Что такое катушка индуктивности и для чего она нужна: Катушка индуктивности — Википедия – Катушка индуктивности что это такое, принцип работы, разновидности катушек

Содержание

Для чего нужна катушка индуктивности

Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или тороидальную форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.

Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.

Разновидности катушек индуктивности

Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.

Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.

Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.

В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном – очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.

Где применяются катушки индуктивности

Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.

Совместно с резисторами или конденсаторами, катушки задействованы в различных цепях, имеющих частотно-зависимые свойства. Прежде всего, это фильтры, колебательные контуры, цепи обратной связи и прочее. Все виды этих приборов способствуют накоплению энергии, преобразованию уровней напряжения в импульсном стабилизаторе.

При индуктивной связи между собой двух и более катушек, происходит образование трансформатора. Эти приборы могут использоваться, как электромагниты, а также, как источник энергии, возбуждающий индуктивно связанную плазму.

Индуктивные катушки успешно используются в радиотехнике, в качестве излучателя и приемника в конструкциях кольцевых и магнитных антенн, работающих с электромагнитными волнами.

Где применяются катушки индуктивности? | Электрознайка. Домашний Электромастер.


Одним из самых распространенных элементов электрических схем является индуктивность. Это в общем случае катушка с проводом с вставленным в нее ферромагнитным сердечником или без него. Рассмотрим применения свойств катушки индуктивности в различных областях техники.

Индуктивность применяется в различных приборах в радиотехнике, электротехнике, технике связи, электронике, автоматике и многих других областях.

Это трансформаторы, различные электрические фильтры, электромагнитные реле, преобразователи электрической энергии и т.д.

Если конденсатор – это накопитель электрической энергии (заряда), то индуктивность – это накопитель электромагнитной энергии.

Самое простое применение катушки с проводом – это электромагнит.


При прохождении электрического тока по проводу, вокруг него образуется постоянное магнитное поле. Чем больше витков в катушке и чем больше электрический ток, проходящий через нее, тем больше магнитный поток пронизывающий витки катушки.
Для увеличения силы притяжения электромагнита в катушку вводят ферромагнитный (стальной) сердечник.
Свойство катушки с проводом образовывать магнитное поле, используется в мощных электромагнитах, во всевозможных электромеханических реле, электрических двигателях и генераторах и т.д.

Катушка индуктивности — фильтр 

Катушка индуктивности имеет минимальное сопротивление для прохождения постоянного электрического тока, но для переменного тока имеет большое сопротивление.

Это свойство индуктивности используется для разделения цепей переменного и постоянного токов.
В технике электросвязи и радиосвязи используется множество различных фильтров нижних и верхних частот, схем дистанционного питания и т.д.
Катушка с ферромагнитным стальным сердечником используется в фильтрах блоков питания сетевых выпрямителей для сглаживания пульсаций переменного тока.

 

 Катушка с проводом источник Э.Д.С.

При воздействии на катушку переменного магнитного поля

в ней образуется переменный электрический ток.
Это свойство катушки индуктивности используется в электрических генераторах постоянного и переменного тока.
В них идет преобразование механической энергии в электрическую энергию.

Дизель-генераторные электростанции используют энергию сгорания дизельного топлива; 

Тепловые электростанции – ТЭЦ используют энергию газа, угля, и др.;

Гидроэлектростанции – ГЭС используют энергию падающей воды;
Атомные электростанции — АЭС используют энергию деления атомного ядра.


Во всех циклах преобразования энергии конечным элементом является электрический генератор одно или трех — фазного переменного тока.

 

Катушка индуктивности — трансформатор.

При протекании переменного тока через катушку вокруг нее образуется переменное магнитное поле, которое в свою очередь воздействует на соседнюю катушку (обмотку) и создает в ней переменный электрический ток.
Трансформаторы тока – напряжения используются для преобразования переменного электрического напряжения и тока одной величины в напряжение и ток другой величины.
Трансформаторы служат также для согласования сопротивления нагрузки с внутренним сопротивлением источника (генератора) электрической энергии.


Трансформаторы используются во всех областях электротехники, радиотехники, электросвязи, автоматики и т.д.

 Катушка индуктивности — элемент колебательного контура.

Если объединить свойства конденсатора и индуктивности, то можно создать электромагнитный контур для получения синусоидальных колебаний переменного тока. В этом контуре заряд, накопленный в конденсаторе, передается в катушку и преобразуется в магнитное поле. Магнитное поле в свою очередь, наводит ЭДС самоиндукции в катушке, которая и заряжает конденсатор. Процесс этот повторяется многократно, постепенно затухая из-за потерь в контуре.
Колебательные контуры бывают двух видов — параллельный и последовательный.


Колебательные контуры используются для получения незатухающих колебаний синусоидальной формы низкой – НЧ, высокой ВЧ и сверхвысокой СВЧ частот.
Электросвязь, радиотехника, автоматика, космическая связь – перечень применения колебательного контура в технике безграничен.

Вот далеко не полный перечень свойств катушки с проводом в различных устройствах и приборах.

«В чем отличие катушки с током от катушки с током и сердечником?» – Яндекс.Кью

Если вы сравниваете две одинаковых катушки по габаритам, количеству витков и способу намотки, то катушка с сердечником обладает значительно большей индуктивностью. С физической точки зрения это обуславливается следующим.

Если рассмотреть катушку, намотанную без сердечника или на основании, которое является магнитным диэлектриком, то протекающий по виткам электрический ток будет создавать магнитное поле внутри катушки согласно правила правой руки. Единственным проводником для электромагнитного поля, создаваемого катушкой, будет воздух, находящийся вокруг и внутри катушки. Если катушка не полая, а намотана на дерево, гетинакс или картон, соответственно, часть магнитного потока будет распространяться в них.

Если рассмотреть катушку, намотанную на сердечник, то принцип действия будет выглядеть идентично – при протекании электрического тока по виткам будет создаваться магнитный поток внутри катушки.

Но, в виду того, что витки помещены на сердечник, изготовленный из ферромагнитного материала, линиям магнитного поля будет значительно проще перемещаться в этом пространстве. Поэтому за счет наличия магнитного сердечника внутри катушки магнитное поле значительно усиливается, повышая индуктивность.

Благодаря чему можно получить более мощную катушку при тех же габаритных параметрах. Еще один вариант катушки с сердечником – это соленоид с втягиваемым сердечником. Такая катушка совершает механическую работу при протекании электрического тока по обмоткам и применяется в логических цепях.

Катушка зажигания — Википедия

Катушка зажигания

Катушка системы зажигания двигателя  — элемент системы зажигания, который служит для преобразования низковольтного напряжения, поступающего от аккумуляторной батареи или генератора, в высоковольтное.

Основная функция катушки зажигания — генерация высоковольтного электрического импульса на свече зажигания.

Контактная батарейная система зажигания

Катушка зажигания представляет собой высоковольтный импульсный повышающий трансформатор (упрощённая катушка Румкорфа) системы зажигания ДВС, первичная обмотка которого имеет сравнительно небольшое количество витков толстого провода и рассчитана на импульсы низкого напряжения, например 12 вольт (6 вольт на старых автомобилях и мотоциклах), вторичная обмотка выполнена из тонкого провода с большим количеством витков, благодаря чему во вторичной обмотке создаётся высокое импульсное выходное напряжение до 25 000 — 35 000 вольт по формуле: напряжение = индукция в витке × количество витков. Высокое напряжение от катушки зажигания с помощью высоковольтного кабеля подаётся на распределитель (трамблер), от него с помощью высоковольтных кабелей напряжение распределяется по свечам зажигания. Высокое напряжение обеспечивает искру между электродами свечи, тем самым воспламеняя топливо-воздушную смесь.

Раньше катушки зажигания делали с незамкнутым магнитопроводом, в настоящее время появились трансформаторы зажигания с замкнутым магнитопроводом.

Схема включения двухискровой катушки зажигания.

Через первичную обмотку катушки зажигания протекает постоянный ток. Когда поршень подходит к верхней мёртвой точке, цепь первичной обмотки разрывается размыканием контактов прерывателя (это происходит или механическим путём, когда контакты размыкаются кулачком на валу, или с помощью электронных (транзисторных или тиристорных) ключей, в которых управляющий импульс формируется электронной схемой (контактной или бесконтактной, положение коленчатого вала определяется с помощью датчика Холла, индуктивного или иного датчика).

Согласно закону электромагнитной индукции, ЭДС, индуцируемая изменением силы тока в соседнем контуре, равна

E=−L12dIdt{\displaystyle {\mathcal {E}}=-L_{12}{\frac {dI}{dt}}},

учитывая мгновенное изменение силы тока (одномоментное размыкание), следовательно, большое значение производной, а также взаимную индукцию обмоток L12∝N1N2{\displaystyle L_{12}\propto N_{1}N_{2}}, где N2{\displaystyle N_{2}} очень большое число (десятки тысяч витков), во вторичной обмотке наводится импульс э.д.с. амплитудой в десятки киловольт. Высокий потенциал от катушки передаётся на свечи с помощью высоковольтных проводов (изначально применённых Г. Хонольдом в системе зажигания с магнето), и обеспечивает пробой зазора между электродами свечи зажигания.

На некоторых образцах мото- и автотехники с двухцилиндровыми двигателями (например, мотоциклы «Днепр», мотоциклы «Урал», автомобили «Ока») применяются двухискровые катушки зажигания (искра проскакивает одновременно на двух свечах). Топливо-воздушная смесь воспламеняется только в одном цилиндре, так как в другом проходит такт выпуска и воспламеняться нечему.

В последнее время получили распространение индивидуальные катушки зажигания на каждую свечу (по числу цилиндров).

Добавочное сопротивление[править | править код]

Двигатель автомобиля ГАЗ-63
Под цифрой 18 — катушка зажигания, 17 — добавочное сопротивление.

В ряде случаев последовательно первичной обмотке катушки зажигания включается добавочное сопротивление (или дополнительный резистор). На низких оборотах контакты прерывателя оказываются бо́льшую часть времени в замкнутом состоянии и через обмотку протекает ток, более чем достаточный для насыщения магнитопровода. Избыточный ток бесполезно нагревает катушку.

Спираль дополнительного резистора изготавливается из стального сплава, имеющего высокий температурный коэффициент электрического сопротивления. При прохождении избыточного тока сопротивление спирали увеличивается и сила тока уменьшается, таким образом происходит автоматическое регулирование. На высоких оборотах, когда контакты бо́льшую часть времени разомкнуты, нагрев резистора менее значителен (сопротивление спирали невелико). При запуске двигателя добавочное сопротивление шунтируется контактами реле стартера, тем самым повышается энергия электрической искры на свече зажигания.

Некоторые неопытные водители пытаются (бесполезно или с большим трудом) запустить пусковой рукояткой двигатель при «севшем» аккумуляторе, не зная, что нужно принудительно временно шунтировать добавочный резистор (какой-нибудь проволочкой).

К рабочим характеристикам катушки зажигания относят:

  • Индуктивность первичной обмотки;
  • Сопротивление первичной и вторичной обмотки;
  • Коэффициент трансформации;
  • Энергия искры;
  • Напряжение пробоя;
  • Количество образующихся искр в минуту.

Индуктивность[править | править код]

Индуктивность характеризует способность катушки накапливать энергию. Измеряется в Гн – генри, единицах измерения, названных в честь американского ученого Дж. Генри. Энергия, которая накапливается в первичной обмотке, пропорциональна индуктивности. Чем выше индуктивность, тем больше энергии может накопить катушка.

Коэффициент трансформации[править | править код]

Коэффициент трансформации показывает, во сколько раз катушка зажигания увеличивает первичное напряжение. На первичную катушку подается напряжение от аккумулятора в 12 В. Когда первичная цепь разрывается, ток в цепи изменяется — от 6-20 ампер, до 0. Изменение тока в катушке приводит к возникновению ЭДС индукции и образованию напряжения в первичной катушке в 300-400 В. Коэффициент трансформации катушки показывает, во сколько раз увеличивается именно это напряжение. Определяется отношением числа витков вторичной катушки к числу витков первичной катушки, или отношением пробивного напряжения свечи к разнице максимально допустимого напряжение между коллектором и эмиттером транзистора и напряжения бортовой сети питания, которые известны из производственных характеристик катушки зажигания и автомобиля.

Сопротивление[править | править код]

В первичной обмотке – 0,25-0,55 Ом. Во вторичной обмотке – 2-25 кОм. Мощность и энергия искры обратно пропорциональны сопротивлению первичной обмотки катушки: чем оно выше, тем ниже мощность и энергия искры.

Энергия искры[править | править код]

Полезная энергия искры расходуется в течение 1,2 мс[1] – время, за которое сгорает воздушно-топливная смесь. Энергия искрового разряда составляет 0,05-0,1 Дж. В свече зажигания искра образуется вследствие явления дугового разряда, когда между двумя электродами, находящимися в газе, происходит электрический пробой. Напряжение на электродах зависит от размера диаметра свечи и его материала, зазора между электродами и от состава воздушно-топливной смеси, давления в камере сгорания и температуры. Во время старта двигателя и разгона автомобиля напряжение на электродах – максимальное, так как свеча не разогрета. При постоянной скорости – напряжение минимально. Чтобы свеча работала эффективно и не давала пропусков, напряжение, генерируемое катушкой, должно быть в 1,5 больше, чем напряжение, необходимое для пробоя зазора.

Напряжение пробоя[править | править код]

В зазоре между электродами свечи зажигания происходит пробой, когда напряжение на электродах становится равным напряжению пробоя. Значение напряжения пробоя зависит от величины зазора между электродами, давления и температуры воздушно-топливной смеси. При первом запуске двигателя напряжение должно быть выше, чтобы произошел пробой и образовалась искра, так как топливо и воздух в камере сгорания холодные.

Расчет числа искрообразований в системе зажигания[править | править код]

Чтобы рассчитать, сколько раз образуется искра в минуту в системе зажигания, нужно знать число оборотов в минуту двигателя и количества цилиндров. N – столько раз образуется искра в минуту. N= (Обороты/мин*число цилиндров) / (количество тактов двигателя 2 или 4). Для 6-цилиндрового двигателя при скорости вращения в 4000 об/мин число искрообразований равно: N=6*4000/4=6 000 раз в минуту.

  1. ↑ А.Г. Ходасевич и Т.И. Ходасевич Справочник по устройству и ремонту электронных приборов автомобилей.. . — М.: Антелком, 2004.
  • Карягин А. В., Соловьёв Г. М., Устройство, обслуживание и правила движения автомобилей. Военное издательство Министерства Обороны Союза ССР, Москва, 1957 год.
  • А.Г. Ходасевич и Т.И. Ходасевич Справочник по устройству и ремонту электронных приборов автомобилей. — М.: Антелком, 2004.

Я никак не могу понять что такое индуктивность. Объясните простыми словами.

Индуктивность — это то же самое, что и конденсатор. Только энергию накапливает не в виде электрического поля (и соответственно не в форме заряда), а в виде магнитного поля (и соответственно в форме потока). Конденсатор хранит электрический заряд, а индуктивность хранит магнитный поток. Если б у неё не было сопротивления — то этот поток она хранила бы вечно, пока в ней ток идёт. Вот сверхпроводящие магниты именно это и делают. Для чего нужна: да для кучи разных вещей. Раз это элемент накопительный, то он обладает инерцией. Как и конденсатор. А значит, может использоваться в фильтрах. Чаще всего это фильтры по питанию (дроссели). За счёт того, что индуктивность может обменитваться энергией с конденсатором, при их соединении возникают электрические колебания — из-за инерционности каждого компонента обмен энергией, даже когда «дойдёт до нуля» (энергия распределится поровну между ними), не заканчивается, а проскакивает эту точку равновесия, так что энергия почти полностью передаётся из одного элемента в другой. Ну а это э состояние неравновесное — поэтому процесс начинает идти в другую сторону… ну и дальше понятно: возникают колебания. Если б не было потерь — резистивных, прежде всего, — то этот процесс шёл бы бесконечно. Так работает колебательный контур.

прикинь пружину или маятник Вот чем сильнее в лоб щелкнет, когда отпустишь — тем сильнее индукция

катушка с проводом индуктивность а по сути любой провод уже индуктивность, т. к вокруг него при прохождении по нему тока, образуется магнитное поле….

индукция это магнит когда ток идет по виткам катушки

Индуктивность — это способность цепей препятствовать изменению тока. Катушки индуктивности нужны в фильтрах, реакторах или контурах

Ну если вкратце, то каждый раз, когда меняется магнитное поле, в этой области создаётся электрическое поле, при этом оно всегда направленно так, чтобы созданный им ток препятствовал изменению магнитного поля. Мы подаём ток на катушку, и вокруг неё возникает магнитное поле, которое нарастает. А это значит, что в катушке возникнет напряжение, препятствующее этому нарастанию, т. е. направленное против тока в катушке. Если ток отключить, то магнитное поле начнёт слабеть, а значит возникнет напряжение, не дающее току слабеть. Фактически когда через катушку течёт ток, его энергия запасается в магнитном поле, а когда ток прекращается, эта энергия высвобождается, тратясь на поддержание тока. Так вот, индуктивность — это способность запасать энергию в виде магнитного поля. Насколько высокое напряжение возникнет на катушке зависит от того, насколько резко меняется магнитное поле. Например можно подать ток на катушку, а потом резко её отключить, и на ней возникнет импульс высокого напряжения, так работают обратноходовые преобразователи, позволяющие получать высокие напряжения от низковольтного источника. Так же, из этого следует, что катушка всегда препятствует изменению тока в ней, то есть постоянный ток через неё течёт спокойно, а вот переменному она сопротивляется, то есть работает как фильтр. Плюс ко всему на катушке ток и напряжение возникают не одновременно — сначала нарастает напряжение, потом ток, так как индуктивность препятствует его изменению, и при отключении обратный процесс-сначала уменьшается напряжение, а потом ток, т. е. катушка сдвигает их по фазе относительно друг друга, что используется, например, в резонансных цепях.

собственно я что из физики понял есть такой раздел физики-элеткродинамика. Есть такое явление магнитное поле возбуждает электрическое и наоборот все вмесет составляет электромагнитное поле. Есть такое являение самоиндукция это когда катушка сама возбуждает ток. Например на неё подали ток и отключили но она какоето время продолжает генерировать ток. Ну, а в википедии там видимо формулы как вычислять индукцию. Вот собственно и все нам объяснили саму суть понятия только. Пытался понять этимологию слова induction это скорее так могу объяснить корень слова латинский вместе с похожим словом латинским influence означает течь внутрь. там кстати и словосочетание есть «магнитный поток» приставка ιn означает понаправлению в

про индуктивность простыми словами не могу могу про подъёмную силу, вот: <a rel=»nofollow» href=»https://youtu.be/Mgeybk3F86Q» target=»_blank»>https://youtu.be/Mgeybk3F86Q</a>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *