когда оба выходных транзистора микросхемы закрыты даже при максимальной потребляемой мощности). Выводы 5 и 6 служат для подключения внешних элементов внутреннего генератора пилообразного напряжения. Вывод 7 – общий, выводы 8 и 9 – коллектор и эмиттер первого транзистора, выводы 11 и 10 -коллектор и эмиттер второго транзистора. Вывод 13 – выбор режима работы (однотактный или двухтактный). Если на этом выводе положительное напряжение 2,4…5V двухтактный режим работы, транзисторы Q1 и Q2 открываются поочередно, выходные импульсы следуют друг относительно друга со сдвигом по фазе.

Если на этом выводе напряжение составляет 0…0,4 V – однотактный режим, при этом транзисторы можно включать параллельно для увеличения выходного тока. Вывод 14 – выход опорного напряжения (+5 V) от встроенного стабилизированного источника опорного напряжения, выводы 16 и 15 – соответственно, прямой и инвертирующий входы усилителя ошибки по сигналу ограничения тока. По функциональным узлам, входящим в состав микросхемы, ее можно разделить на аналоговую и цифровую составляющие. К аналоговой составляющей относятся усилители ошибок, компараторы, генератор пилообразного напряжения и вспомогательные источники. Все остальные элементы, в том числе и выходные транзисторы следует отнести к цифровой части.

Из временных диаграмм контроллер шим импульсного блока питания, приведенных на рис. видно, что моменты появления выходных управляющих импульсов, а также их длительность определяется состоянием выхода логического элемента D1.

графики напряжений микросхемы

Остальная логика выполняет лишь вспомогательную функцию, разделения выходных импульсов на два канала. Оба транзистора имеют открытые коллекторы и эмиттеры, поэтому их можно подключать двояко, как с общим эмиттером, так и с общим коллектором. Триггер Flip-Flop является двухтактным динамическим D-триггером. Принцип его работы в следующем. Каждый из выходных импульсов элемента D1 своим отрицательным фронтом переключает триггер и этим меняет канал прохождения следующего импульса, т. е. исключает появление двух отпирающих импульсов за один период работы.

Типовая схема импульсного DC/DC преобразователя на основе контроллер шим импульсного блока питания TL494 показана на рисунке.

Типовая схема включения

Основные технические характеристики:

  • Диапазон напряжения питания ..42V
  • Максимальное напряжение коллекторов выходных транзисторов  42V.
  • Максимальный ток коллектора выходных транзисторов 0,2А.
  • Опорное напряжение 4,5…5,5V.
  • Мощность рассевания в непрерывном режиме в корпусе DIP-16 при температуре окружающей среды ниже 45°С   1W.
  • Ток потребления не более 10mA.
  • Частота генератора может быть задана в пределах ..200 kHz.
  • Длительность фронта импульса выходного тока не более 200nS.
  • Длительность спада импульса выходного тока не более 100nS
  • Сопротивление резистора RT может быть в пределах 1,8… 500 кОm.
  • Емкость конденсатора СТ может быть в пределах 0,0047…10 мкФ.
  • Рабочий диапазон температуры:

           TL494B  -40…+125°С

          TL494C  0…+70°С

         TL494I  -40…+85°С.

 

Все про широтно-импульсную модуляцию (ШИМ)

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

РЕМОНТ БП ПК — НИЗКОВОЛЬТНЫЕ ЦЕПИ

Итак, продолжаем цикл статей от Elwo.ru, посвященных ремонту блоков питания АТХ. В этой статье мы разберем, в основном низковольтные и выходные цепи блока питания, а также снова коснемся проблем с высоковольтной частью. Итак, у нас есть ШИМ контроллер, их бывает несколько распространенных моделей микросхем, применяемых в блоках питания АТХ, это и широко распространенная TL494, и другие подобные ей микросхемы, по типу работы.

ШИМ контроллер блоков питания Powerman

Так например выглядит ШИМ контроллер брендовых блоков питания Powerman. А вот так он обозначается на схеме:

ШИМ контроллер Powerman - схема

Выделено красным. Рядом с  выводами 8 и 9 мы видим надписи OP1 и OP2. C чем же они соединены? Посмотрев на схему блока питания, вот она целиком, она кликабельна:

Мы видим, что эти два выводы, соединены с базами двух транзисторов, также помеченных на схеме OP1 и OP2. В их обвязке мы видим, также ставшие стандартными в подобных схемах, защитные диоды, между коллектором и эмиттером. Они защищают наши транзисторы от импульсов, выбросов, которые бывают при работе на индуктивную нагрузку, какой у нас и являются обмотки трансформатора Т2.

РЕМОНТ БП ПК - НИЗКОВОЛЬТНЫЕ ЦЕПИ, СХЕМА

Эти транзисторы называются транзисторами раскачки, почему же они так называются? А потому что силовые транзисторы, выделенные синим, мы не можем подключить, по соображениям схемотехники напрямую, на выхода ШИМ контроллера, и нам удобнее управлять нашими высоковольтными ключами, Q3 и Q4, через эти своего рода промежуточные транзисторы. Второй причиной является то, что силовые транзисторы, ключи, часто пробиваются высоким напряжением, бывает что и на базу, и все 3 вывода оказываются у нас, пусть и на очень короткое время, пока не сгорит предохранитель, под высоким напряжением. Нежный ШИМ контроллер этого очень не любит), и сразу откажется работать. Все необходимые данные, а также его распиновку и назначение выводов, мы как обычно, находим в даташите:

ШИМ контроллер даташит

А ШИМ контроллер, если требуется его замена, у него будет необходимо подбирать впоследствии номиналы обвязки, это не так легко сделать, потребуются измерения, поэтому мы и имеем такое решение. Как уже было сказано в предыдущих статьях, если у нас летят высковольтные ключевые транзисторы, не пытайтесь найдя транзистор в КЗ, коротком замыкании, сразу же заменив транзистор, включать в сеть, не проверив его обвязку, те детали, которые обеспечивают его работу, и находятся на схеме рядом с ним. Или вы рискуете попасть на покупку нового транзистора, а цены на них сейчас в радиомагазинах, отнюдь не радуют. Итак, вернемся к нашим низковольтным цепям. Если у нас блок питания пытается стартовать, кулер дергается, пытается раскрутиться, но не может и останавливается, значит у нас срабатывает защита блока питания, и проблему нужно искать в низковольтной части, возможно и в выходных цепях блока питания, после силового трансформатора. Посмотрите на следующий рисунок:

РЕМОНТ БП ПК - ДЕТАЛИ

Здесь мы видим два алюминиевых радиатора, на них, на одном из них, обычно всегда ближнем к “бочонкам”, электролитическим конденсаторам, расположены высоковольтные транзисторы, ключи, которыми и управляют наши транзисторы раскачки, и мосфет или обычный биполярный транзистор. Все они находятся под высоким напряжением, ни в коем случае не касайтесь их руками, при проведении измерений на “горячую”, во включенном блоке питания, это опасно для жизни! Это касается и самих больших “бочонков” электролитических конденсаторов, они сохраняют заряд еще какое-то время и после выключения, несмотря на то, что в их цепях и установлены резисторы, для их разряжения. На втором же радиаторе, дальнем от “бочонков”, мы видим вот такие штуки, как на фото, внешне порой ничем не отличающиеся от мощных ключей – транзисторов, но это абсолютно другие детали.

РЕМОНТ БП ПК - ДЕТАЛИ

Это диодная сборка Шоттки, или два мощных импульсных диода, которые соединены катодами. Что мы и видим на нанесенном обозначении, на корпусе диода. Диоды Шоттки ни в коем случае нельзя менять, на обычные выпрямительные диоды, даже подходящие по току, они не предназначены для работы в таких цепях, и будут сильно греться.

диодная сборка Шоттки - схема

На схеме у нас их три, и находятся они, как уже можно было догадаться, даже не глядя на схему, по цепям +3.3 вольта, +5 Вольт, и +12 Вольт, иначе говоря по всем выходным цепям, способным выдавать болшие токи, кроме маломощных -5 и -12 вольт. Итак, посмотрим на схему, с вторичных обмоток силового трансформатора, напряжение идет на аноды диодной сборки. Как нам известно любой диод, в том числе и Шоттки, мы можем проверить мультиметром, в режиме звуковой прозвонки. С диодами Шоттки значения будут правда не 500-600, как обычно бывает при проверке выпрямительных диодов, а порядка 200, потому что у них меньшее падение напряжения. К чему это рассказываю? Посмотрите внимательно на схему, на все аноды диодных сборок, параллельно им подключены вторичные обмотки выходного трансформатора. Что это значит? А это значит что оба крайних  вывода, аноды, у нас будут звониться на звуковой прозвонке, или на измерении сопротивления, как низкоомное сопротивление, и это ничуть не означает, что диодная сборка у нас пробита, между анодами. В чем мы и можем убедиться, прозвонив диоды сборки по отдельности, в режиме звуковой прозвонки. Куда же идут выхода с диодных сборок?

РЕМОНТ БП ПК - ДРОССЕЛИ

На дроссель, и затем на фильтры. Те самые конденсаторы 2200-3300 мкФ, которые у нас любят так часто дуться), и в результате наш блок питания не стартует, или работает не стабильно. На схеме конденсаторы фильтров выделены синим. И наконец после этих фильтров, напряжение приходит уже на наш разъем 20-24 Pin, Молексы и все остальные разъемы. А теперь, в качестве бонуса, я расскажу о поломке блока питания которая встречается редко, но тем не менее, как оказалось, все же бывает. Включаю блок питания, как обычно, клавишным выключателем на задней стенке, замыкаю PS-ON на GND, и ничего не происходит… Вскрываю крышку, предохранитель не почерневший, проволочку видно, звоню для большей уверенности, все звонится. Звоню диодный мост, мосфет, выходные транзисторы, Y- конденсаторы, большой красный конденсатор, на 250 вольт, и остальные подобные. Все в идеале. Они все показаны на рисунке:

РЕМОНТ БП ПК - ФИЛЬТРЫ СХЕМЫ

Тут приходит в голову мысль, прозвонить термистор, который с виду кажется в норме, эта деталь защищает диодный мост от бросков тока, и ставится последовательно с предохранителем, а точнее сразу после него. На схеме выделено фиолетовым. Не путайте с Y — конденсаторами, выделено синим, внешне они немного похожи.

РЕМОНТ БП ПК - ФИЛЬТРЫ СХЕМЫ

Пытаюсь его слегка отогнуть, и он отгибается, вернее его большая часть), а одна нога остается висящей в воздухе. В течение последующих двух минут, выпаиваю термистор с донора, впаиваю в схему, все работает, тесты проходит, все в идеале. И убеждаюсь в справедливости поговорки, что ремонт техники, состоит на 95% в диагностике неисправности… Хотя один или два электролитических конденсатора, я предварительно все же вроде бы заменил тогда. Вот так термистор выглядит на плате, обычно он находится рядом с предохранителем.

РЕМОНТ БП ПК - ФИЛЬТРЫ СХЕМЫ

После ремонта 5-10 блоков, все последующие, за исключением конечно тяжелых случаев, а они бывают и у меня, обычно ремонтируются по ставшей уже отработанной схеме. Большую часть распространенных простых поломок, которые случаются у блоков питания АТХ мы разобрали, и которые можно устранить в домашних условиях, без применения осциллографа, или других дорогих приборов. Которых обычно и не бывает в мастерской у домашнего мастера, мы разобрали в этой, и предыдущих статьях. Для проведения большинства ремонтов, нам достаточно было обычного мультиметра, и еще также очень желателен для облегчения работы ESR метр. Без которого, впрочем, вполне можно обойтись, если знать схемотехнику блоков питания АТХ, и менять все электролитические конденсаторы на новые в проблемном узле. 

Кстати, насчет конденсаторов, настоятельно рекомендую менять электролитические конденсаторы, на другие только с обозначением 105С, на корпусе. Конденсаторы на которых написано 85С, даже новые, и подобные, имеющие низкую, предельно допустимую температуру работы, недолго прослужат в закрытом корпусе, и замена на них допустима только на время тестирования.

Всем удачных ремонтов, специально для «Электрические схемы» — AKV.

   Ремонт электроники

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *