Что такое рекуперативное торможение – Рекуперативно-реостатное торможение — это… Что такое Рекуперативно-реостатное торможение?

Содержание

Рекуперативное торможение — Википедия

Toyota Prius 2004 — серийный (с 1997) автомобиль с системой рекуперативного торможения У этого термина существуют и другие значения, см. Тормоз.

Рекуперати́вное торможе́ние (от лат. recuperatio «обратное получение; возвращение») — вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Рекуперативное торможение широко применяется на электровозах, электропоездах, современных трамваях и троллейбусах, где при торможении электродвигатели начинают работать как электрогенераторы, а вырабатываемая электроэнергия передаётся через контактную сеть либо другим электровозам, либо в общую энергосистему через тяговые подстанции.

Аналогичный принцип используется на электромобилях, гибридных автомобилях, где вырабатываемая при торможении электроэнергия используется для подзарядки аккумуляторов. Некоторые контроллеры двигателей электровелосипедов реализуют рекуперативное торможение.

Проводились также эксперименты по организации рекуперативного торможения других принципов на автомобилях; для хранения энергии использовались маховики, пневматические аккумуляторы, гидроаккумуляторы и другие устройства.[1]

Использование на легковых и грузовых автомобилях[править | править код]

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде. Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,3,X,Y

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже в городском цикле при частых торможениях. Экономия энергии за счёт рекуперации в лучшем случае составляет доли процента, и поэтому система рекуперативного торможения электромобиля неэффективна и не оправдывает усложнения конструкции. К тому же рекуперативное торможение не освобождает от необходимости обычной колодочной тормозной системы, так как на малых оборотах двигателя в режиме генератора его противо-ЭДС мала и недостаточна для полной остановки автомобиля. Также рекуперативное торможение не решает проблему стояночного тормоза (за исключением искусственного динамического удержания ротора на месте, на что расходуется значительная энергия). В современных электромобилях имеется возможность настройки педали «газа» — при её отпускании электромобиль либо продолжает двигаться по инерции накатом, либо переходит в режим рекуперативного торможения.

Однако рекуперация эффективна для электротранспорта с его частыми участками разгона-торможения, где тормозной путь большой и соизмерим с расстоянием между станциями (метро, пригородные электропоезда).

Использование в автоспорте[править | править код]

В сезоне 2009 года в Формуле-1 на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Впрочем, у Формулы-1 с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что по результатам сезона-2009 оснащённые данной системой болиды не демонстрировали превосходства над соперниками на большинстве трасс. Однако это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1. После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год на систему KERS налагаются следующие ограничения[2]: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом Формулы-1, утверждённым FIA на 2014 год, предусмотрен переход на более эффективные турбомоторы со встроенной системой рекуперации (ERS). Применение двойной системы рекуперации (кинетической и тепловой) в сезонах 2014—2015 годов стало гораздо более актуально из-за введения жёстких регламентных ограничений на расход топлива — не более 100 кг на всю гонку (в прошлые годы 150 кг) и мгновенный расход не более 100 кг в час. Неоднократно можно было наблюдать, как во время гонки при выходе из строя системы рекуперации машина начинала быстро терять позиции.

Рекуперативное торможение используется также в гонках на выносливость. Такой системой оснащены спортпрототипы класса LMP1 заводских команд Audi R18 и Toyota TS050 Hybrid, Porsche 919 Hybrid

[en].

Рекуперативным торможением на железнодорожном транспорте (в частности, на электровозах и электропоездах, оборудованных системой рекуперативного торможения) называется процесс преобразования кинетической энергии движения поезда в электрическую энергию тяговыми электродвигателями (ТЭД), работающими в режиме генераторов. Выработанная электрическая энергия передается в контактную сеть (в отличие от реостатного торможения, при котором выработанная электрическая энергия гасится на тормозных резисторах, то есть преобразовывается в тепло и рассеивается системой охлаждения). Рекуперативное торможение используется для подтормаживания состава в случаях, когда поезд идет по относительно некрутому уклону вниз, и использование воздушного тормоза нерационально. То есть, рекуперативное торможение используется для поддержания заданной скорости при движении поезда по спуску. Данный вид торможения дает ощутимую экономию энергии, так как выработанная электрическая энергия передается в контактную сеть и может быть использована другими локомотивами на данном участке контактной сети.

Рекуперативное торможение имеет следующие проблемы, которые требуют особого учета при разработке схемы электровоза для их решения:

а) тормозной момент пропорционален не скорости, а разности между скоростью и «скоростью нейтрали», зависящей от настройки системы управления электровоза и напряжения контактной сети. Так, при скорости ниже нейтрали ТЭДы будут тянуть, а не тормозить. Таким образом, при скорости вблизи нейтрали даже небольшие (в процентах) скачки напряжения сети сильно меняют упомянутую разность, а с ней и момент, и приводят к рывкам. Правильное проектирование схемы электровоза снижает этот фактор.

б) при параллельном включении якорей рекуперирующих ТЭД схема может получиться неустойчивой при боксовании и склонной к «сваливанию» в режим, когда один ТЭД работает в моторном режиме, питаясь от второго ТЭДа, работающего как генератор, что подавляет торможение. Решение: включение обмоток возбуждения крест-накрест от «чужого» ТЭД (см. схемы ВЛ8 и ВЛ10).

в) необходимы меры защиты против короткого замыкания контактной сети или на самом электровозе. Для этого используются быстродействующие контакторы, срабатывание которых вызывает в схеме переходный процесс, перемагничивающий обмотки возбуждения ТЭД и ликвидирующий таким образом остаточную намагниченность статора (возбуждения генерации от которой может быть вполне достаточно для перегрева или пожара в случае КЗ в сети).

Ранее рекуперативным торможением оборудовались электровозы постоянного тока ввиду простоты метода переключения ТЭДов в режим генератора (в СССР схема появилась ещё на сурамском поколении электровозов, например, ВЛ22 и с незначительными изменениями применялась до ВЛ11 включительно, в ней решены все три описанные выше проблемы). В электровозах переменного тока существует проблема, которая заключается в преобразовании выработанного постоянного электрического тока в переменный и синхронизация его с частотой тягового тока, эта проблема решается с помощью тиристорных преобразователей

[3]. Электровозы переменного тока, созданные до использования тиристорных инверторов (ВЛ60, ЧС4 и ЧС4Т, а также все поколения ВЛ80, кроме ВЛ80Р) не имели возможности рекуперативного торможения.

Рекуперативное торможение редко используется в пассажирском движении, по крайней мере на «классических» до-тиристорных электровозах вроде ВЛ10 и ВЛ11 из-за возникновение ощутимых рывков при переключении тормозной рукоятки локомотива со ступени на ступень, а также при скачках напряжения контактной сети. Большинство пассажирских локомотивов той поры вовсе не имели этой возможности.

Кроме того, рекуперативное торможение, как и реостатное, сжимает состав и создает удар от сжатия сцепных устройств.

Тем не менее рекуперативное торможение широко применяется на моторвагонном подвижном составе (МВПС) постоянного тока (ЭР2Р, ЭР2Т и более поздние электропоезда). В отличие от поездной работы, в МВПС обычно постоянен вес поезда (его почти никогда не переформируют), а также намного выше тяговооружённость. Это сильно упрощает создание автомата управления рекуперативным торможением. Применяется и в грузовых локомотивах, к примеру на 2ЭС6.

Рекуперативное торможение на постоянном токе требует переоборудования тяговых подстанций. Как минимум возможно рассеяние энергии на стационарных резисторах в случае изменения направления тока в фидерах ПС (при этом сохраняется возможность использования энергии рекуперации для тяги другого поезда на этом же участке, что важно при тяжелом профиле пути). Как максимум — необходима установка инверторов.

Рекуперативное торможение на железнодорожных локомотивах может использоваться также для подтормаживания в экстренных аварийных случаях при отказе воздушного тормоза. В частности, имеются сведения о неоднократном применении машинистами рекуперативного торможения на крутом участке Ерал — Симская (Челябинская область)[4][неавторитетный источник?]. Следует отметить, что штатное экстренное торможение на локомотивах производится стравливанием воздуха (стоп-кран в пассажирских вагонах), а при полном отсутствии в системе воздуха тормоза блокируются[5][нет в источнике].

В метрополитенах, где поезда совершают частые остановки, использование рекуперативного торможения очень выгодно. Поэтому уже самые ранние метровагоны имели аппаратуру рекуперативного торможения (за исключением метровагонов, производимых в СССР). Наибольший эффект достигается при согласовании моментов торможения прибывающего на станцию поезда с отправлением другого от той же или со смежной станции. Такая схема движения закладывается в расписание движения поездов.

Использование на городском общественном транспорте[править | править код]

На современном городском электротранспорте системы управления обеспечивающие рекуперацию используются почти всегда.

У трамвайных вагонов моделей УКВЗ 71-619А и далее, вагонов ПТМЗ 71-134А и далее, вагонов Уралтрансмаш 71-405 и далее, а также МТТА и МТТА-2 имеется возможность рекуперативного торможения. Оно используется как основное. После замедления вагонов до скорости 1-2 км/ч электродинамический (реостатный) тормоз становится неэффективным и подключается стояночный.

Рекуперативное торможение — это… Что такое Рекуперативное торможение?

Toyota Prius 2004 — серийный (с 1997) автомобиль с системой рекуперативного торможения

Рекуперати́вное торможе́ние — вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Рекуперативное торможение широко применяется на электровозах, электропоездах, современных трамваях и троллейбусах, где при торможении электродвигатели начинают работать как электрогенераторы, а вырабатываемая электроэнергия передаётся через контактную сеть либо другим электровозам, либо в общую энергосистему через тяговые подстанции.

Аналогичный принцип используется на электромобилях, гибридных автомобилях где вырабатываемая при торможении электроэнергия используется для подзарядки аккумуляторов. Некоторые контроллеры двигателей электровелосипедов реализуют рекуперативное торможение.

Проводились также эксперименты по организации рекуперативного торможения других принципов на автомобилях; для хранения энергии использовались маховики, пневматические аккумуляторы (англ.), гидроаккумуляторы и другие устройства.[1]

Использование в автомобилестроении

Использование на легковых и грузовых автомобилях

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде. Наиболее распостраненными автомобилями этих классов является Toyota Prius, Chevrolet Volt.

Есть отдельные случаи применения системы рекууперации для автомобилем с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от одельной батареи, заряжаемой рекуперируемой энергией.

Использование в автоспорте

В сезоне 2009 года в «Формуле-1» на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Впрочем, у «Формулы-1» с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что, по результатам сезона-2009, оснащённые данной системой болиды не демонстрируют превосходства над соперниками на большинстве трасс. Однако, это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1. После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год, на систему KERS налагаются следующие ограничения[2]: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом «Формулы-1», утвержденным FIA на 2014 год предусмотрен переход на более эффективные турбомоторы, в которые будет неотъемлемо встроена система рекуперации.

Использование на железных дорогах

Рекуперативным торможением на железнодорожном транспорте (в частности, на электровозах, оборудованных системой рекуперативного торможения) называется процесс преобразования кинетической энергии движения поезда в электрическую энергию тяговыми электродвигателями (ТЭД), работающими в режиме генераторов. Выработанная электрическая энергия передается в контактную сеть (в отличие от реостатного торможения, при котором выработанная электрическая энергия гасится на тормозных резисторах, то есть преобразовывается в тепло и рассеивается системой охлаждения). Рекуперативное торможение используется для подтормаживания состава в случаях, когда поезд идет по относительно не крутому уклону вниз и использование воздушного тормоза нерационально. То есть, рекуперативное торможение используется для поддержания заданной скорости при движении поезда по спуску. Данный вид торможения дает ощутимую экономию энергии, так как выработанная электрическая энергия передается в контактную сеть и может быть использована другими локомотивами на данном участке контактной сети.

В основном, рекуперативным торможением оборудуются электровозы постоянного тока ввиду простоты метода переключения ТЭД в режим генератора. В электровозах переменного тока существует проблема, которая заключается в преобразовании выработанного постоянного электрического тока в переменный и синхронизация его с частотой тягового тока (так как тяговый ток в контактной сети переменный), однако эта проблема решается с помощью тиристорных преобразователей [3].

Рекуперативное торможение на железнодорожных локомотивах может использоваться для подтормаживания в экстренных аварийных случаях при отказе воздушного тормоза, что не является редкостью на отечественных железных дорогах. В частности, имеются сведения о неоднократном применении машинистами рекуперативного торможения на крутом участке Кропачево — Симская (Челябинская область).[4] Следует отметить, что штатное торможение на локомотивах производится стравливанием воздуха (стоп-кран в пассажирских вагонах), а при полном отсутствии в системе воздуха тормоза блокируются.[5]

Примечания

См. также

Ссылки

Что такое рекуперативное торможение | MBH News

С момента выхода в свет Toyota Prius стукнуло уже за 20 лет, и с тех пор концепция рекуперативного(регенеративного) торможения стала достаточно известной, как метод повышения дальности пробега в гибридных и электрических транспортных средствах. Но знаете ли вы, что применение не ограничивается EV автомобилями? В наши дни вы можете найти ее во всем, в том числе велосипедах, скейтбордах и самокатах.

(демонстрация системы рекуперации энергии в bmw)

Давайте же разберемся, как работает эта технология, насколько она продуктивна в различных средствах передвижения и разумно ли везде ее устанавливать.

Что такое рекуперативное торможение

Движущиеся объекты обладают кинетической энергией, а когда применяется тормоз для замедления, всей этой мощи необходимо куда-то идти.

Вернемся немного в прошлое, давние времена эры неандертальцев или просто машин с ДВС. В таких автомобилях тормоза основаны исключительно на трении, поэтому при замедлении вся энергия превращается в тепло, а значит уходит в никуда, просто теряется в окружающей среде.

Но мы все же эволюционировали и нашли пути получше. Регенеративное торможение использует мотор электромобиля в качестве генератора для преобразования основной доли кинетической энергии, теряемой при замедлении, назад в батарею. В следующий раз, когда машина ускоряется, она расходует часть энергии, ранее сохраненную от рекуперативного торможения.

(Регенеративная система bmw i3)

Важно понять, что регенеративное торможение не является магическим увеличителем диапазона пробега электромобилей. Оно не делает машины более эффективными как таковые, а просто делает их менее неэффективными. В принципе, самым лучшим вариантом езды будет разгон до постоянной скорости, а затем никогда не касаться педали тормоза. Поскольку чтобы замедлиться, а потом снова вернуться к прежней скорости, потребуются лишние затраты сил, то вы получите куда больший диапазон хода, в первую очередь просто не замедляясь.

Но, очевидно, что это не реалистично. Так как нам приходится снижать скорость многократно, рекуперация — это следующий лучший вариант, так как она делает этот процесс менее бесполезным.

Насколько хорошо рекуперативное торможение

Чтобы правильно оценить данную технологию, нам нужно посмотреть на два разных параметра: коэффициент полезного действия(КПД) и эффективность. Несмотря на кажущееся сходство, они совершенно разные. КПД говорит о том, с каким успехом захватывается «потерянная» мощность торможения. Все превратилось в тепло или удалось перевести кинетический потенциал в нужное русло? С другой стороны, эффективность относится к тому, как сильно влияет регенеративное торможение на длину пути. Значительно ли увеличится ваш диапазон, или вы даже не заметите большой разницы?

(визуализация работы системы рекуперация энергии торможения в машинах VW — Volkswagen)

КПД

Никакая машина не способна достичь коэффициента полезного действия в 100% (без нарушения законов физики), так как любая передача энергии неизбежно повлечет за собой потерю в форме тепла, света, шума и т. д. КПД процесса зависит от многих факторов, таких как двигатель, батарея и контроллер, но часто значение оценивается в районе 60-70%. По словам Tesla, их технология обычно теряет 10-20% кинетического потенциала при попытке его захватить, а затем еще 10-20% при преобразовании отложенных запасов обратно в ускорение. Это довольно стандартные числа для основной массы электрических транспортных средств, включая машины, грузовики, велосипеды, самокаты и т. д.

Отметим, что эти 70% не говорят нам, что регенеративное торможение даст 70% -ный рост пути от одного заряда. Технология не приведет к увеличению диапазона от 100 км до 170 км. Это лишь означает, что 70% кинетической энергии, потерянной во время торможения, может быть снова возвращено.

Поэтому рассмотрение лишь КПД системы мало что значит. Что должно нас больше заинтересовать, так это эффективность рекуперативного торможения.

Эффективность

Здесь все куда интереснее. Эффективность рекуперативного торможения — это показатель того, насколько система способна увеличить запас хода транспортного средства.

Как вы, наверное, уже догадались, показатель значительно варьируется в зависимости от факторов, включая условия движения, местность и размер транспортного средства.

Немалое влияние оказывают условия вождения. Вы увидите значительно лучшую отдачу в городе, где приходится многократно сбрасывать скорость на светофорах или в пробках, чем на шоссе. Ландшафт также играет весомую роль. Подъем в гору не дает вам много шансов на остановку, а вот при спуске для безопасности часто нужно притормаживать, что позволит преобразовать больший объем кинетических запасов. На длинных склонах рекуперативная система может применяться почти без остановок, чтобы регулировать скорость, тем самым заряжая аккумулятор в течении продолжительного промежутка.

Размер транспортного средства может быть самым значительным фактором для данного показателя по той простой причине, что более тяжелые тела содержат в себе гораздо больший импульс и кинетическую энергию. Подобно тому, как большой маховик является более эффективным, четырехколесный автомобиль имеет куда больше кинетической энергии при движении, чем мотоцикл или самокат.

Эффективность системы регенерации в автомобилях

Данные для сравнения могут быть несколько сложными. Машины Tesla выдают мощность рекуперативного торможения в 60 кВт при жесткой остановке, но это не отвечает на более интересный вопрос. Мы хотим знать, сколько энергии мы регенерируем во время поездки, а не насколько сильны наши тормоза каждый раз, когда мы месим педаль.

К счастью, ряд водителей Tesla смогли посчитать возврат энергии, используя различные приложения для отслеживания данных. Владельцы Model S сообщили о возмещении около 32% от общего потребления энергии в момент подъема, а затем спуска на холмистой местности. Таким образом, при таком коэффициенте ход увеличивается со 100 до 132 км. Другой собственник рассказал о регенерации 28% энергии (форум на датском языке). Остальные же пишут, что во время обычных поездок возвращается в среднем 15-20% от общего потребления.

Другие автопроизводители также использую данную систему в своих машинах. Например Audi говорит, что технология рекуперативного торможения, установленная в Audi Q7 позволит сэкономить до 3% топлива. Но если брать только электромобили, то компания обещает увеличение длины пути на 30% в их будущей модели Audi e-Tron.

Эффективность рекуперативного торможения в велосипедах, самокатах, скейтбордах и других персональных EV

Для небольших электрических транспортных средств цифры не столь оптимистичны. На многих велосипедах с функцией рекуперативного торможения средним показателем является 4-5% регенерации, максимум 8% в холмистых районах. Другие персональные электромобили, включая самокаты и скейтборды, имеют схожие результаты.

Как мы писали выше, столь небольшие цифры во многом связаны с меньшим весом данных средств. У них просто нет большого импульса и, следовательно, они имеют меньшую кинетическую энергию для преобразования обратно аккумулятор.

А это вообще важно, насколько хорошо работают рекуперативные тормоза?

В индустрии электрических велосипедов регенеративное торможение иногда может использоваться скорее как маркетинговый инструмент, чем как целесообразное нововведение. Поскольку технология, как правило, возможна только в электрических байках с более крупными безредукторными двигателями, то производители таких велосипедов будут обязательно использовать столь эффективную разработку в своих моделях. В то же время компании, выпускающие байки со среднеразмерными приводами и другими редукторными моторами, которые не приспособлены к регенеративному торможению, относят технологию в разряд неэффективных и просто не ставят.

Истина заключается в том, что для небольших и персональных транспортных средств рекуперация не так эффективна, как в крупных электромобилях, однако эта функция все равно имеет множество преимуществ.

Одним из самых весомых плюсов разработки можно назвать применение в качестве еще одной замедляющей силы для небольших персональных EV. К примеру, электрический самокат Xiaomi M365 для переднего моторного колеса использует только остановку регенерацией, в то время как для заднего колеса применяется традиционный дисковый тормоз. Это означает, что самокат имеет два независимых элемента замедления хода с одним рычагом управления для их активации, что снижает стоимость, вес и сложность сборки.

Рекуперация также позволяет внести механизм остановки в скейтборды — подвиг, который ранее выполнялся через трение подошвы вашей обуви о тротуар. Данная функция является очень полезной для безопасности в связи с появлением популярных моделей, достигающих скоростей более 30 км/ч.

Еще одним преимуществом регенеративного торможения является продление срока службы обычным тормозным деталям, таким как кабели и тормозные колодки. Постоянное обслуживание и замена данных частей раздражает, а если учесть, что электрические велосипеды и самокаты путешествуют намного дальше и быстрее, чем их не электрические братья, то детали изнашиваются намного раньше.

В конце концов, регенеративное торможение никогда не будет столь полезным в небольших средствах передвижения, как в крупных, просто из-за законов физики. Поэтому отсутствие технологии на электрических велосипедах и других малых EV для личного пользования не есть что-то ужасное. Однако преимущества использования этой разработки, без учета простого перехвата мощностей, нельзя игнорировать. И эй, вы будете получать бесплатный 5%-ный рост диапазона каждый день!

Рекуперативное торможение Википедия

Toyota Prius 2004 — серийный (с 1997) автомобиль с системой рекуперативного торможения У этого термина существуют и другие значения, см. Тормоз.

Рекуперати́вное торможе́ние (от лат. recuperatio «обратное получение; возвращение») — вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Рекуперативное торможение широко применяется на электровозах, электропоездах, современных трамваях и троллейбусах, где при торможении электродвигатели начинают работать как электрогенераторы, а вырабатываемая электроэнергия передаётся через контактную сеть либо другим электровозам, либо в общую энергосистему через тяговые подстанции.

Аналогичный принцип используется на электромобилях, гибридных автомобилях, где вырабатываемая при торможении электроэнергия используется для подзарядки аккумуляторов. Некоторые контроллеры двигателей электровелосипедов реализуют рекуперативное торможение.

Проводились также эксперименты по организации рекуперативного торможения других принципов на автомобилях; для хранения энергии использовались маховики, пневматические аккумуляторы, гидроаккумуляторы и другие устройства.[1]

Использование в автомобилестроении[ | ]

Использование на легковых и грузовых автомобилях[ | ]

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде. Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,3,X,Y

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже

Рекуперативное торможение — Википедия. Что такое Рекуперативное торможение

Toyota Prius 2004 — серийный (с 1997) автомобиль с системой рекуперативного торможения

Рекуперати́вное торможе́ние — вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Рекуперативное торможение широко применяется на электровозах, электропоездах, современных трамваях и троллейбусах, где при торможении электродвигатели начинают работать как электрогенераторы, а вырабатываемая электроэнергия передаётся через контактную сеть либо другим электровозам, либо в общую энергосистему через тяговые подстанции.

Аналогичный принцип используется на электромобилях, гибридных автомобилях, где вырабатываемая при торможении электроэнергия используется для подзарядки аккумуляторов. Некоторые контроллеры двигателей электровелосипедов реализуют рекуперативное торможение.

Проводились также эксперименты по организации рекуперативного торможения других принципов на автомобилях; для хранения энергии использовались маховики, пневматические аккумуляторы (англ.), гидроаккумуляторы и другие устройства.[1]

Использование в автомобилестроении

Использование на легковых и грузовых автомобилях

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде. Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,X,M

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже в городском цикле при частых торможениях. Экономия энергии за счёт рекуперации в лучшем случае составляет доли процента, и поэтому система рекуперативного торможения электромобиля неэффективна и не оправдывает усложнения конструкции. К тому же рекуперативное торможение не освобождает от необходимости обычной колодочной тормозной системы, так как на малых оборотах двигателя в режиме генератора его противо-ЭДС мала и недостаточна для полной остановки автомобиля. Также рекуперативное торможение не решает проблему стояночного тормоза (за исключением искусственного динамического удержания ротора на месте, на что расходуется значительная энергия). В современных электромобилях имеется возможность настройки педали «газа» — при её отпускании электромобиль либо продолжает двигаться по инерции накатом, либо переходит в режим рекуперативного торможения.

Однако рекуперация эффективна для электротранспорта с его частыми участками разгона-торможения, где тормозной путь большой и соизмерим с расстоянием между станциями (метро, пригородные электропоезда).

Использование в автоспорте

В сезоне 2009 года в Формуле-1 на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Впрочем, у Формулы-1 с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что по результатам сезона-2009 оснащённые данной системой болиды не демонстрировали превосходства над соперниками на большинстве трасс. Однако это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1. После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год на систему KERS налагаются следующие ограничения[2]: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом Формулы-1, утверждённым FIA на 2014 год, предусмотрен переход на более эффективные турбомоторы со встроенной системой рекуперации (ERS). Применение двойной системы рекуперации (кинетической и тепловой) в сезонах 2014—2015 годов стало гораздо более актуально из-за введения жёстких регламентных ограничений на расход топлива — не более 100 кг на всю гонку (в прошлые годы 150 кг) и мгновенный расход не более 100 кг в час. Неоднократно можно было наблюдать, как во время гонки при выходе из строя системы рекуперации машина начинала быстро терять позиции.

Рекуперативное торможение используется также в гонках на выносливость. Такой системой оснащены спортпрототипы класса LMP1 заводских команд Audi R18 и Toyota TS050 Hybrid[en], Porsche 919 Hybrid[en].

Использование на железных дорогах

Рекуперативным торможением на железнодорожном транспорте (в частности, на электровозах и электропоездах, оборудованных системой рекуперативного торможения) называется процесс преобразования кинетической энергии движения поезда в электрическую энергию тяговыми электродвигателями (ТЭД), работающими в режиме генераторов. Выработанная электрическая энергия передается в контактную сеть (в отличие от реостатного торможения, при котором выработанная электрическая энергия гасится на тормозных резисторах, то есть преобразовывается в тепло и рассеивается системой охлаждения). Рекуперативное торможение используется для подтормаживания состава в случаях, когда поезд идет по относительно некрутому уклону вниз, и использование воздушного тормоза нерационально. То есть, рекуперативное торможение используется для поддержания заданной скорости при движении поезда по спуску. Данный вид торможения дает ощутимую экономию энергии, так как выработанная электрическая энергия передается в контактную сеть и может быть использована другими локомотивами на данном участке контактной сети.

Рекуперативное торможение имеет следующие проблемы, которые требуют особого учета при разработке схемы электровоза для их решения:

а) тормозной момент пропорционален не скорости, а разности между скоростью и «скоростью нейтрали», зависящей от настройки системы управления электровоза и напряжения контактной сети. Так, при скорости ниже нейтрали ТЭДы будут тянуть, а не тормозить. Таким образом, при скорости вблизи нейтрали даже небольшие (в процентах) скачки напряжения сети сильно меняют упомянутую разность, а с ней и момент, и приводят к рывкам. Правильное проектирование схемы электровоза снижает этот фактор.

б) при параллельном включении якорей рекуперирующих ТЭД схема может получиться неустойчивой при боксовании и склонной к «сваливанию» в режим, когда один ТЭД работает в моторном режиме, питаясь от второго ТЭДа, работающего как генератор, что подавляет торможение. Решение: включение обмоток возбуждения крест-накрест от «чужого» ТЭД (см. схемы ВЛ8 и ВЛ10).

в) необходимы меры защиты против короткого замыкания контактной сети или на самом электровозе. Для этого используются быстродействующие контакторы, срабатывание которых вызывает в схеме переходный процесс, перемагничивающий обмотки возбуждения ТЭД и ликвидирующий таким образом остаточную намагниченность статора (возбуждения генерации от которой может быть вполне достаточно для перегрева или пожара в случае КЗ в сети).

Ранее рекуперативным торможением оборудовались электровозы постоянного тока ввиду простоты метода переключения ТЭДов в режим генератора (в СССР схема появилась ещё на сурамском поколении электровозов, например, ВЛ22 и с незначительными изменениями применялась до ВЛ11 включительно, в ней решены все три описанные выше проблемы). В электровозах переменного тока существует проблема, которая заключается в преобразовании выработанного постоянного электрического тока в переменный и синхронизация его с частотой тягового тока, эта проблема решается с помощью тиристорных преобразователей[3]. Электровозы переменного тока, созданные до использования тиристорных инверторов (ВЛ60, ЧС4 и ЧС4Т, а также все поколения ВЛ80, кроме ВЛ80Р) не имели возможности рекуперативного торможения.

Рекуперативное торможение редко используется в пассажирском движении, по крайней мере на «классических» до-тиристорных электровозах вроде ВЛ10 и ВЛ11 из-за возникновение ощутимых рывков при переключении тормозной рукоятки локомотива со ступени на ступень, а также при скачках напряжения контактной сети. Большинство пассажирских локомотивов той поры вовсе не имели этой возможности.

Кроме того, рекуперативное торможение, как и реостатное, сжимает состав и создает удар от сжатия сцепных устройств.

Тем не менее рекуперативное торможение широко применяется на моторвагонном подвижном составе (МВПС) постоянного тока (ЭР2Р, ЭР2Т и более поздние электропоезда). В отличие от поездной работы, в МВПС обычно постоянен вес поезда (его почти никогда не переформируют), а также намного выше тяговооружённость. Это сильно упрощает создание автомата управления рекуперативным торможением.

Рекуперативное торможение на постоянном токе требует переоборудования тяговых подстанций. Как минимум возможно рассеяние энергии на стационарных резисторах в случае изменения направления тока в фидерах ПС (при этом сохраняется возможность использования энергии рекуперации для тяги другого поезда на этом же участке, что важно при тяжелом профиле пути). Как максимум — необходима установка инверторов.

Рекуперативное торможение на железнодорожных локомотивах может использоваться для подтормаживания в экстренных аварийных случаях при отказе воздушного тормоза. В частности, имеются сведения о неоднократном применении машинистами рекуперативного торможения на крутом участке Ерал — Симская (Челябинская область).[4] Следует отметить, что штатное торможение на локомотивах производится стравливанием воздуха (стоп-кран в пассажирских вагонах), а при полном отсутствии в системе воздуха тормоза блокируются.[5]

Использование в метрополитенах

В метрополитенах, где поезда совершают частые остановки, использование рекуперативного торможения очень выгодно. Поэтому уже самые ранние метровагоны имели аппаратуру рекуперативного торможения (за исключением метровагонов, производимых в СССР). Наибольший эффект достигается при согласовании моментов торможения прибывающего на станцию поезда с отправлением другого от той же или со смежной станции. Такая схема движения закладывается в расписание движения поездов.

Использование на городском общественном транспорте

На современном городском электротранспорте системы управления обеспечивающие рекуперацию используются почти всегда.

У трамвайных вагонов моделей УКВЗ 71-619А и далее, вагонов ПТМЗ 71-134А и далее, вагонов Уралтрансмаш 71-405 и далее, а также МТТА и МТТА-2 имеется возможность рекуперативного торможения. Оно используется как основное. После замедления вагонов до скорости 1-2 км/ч электродинамический (реостатный) тормоз становится неэффективным и подключается стояночный.

Примечания

См. также

Ссылки

Что такое рекуперация торможения в гибридных авто

Дата публикации: .
Категория: Автотехника.

Тормоза являются очень важной частью любого автомобиля. От их исправной работы во многом зависит безопасность движения. Однако, редко кто из водителей задумывался, насколько много энергии расходуется «впустую» при торможении. От трения тормозных колодок о диски выделяется значительное количество тепла, которое просто уходит на обогрев окружающего воздуха. А что если эту энергию аккумулировать и использовать повторно? Все возможно и процесс этот называется рекуперацией (то есть, частичный возврат энергии). Такие системы уже довольно давно устанавливают при производстве «гибридов» и электромобилей. В нашей обзорной статье мы постараемся кратко рассказать о разнообразных способах рекуперации.

Разновидности систем рекуперации энергии

По способу возврата энергии торможения различают три основных разновидности таких систем:

  • электрические;
  • механические;
  • гидравлические.

Первые в настоящее время достаточно широко применяют на обычных легковых автомобилях (в основном, гибридных и электрических). Вторые используют только для спортивных болидов. Третьи в последнее время находят применение на большегрузных коммерческих грузовиках и городских автобусах.

Система рекуперации на «гибридах» и электромобилях

На данных автомобилях устанавливают электрические системы возврата энергии. Как это работает? Сначала немного теории. Любой электродвигатель постоянного тока при подаче на него напряжения начинает вращаться и работать как мотор. Если же раскрутить его вал механическим способом, то на клеммах вырабатывается напряжение. То есть, электромотор может выполнять одновременно две функции: в первом случае двигателя, а во втором генератора. Этот принцип и лег в основу электрических систем рекуперации энергии, который с успехом реализуют на электро- и гибридных автомобилях. Ведь и те и другие изначально оборудованы электродвигателями, которые довольно просто перевести в режим генератора. Принцип работы таких систем достаточно прост:

  • При наборе скорости (то есть при нажатии на педаль газа) электродвигатель питается от аккумуляторной батареи и передает через трансмиссию вращательный момент на колеса автомобиля.
  • В момент торможения встроенная электроника переключает его в режим генератора.
  • Усилие, необходимое для его «раскручивания» замедляет вращение трансмиссии и способствует процессу остановки транспортного средства.
  • Вырабатываемое мотором/генератором напряжение через специальный контроллер подзаряжает аккумуляторную батарею. То есть, часть энергии удается возвратить для ее последующего использования.

Рекуперативное торможение

Важно! Естественно, при экстренном торможении рекуперативная система не может резко остановить автомобиль. Вследствие этого полностью отказываться от привычных конвекционных тормозов нельзя. Поэтому в зависимости от степени нажатия на педаль тормоза встроенный компьютер «принимает решение» и подключает в помощь к рекуперативному торможению стандартную тормозную систему автомобиля.

Две системы торможения

Достоинствами применения электрических систем рекуперации энергии являются:

  • для электромобилей – увеличение автономности без очередной подзарядки аккумуляторных батарей;
  • для гибридных транспортных средств – снижение расхода топлива.

Система рекуперации на автомобилях со «Старт-Стопом»

Любому автомобилисту известно, что при запуске двигателя происходит наибольший расход энергии аккумулятора. Транспортные средства, оборудованные системой «Старт-Стоп», отличаются тем, что после каждой остановки мотор автоматически глушится и потом при возобновлении движения заводится. То есть, батарея быстро теряет свою емкость и «требует» подзарядки. А времени, чтобы это сделать (с помощью штатного генератора) в условиях коротких пробегов и частых остановок на светофорах и в пробках, может просто не хватить. И вот тут электрическая система рекуперации смогла бы обеспечить дополнительный заряд аккумулятора. Существенным минусом ее применения на автомобилях «Старт-Стоп» является удорожание самого транспортного средства за счет установки специального генератора (подключаемого непосредственно к трансмиссии в момент торможения) и усложнение всей электронной «начинки».

Система рекуперации увеличивает стоимость автомобиля

SMART системы рекуперации

Как работает эта так называемая «умная» система? При разгоне транспортного средства, когда двигатель испытывает повышенные нагрузки, происходит отключение штатного генератора. Это позволяет мотору быстрее набрать обороты и израсходовать меньше топлива. При торможении генератор включается в работу и происходит рекуперация энергии. В процессе движения электроника «отслеживает» величину емкости батареи. При ее уменьшении (до 75% от номинальной) автоматически включает генератор, чтобы произвести подзарядку аккумулятора.

Система рекуперации с накопительным конденсатором

Период торможения автомобиля длится достаточно короткое время. Поэтому из-за технологических особенностей устройства современных аккумуляторных батарей (а вернее химических процессов, происходящих при их подзарядке) сохранить большое количество энергии в них довольно трудно. Компания Mazda разработала систему рекуперации с использованием накопительного конденсатора. В процессе торможения специальный генератор с напряжением 12÷25 В за короткий отрезок времени заряжает емкость. Далее накопленная энергия через конвертор (DC/DC) преобразуется в привычные 12 В и поступает либо на различные потребители (кондиционер, CD-плейер и так далее), либо подзаряжает штатную аккумуляторную батарею. По утверждению производителя экономия топлива составляет не менее 10%.

Система рекуперации с накопительным конденсатором

Период торможения автомобиля длится достаточно короткое время. Поэтому из-за технологических особенностей устройства современных аккумуляторных батарей (а вернее химических процессов, происходящих при их подзарядке) сохранить большое количество энергии в них довольно трудно. Компания Mazda разработала систему рекуперации с использованием накопительного конденсатора. В процессе торможения специальный генератор с напряжением 12÷25 В за короткий отрезок времени заряжает емкость. Далее накопленная энергия через конвертор (DC/DC) преобразуется в привычные 12 В и поступает либо на различные потребители (кондиционер, CD-плейер и так далее), либо подзаряжает штатную аккумуляторную батарею. По утверждению производителя экономия топлива составляет не менее 10%.

Механическая рекуперация

Механический способ рекуперации кинетической энергии:

  • В момент торможения специальный маховик, установленный в заполненном вакуумом кожухе (для снижения потерь от трения), раскручивается до значительных оборотов (50000÷70000 об/мин).
  • При старте энергия от вращающегося маховика передается на колеса автомобиля в течение нескольких секунд и «помогает» двигателю «разогнать» авто до нужной скорости. Это приводит к тому, что в момент трогания с места автомобиль получает дополнительные 70÷80 лс мощности.

Механическая рекуперация

Механическая рекуперация

Для информации! Экспериментальный прототип Volvo S60 с карбоновым маховиком Ø=20 см и весом всего 6 кг) разгонялся до скорости в 100 км/час всего за 5,5 сек. При испытаниях в так называемом городском цикле (с большим количеством остановок) экономия топлива составила 25% (по сравнению с базовой комплектацией).

В настоящее время такой вид рекуперации энергии нашел свое практическое применение только в болидах Формулы-1, а также в эксклюзивных моделях от Porsche и Ferrari. Но инженеры-автомобилестроители считают, что в будущем такие системы могут быть установлены и на обычных городских легковых автомобилях.

Гидравлическая система рекуперации

Автомобиль с гидравлической системой рекуперации энергии оборудован специальным мотором-помпой и двумя гидро аккумуляторами (низкого и высокого давления). Принцип работы:

  • При нажатии на педаль тормоза помпа подключается к трансмиссии автомобиля и перекачивает жидкость из гидро аккумулятора низкого давления в баллон, заполненный газообразным азотом (который является своего рода накопителем энергии). Газ при этом сжимается и давление в емкости повышается. Усилие, необходимое для работы помпы замедляет движение автомобиля и «помогает» его остановить.
  • До тех пор, пока водитель снова не нажмет на педаль газа, жидкость остается под давлением в аккумуляторе. После этого она поступает в мотор-помпу и передает (через трансмиссию) сохраненную энергию на колеса автомобиля.

Гидравлическая рекуперация

Гидравлическая рекуперация

Разработчики утверждают, что использование таких систем рекуперации позволяет «вернуть» в автомобиль до 80% энергии, обычно затрачиваемой «впустую» при торможении. Однако значительные размеры и вес дополнительного оборудования, которое необходимо установить на автомобиль для реализации такой системы рекуперативного торможения, ограничивают ее применение. Поэтому в настоящее время ее используют только на большегрузных транспортных средствах и общественном городском транспорте, работающим в режиме частых остановок и возобновления движения.

Рекуперативное торможение — Википедия

Toyota Prius 2004 — серийный (с 1997) автомобиль с системой рекуперативного торможения У этого термина существуют и другие значения, см. Тормоз.

Рекуперати́вное торможе́ние — вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Рекуперативное торможение широко применяется на электровозах, электропоездах, современных трамваях и троллейбусах, где при торможении электродвигатели начинают работать как электрогенераторы, а вырабатываемая электроэнергия передаётся через контактную сеть либо другим электровозам, либо в общую энергосистему через тяговые подстанции.

Аналогичный принцип используется на электромобилях, гибридных автомобилях, где вырабатываемая при торможении электроэнергия используется для подзарядки аккумуляторов. Некоторые контроллеры двигателей электровелосипедов реализуют рекуперативное торможение.

Проводились также эксперименты по организации рекуперативного торможения других принципов на автомобилях; для хранения энергии использовались маховики, пневматические аккумуляторы (англ.), гидроаккумуляторы и другие устройства.[1]

Использование в автомобилестроении

Использование на легковых и грузовых автомобилях

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде. Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,X,M

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже в городском цикле при частых торможениях. Экономия энергии за счёт рекуперации в лучшем случае составляет доли процента, и поэтому система рекуперативного торможения электромобиля неэффективна и не оправдывает усложнения конструкции. К тому же рекуперативное торможение не освобождает от необходимости обычной колодочной тормозной системы, так как на малых оборотах двигателя в режиме генератора его противо-ЭДС мала и недостаточна для полной остановки автомобиля. Также рекуперативное торможение не решает проблему стояночного тормоза (за исключением искусственного динамического удержания ротора на месте, на что расходуется значительная энергия). В современных электромобилях имеется возможность настройки педали «газа» — при её отпускании электромобиль либо продолжает двигаться по инерции накатом, либо переходит в режим рекуперативного торможения.

Однако рекуперация эффективна для электротранспорта с его частыми участками разгона-торможения, где тормозной путь большой и соизмерим с расстоянием между станциями (метро, пригородные электропоезда).

Использование в автоспорте

В сезоне 2009 года в Формуле-1 на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Впрочем, у Формулы-1 с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что по результатам сезона-2009 оснащённые данной системой болиды не демонстрировали превосходства над соперниками на большинстве трасс. Однако это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1. После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год на систему KERS налагаются следующие ограничения[2]: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом Формулы-1, утверждённым FIA на 2014 год, предусмотрен переход на более эффективные турбомоторы со встроенной системой рекуперации (ERS). Применение двойной системы рекуперации (кинетической и тепловой) в сезонах 2014—2015 годов стало гораздо более актуально из-за введения жёстких регламентных ограничений на расход топлива — не более 100 кг на всю гонку (в прошлые годы 150 кг) и мгновенный расход не более 100 кг в час. Неоднократно можно было наблюдать, как во время гонки при выходе из строя системы рекуперации машина начинала быстро терять позиции.

Рекуперативное торможение используется также в гонках на выносливость. Такой системой оснащены спортпрототипы класса LMP1 заводских команд Audi R18 и Toyota TS050 Hybrid[en], Porsche 919 Hybrid[en].

Использование на железных дорогах

Рекуперативным торможением на железнодорожном транспорте (в частности, на электровозах и электропоездах, оборудованных системой рекуперативного торможения) называется процесс преобразования кинетической энергии движения поезда в электрическую энергию тяговыми электродвигателями (ТЭД), работающими в режиме генераторов. Выработанная электрическая энергия передается в контактную сеть (в отличие от реостатного торможения, при котором выработанная электрическая энергия гасится на тормозных резисторах, то есть преобразовывается в тепло и рассеивается системой охлаждения). Рекуперативное торможение используется для подтормаживания состава в случаях, когда поезд идет по относительно некрутому уклону вниз, и использование воздушного тормоза нерационально. То есть, рекуперативное торможение используется для поддержания заданной скорости при движении поезда по спуску. Данный вид торможения дает ощутимую экономию энергии, так как выработанная электрическая энергия передается в контактную сеть и может быть использована другими локомотивами на данном участке контактной сети.

Рекуперативное торможение имеет следующие проблемы, которые требуют особого учета при разработке схемы электровоза для их решения:

а) тормозной момент пропорционален не скорости, а разности между скоростью и «скоростью нейтрали», зависящей от настройки системы управления электровоза и напряжения контактной сети. Так, при скорости ниже нейтрали ТЭДы будут тянуть, а не тормозить. Таким образом, при скорости вблизи нейтрали даже небольшие (в процентах) скачки напряжения сети сильно меняют упомянутую разность, а с ней и момент, и приводят к рывкам. Правильное проектирование схемы электровоза снижает этот фактор.

б) при параллельном включении якорей рекуперирующих ТЭД схема может получиться неустойчивой при боксовании и склонной к «сваливанию» в режим, когда один ТЭД работает в моторном режиме, питаясь от второго ТЭДа, работающего как генератор, что подавляет торможение. Решение: включение обмоток возбуждения крест-накрест от «чужого» ТЭД (см. схемы ВЛ8 и ВЛ10).

в) необходимы меры защиты против короткого замыкания контактной сети или на самом электровозе. Для этого используются быстродействующие контакторы, срабатывание которых вызывает в схеме переходный процесс, перемагничивающий обмотки возбуждения ТЭД и ликвидирующий таким образом остаточную намагниченность статора (возбуждения генерации от которой может быть вполне достаточно для перегрева или пожара в случае КЗ в сети).

Ранее рекуперативным торможением оборудовались электровозы постоянного тока ввиду простоты метода переключения ТЭДов в режим генератора (в СССР схема появилась ещё на сурамском поколении электровозов, например, ВЛ22 и с незначительными изменениями применялась до ВЛ11 включительно, в ней решены все три описанные выше проблемы). В электровозах переменного тока существует проблема, которая заключается в преобразовании выработанного постоянного электрического тока в переменный и синхронизация его с частотой тягового тока, эта проблема решается с помощью тиристорных преобразователей[3]. Электровозы переменного тока, созданные до использования тиристорных инверторов (ВЛ60, ЧС4 и ЧС4Т, а также все поколения ВЛ80, кроме ВЛ80Р) не имели возможности рекуперативного торможения.

Рекуперативное торможение редко используется в пассажирском движении, по крайней мере на «классических» до-тиристорных электровозах вроде ВЛ10 и ВЛ11 из-за возникновение ощутимых рывков при переключении тормозной рукоятки локомотива со ступени на ступень, а также при скачках напряжения контактной сети. Большинство пассажирских локомотивов той поры вовсе не имели этой возможности.

Кроме того, рекуперативное торможение, как и реостатное, сжимает состав и создает удар от сжатия сцепных устройств.

Тем не менее рекуперативное торможение широко применяется на моторвагонном подвижном составе (МВПС) постоянного тока (ЭР2Р, ЭР2Т и более поздние электропоезда). В отличие от поездной работы, в МВПС обычно постоянен вес поезда (его почти никогда не переформируют), а также намного выше тяговооружённость. Это сильно упрощает создание автомата управления рекуперативным торможением.

Рекуперативное торможение на постоянном токе требует переоборудования тяговых подстанций. Как минимум возможно рассеяние энергии на стационарных резисторах в случае изменения направления тока в фидерах ПС (при этом сохраняется возможность использования энергии рекуперации для тяги другого поезда на этом же участке, что важно при тяжелом профиле пути). Как максимум — необходима установка инверторов.

Рекуперативное торможение на железнодорожных локомотивах может использоваться для подтормаживания в экстренных аварийных случаях при отказе воздушного тормоза. В частности, имеются сведения о неоднократном применении машинистами рекуперативного торможения на крутом участке Ерал — Симская (Челябинская область).[4] Следует отметить, что штатное торможение на локомотивах производится стравливанием воздуха (стоп-кран в пассажирских вагонах), а при полном отсутствии в системе воздуха тормоза блокируются.[5]

Использование в метрополитенах

В метрополитенах, где поезда совершают частые остановки, использование рекуперативного торможения очень выгодно. Поэтому уже самые ранние метровагоны имели аппаратуру рекуперативного торможения (за исключением метровагонов, производимых в СССР). Наибольший эффект достигается при согласовании моментов торможения прибывающего на станцию поезда с отправлением другого от той же или со смежной станции. Такая схема движения закладывается в расписание движения поездов.

Использование на городском общественном транспорте

На современном городском электротранспорте системы управления обеспечивающие рекуперацию используются почти всегда.

У трамвайных вагонов моделей УКВЗ 71-619А и далее, вагонов ПТМЗ 71-134А и далее, вагонов Уралтрансмаш 71-405 и далее, а также МТТА и МТТА-2 имеется возможность рекуперативного торможения. Оно используется как основное. После замедления вагонов до скорости 1-2 км/ч электродинамический (реостатный) тормоз становится неэффективным и подключается стояночный.

Примечания

См. также

Ссылки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *