Что такое изолированная нейтраль – изолированная нейтраль — это… Что такое изолированная нейтраль?

Содержание

изолированная нейтраль — это… Что такое изолированная нейтраль?


изолированная нейтраль

3.23 изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю.

62 Изолированная нейтраль

[ГОСТ Р 52726-2007, пункт 3.23]

Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю

изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю.

[ГОСТ Р 52726-2007, пункт 3.23]

5.3. Изолированная нейтраль — нейтраль генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы регулирования, измерения, защиты, сигнализации и другие аппараты, имеющие большое сопротивление.

2.10. Изолированная нейтраль

— нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы регулирования, измерения, защиты, сигнализации и другие аппараты, имеющие большое сопротивление.

3.3.75 изолированная нейтраль : Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

[ title=»Правила технической эксплуатации электроустановок потребителей»] [3]

Изолированная нейтраль

Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и другие устройства, имеющие большое сопротивление

6.4.23. ИЗОЛИРОВАННАЯ НЕЙТРАЛЬ

Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление

title=»Правила устройства электроустановок»

Изолированная нейтраль

Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление

7. Изолированная нейтраль

Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Изолированная или неэффективно заземленная система
  • изолированная сборочная среда

Смотреть что такое «изолированная нейтраль» в других словарях:

  • Изолированная нейтраль — нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление …   Российская энциклопедия по охране труда

  • изолированная нейтраль — Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при… …   Справочник технического переводчика

  • Изолированная нейтраль — – нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств. ПУЭ, п. 1.7.6 …   Коммерческая электроэнергетика. Словарь-справочник

  • Изолированная нейтраль — English: Insulated neutral Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (по ГОСТ 12.1.030 81) Источник: Термины и определения в электроэнергетике.… …   Строительный словарь

  • Нейтраль трансформатора изолированная — Нейтраль изолированная нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие …   Официальная терминология

  • Изолированная или неэффективно заземленная система — 2.3 Изолированная или неэффективно заземленная система система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная или неэффективно заземленная система — English: Insulated system Система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей через ограничивающий резистор …   Строительный словарь

  • Нейтральный провод — Нейтральный (нулевой рабочий) провод  провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. Содержание 1 Назначение 2 Обозначение 3 Нейтраль в ЛЭП …   Википедия

  • Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться …   Википедия

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

устройство, применение и отличие от изолированного варианта

Трехфазная электросеть, которая широко применяется для электроснабжения, использует два основных варианта соединения: треугольник и звезда. В соединении звезда получается потенциал, общий для всех фаз. Это соединение фаз источника электроэнергии тем или иным способом связывается с потребителем этой энергии.

В результате нагрузки симметрируются, а состояние электросети стабилизируется. Но это нормальное состояние рано или поздно нарушается какой-либо аварией. Например, ударом молнии в провода одной фазы или их обрывом по той или иной причине.

На страже всегда система защиты от подобных неприятностей. Для минимальных потерь времени и средств от простоя электроснабжения ее работа должна быть максимально эффективной. Способ соединения нейтральных потенциалов в электросети в значительной степени влияет на работу защиты и не только. Далее более подробно остановимся на таком соединении нулевых потенциалов источника и потребителя электроэнергии, как глухозаземленная нейтраль.    

Вариант для сравнения – изолированная нейтраль

Самый понятный способ соединения точек нулевого потенциала источника и потребителя электроэнергии – это проводник, присоединенный к ним. При отсутствии точки соединения с заземляющим устройством этот провод получается гальванически не связанным с землей. Таким образом, выходит так называемая изолированная нейтраль. Этот проводник способен пропустить самые большие токи, которые только могут появиться в электросети, и остановить это может лишь его перегорание от нагревания.

Изолированная нейтраль не связана гальванически с заземлением провода, и кабели, передающие электроэнергию на большие расстояния, фактически являются обкладками конденсаторов. По этой причине на землю все равно происходит утечка в виде емкостного тока. А если произойдет авария, в результате которой одна из фаз, по сути, заземлится (короткое замыкание на землю), величина емкостного тока получится максимальной.

Эквивалентные схемы электрических цепей с изолированной нейтралью Эквивалентные схемы электрических цепей с изолированной нейтралью

Не будем вдаваться в детали этого, поскольку наша задача – это подробности относительно глухозаземленной нейтрали. Для справки упомянем то, что для ограничения емкостных токов ПУЭ предписывает использование дросселей (иначе реакторов) с теми или иными значениями токов и напряжений. Токи при замыкании на землю в электросети с изолированной нейтралью сравнительно невелики. Они не наносят какого-либо значительного ущерба, и по этой причине снижается требование к быстродействию защиты, а значит, и расходы на нее получаются меньше.

Однако эта простота ситуации с коротким замыканием на землю дает много, так сказать, побочных эффектов. Вот они:

  • появляются множественные перенапряжения в области замыкания на землю, сопровождающиеся маломощной, но разрушительной дугой;
  • их воздействие на изоляцию вызывает как минимум уменьшение ресурса изоляции большого числа электрических проводников и оборудования;
  • скрытность процесса замыкания на землю затрудняет его обнаружение, что делает довольно-таки продолжительным его разрушительный эффект;
  • емкостные токи опасны для людей, которые находятся вблизи места замыкания;
  • защиту сложно настроить на правильное распознавание ситуации.

Перечисленные недостатки обуславливают более широкое распространение глухозаземленной нейтрали.

Что лучше в глухозаземленной нейтрали

Поскольку молния ударяет в землю, очевидно, что ее можно эффективно использовать в качестве эквивалента провода. Что и делается в источнике и потребителе электроэнергии. В них точка нулевого потенциала соединяется с заземляющим устройством, которое именуется рабочим заземлением. Для возможности контроля силы тока в глухозаземленной нейтрали между точкой нулевого потенциала и заземляющим устройством присоединяется трансформатор тока.

  • При замере сопротивления рабочего заземляющего устройства в электрических цепях 220–380 В, его величина должна быть не более 4 Ом.

Короткое замыкание на землю в электрической цепи с глухозаземленной нейтралью носит явный характер и сопровождается током большой силы. При возникновении электрической дуги выделяется много энергии, которая разрушительно действует вблизи места замыкания. По этой причине защита должна максимально быстро отключить источник питания от места повреждения. Для снятия потенциала с корпусов электрооборудования при коротком замыкании на землю их соединяют с защитным заземлением.

  • Преимуществом глухозаземленной нейтрали является явный характер короткого замыкания на землю и возможность точной настройки на него устройств защиты.

В электрических сетях до 1000 В источниками электропитания являются вторичные обмотки трансформаторов. Для наиболее эффективного соединения точек нулевого потенциала источника питания и нагрузки применяются дополнительные проводники PEN, PE и N, соединенные так, как показано далее на изображении:

Соединение защитных проводников при глухозаземленной нейтрали Соединение защитных проводников при глухозаземленной нейтрали

В составе этих проводников применение каких-либо иных элементов недопустимо. Если связь между источником питания до 1000 В с нагрузкой выполнена в виде ЛЭП, глухозаземленная нейтраль выполнена четвертым проводом, который через каждые двести метров соединяется с рабочим заземлением. Внутри помещений большой протяженности используются аналогичные расстояния между местами с рабочими заземлениями глухозаземленной нейтрали. Соединяемые с ней корпуса электрооборудования надежно защищают персонал от удара электрическим током.

Похожие статьи:

Изолированная нейтраль — это… Что такое Изолированная нейтраль?


Изолированная нейтраль
– нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

ПУЭ, п. 1.7.6.

Коммерческая электроэнергетика. Словарь-справочник. — М.: Энас. В.В. Красник. 2006.

  • Износ основных средств
  • Изолированная энергосистема

Смотреть что такое «Изолированная нейтраль» в других словарях:

  • Изолированная нейтраль — нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление …   Российская энциклопедия по охране труда

  • изолированная нейтраль — Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при… …   Справочник технического переводчика

  • изолированная нейтраль — 3.23 изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор,… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная нейтраль — English: Insulated neutral Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (по ГОСТ 12.1.030 81) Источник: Термины и определения в электроэнергетике.… …   Строительный словарь

  • Нейтраль трансформатора изолированная — Нейтраль изолированная нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие …   Официальная терминология

  • Изолированная или неэффективно заземленная система — 2.3 Изолированная или неэффективно заземленная система система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная или неэффективно заземленная система — English: Insulated system Система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей через ограничивающий резистор …   Строительный словарь

  • Нейтральный провод — Нейтральный (нулевой рабочий) провод  провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. Содержание 1 Назначение 2 Обозначение 3 Нейтраль в ЛЭП …   Википедия

  • Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться …   Википедия

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

Изолированная нейтраль — это… Что такое Изолированная нейтраль?


Изолированная нейтраль

ИЗОЛИРОВАННАЯ НЕЙТРАЛЬ — нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление.

Российская энциклопедия по охране труда. — М.: НЦ ЭНАС. Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова. 2007.

  • Износостойкость
  • Изолированное помещение

Смотреть что такое «Изолированная нейтраль» в других словарях:

  • изолированная нейтраль — Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при… …   Справочник технического переводчика

  • изолированная нейтраль — 3.23 изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор,… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная нейтраль — – нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств. ПУЭ, п. 1.7.6 …   Коммерческая электроэнергетика. Словарь-справочник

  • Изолированная нейтраль — English: Insulated neutral Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (по ГОСТ 12.1.030 81) Источник: Термины и определения в электроэнергетике.… …   Строительный словарь

  • Нейтраль трансформатора изолированная — Нейтраль изолированная нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие …   Официальная терминология

  • Изолированная или неэффективно заземленная система — 2.3 Изолированная или неэффективно заземленная система система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная или неэффективно заземленная система — English: Insulated system Система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей через ограничивающий резистор …   Строительный словарь

  • Нейтральный провод — Нейтральный (нулевой рабочий) провод  провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. Содержание 1 Назначение 2 Обозначение 3 Нейтраль в ЛЭП …   Википедия

  • Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться …   Википедия

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

Режимы работы нейтралей в электроустановках



Нейтралями электроустановок называют общие точки обмотки генераторов или трансформаторов, соединенные в звезду.

Вид связи нейтралей машин и трансформаторов с землей в значительной степени определяет уровень изоляции электроустановок и выбор коммутационной аппаратуры, значения перенапряжений и способы их ограничения, токи при однофазных замыканиях на землю, условия работы релейной защиты и безопасности в электрических сетях, электромагнитное влияние на линии связи и т.д.

В зависимости от режима нейтрали электрические сети разделяют на четыре группы:

  • сети с незаземленными (изолированными) нейтралями;
  • сети с резонансно-заземленными (компенсированными) нейтралями;
  • сети с эффективно-заземленными нейтралями;
  • сети с глухозаземленными нейтралями.

В России к первой и второй группам относятся сети напряжением 3-35 кВ, нейтрали трансформаторов или генераторов которых изолированы от земли или заземлены через заземляющие реакторы.

Сети с эффективно-заземленными нейтралями применяют на напряжение выше 1 кВ. В них коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю называют отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю поврежденной фазы к разности потенциалов между фазой и землей в этой точке до замыкания. В соответствии с рекомендациями Международного электротехнического комитета (МЭК) к эффективно-заземленным сетям относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление. В Советском Союзе к этой группе относятся сети напряжением 110 кВ и выше.

К четвертой группе относятся сети напряжением 220, 380 и 660 В.

Режим работы нейтрали определяет ток замыкания на землю. Сети, в которых ток однофазного замыкания на землю менее 500 А, называют сетями с малыми токами замыкания на землю (в основном это сети с незаземленными и резонансно-заземленными нейтралями). Токи более 500 А соответствуют сетям с большими токами замыкания на землю (это сети с эффективно-заземленными нейтралями).

Трехфазные сети с незаземленными (изолированными) нейтралями

В сетях с незаземленными нейтралями токи при однофазном замыкании на землю протекают через распределенные емкости фаз, которые для упрощения анализа процесса условно заменяют емкостями, сосредоточенными в середине линий (рис.1). Междуфазные емкости при этом не рассматриваются, так как при однофазных повреждениях их влияние на токи в земле не сказывается.

Рис.1. Трехфазная сеть с незаземленной нейтралью
а — нормальный режим;
б — режим замыкания фазы А на землю;
в — устройство для обнаружения замыканий на землю

В нормальном режиме работы напряжения фаз сети относительно земли симметричны и равны фазному напряжению, а емкостные (зарядные) токи фаз относительно земли также симметричны и равны между собой (рис.1,а). Емкостный ток фазы

(1)

где С — емкость фазы относительно земли.

Геометрическая сумма емкостных токов трех фаз равна нулю. Емкостный ток нормального режима в одной фазе в современных сетях с незаземленной нейтралью, как правило, не превышает нескольких ампер и практически не влияет на загрузку генераторов.

В случае металлического замыкания на землю в одной точке напряжения неповрежденных фаз относительно земли возрастают в √з раз и становятся равными междуфазному напряжению. Например, при замыкании на землю фазы А (рис.1,б) поверхность земли в точке повреждения приобретает потенциал этой фазы, а напряжения фаз В и С относительно земли становятся соответственно равными междуфазным напряжениям . Емкостные токи неповрежденных фаз В и С также увеличиваются в соответствии с увеличением напряжения в √3 раз. Ток на землю фазы А, обусловленный ее собственной емкостью, будет равен нулю, так как эта емкость оказывается закороченной.

Для тока в месте повреждения можно записать:

(2)

т.е. геометрическая сумма векторов емкостных токов неповрежденных фаз определяет вектор тока через место повреждения. Ток IС оказывается в 3 раза больше, чем емкостный ток фазы в нормальном режиме:

(3)

Согласно (1.3) ток IС зависит от напряжения сети, частоты и емкости фаз относительно земли, которая зависит в основном от конструкции линий сети и их протяженности.

Приближенно ток Iс, А, можно определить по следующим формулам:

для воздушных сетей

(4)

для кабельных сетей

(5)

где U — междуфазное напряжение, кВ; l — длина электрически связанной сети данного напряжения, км.

В случае замыкания на землю через переходное сопротивление напряжение поврежденной фазы относительно земли будет больше нуля, но меньше фазного, а неповрежденных фаз — больше фазного, но меньше линейного. Меньше будет и ток замыкания на землю.

При однофазных замыканиях на землю в сетях с незаземленной нейтралью треугольник линейных напряжений не искажается, поэтому потребители, включенные на междуфазные напряжения, продолжают работать нормально.

Вследствие того что при замыкании на землю напряжение неповрежденных фаз относительно земли увеличивается в √з раз по сравнению с нормальным значением, изоляция в сетях с незаземленной нейтралью должна быть рассчитана на междуфазное напряжение. Это ограничивает область использования этого режима работы нейтрали сетями с напряжением 35 кВ и ниже, где стоимость изоляции электроустановок не является определяющей и некоторое ее увеличение компенсируется повышенной надежностью питания потребителей, если учесть, что однофазные замыкания на землю составляют в среднем до 65% всех нарушений изоляции.

В то же время необходимо отметить, что при работе сети с замкнутой на землю фазой становится более вероятным повреждение изоляции другой фазы и возникновение междуфазного короткого замыкания через землю (рис.2). Вторая точка замыкания может находиться на другом участке электрически связанной сети. Таким образом, короткое замыкание затронет несколько участков сети, вызывая их отключение. Например, в случае, показанном на рис.2, могут отключиться сразу две линии.

Рис.2. Двойные замыкания на землю в сети с незаземленной нейтралью

В связи с изложенным в сетях с незаземленными нейтралями обязательно предусматривают специальные сигнальные устройства, извещающие персонал о возникновении однофазных замыканий на землю.

Так, на рис.1, в показан способ контроля изоляции в сети с незаземленной нейтралью. Устройства контроля подключаются к сети через измерительный трансформатор напряжения типа НТМИ или через группу однофазных трансформаторов типа ЗНОМ.

Вторичные обмотки измерительных трансформаторов (рис.1,в) соединяются по схемам: одна (I) — звезда, вторая (II) — разомкнутый треугольник. Обмотка I позволяет измерять напряжения всех фаз, обмотка II предназначена для контроля геометрической суммы напряжений всех фаз.

Нормально на зажимах обмотки II напряжение равно нулю, поскольку равна нулю геометрическая сумма фазных напряжений всех трех фаз в сети с незаземленной нейтралью. При металлическом замыкании одной фазы в сети первичного напряжения на землю на зажимах обмотки II появляется напряжение, равное геометрической сумме напряжений двух неповрежденных фаз (рис.1,б) Число витков обмотки II подбирается так, чтобы напряжение на ее выводах при металлическом замыкании фазы первичной сети на землю равнялось 100 В. При замыкании на землю через переходное сопротивление напряжение на обмотке II в зависимости от сопротивления в месте замыкания будет 0-100 В.

Реле напряжения, подключаемое к обмотке II, будет при соответствующей настройке реагировать на повреждения изоляции первичной сети и приводить в действие сигнальные устройства (звонок, табло).

Персонал электроустановки может проконтролировать напряжение небаланса (вольтметром V2) и установить поврежденную фазу (вольтметром V1). Напряжение в поврежденной фазе будет наименьшим.

Отыскание места замыкания на землю после получения сигнала должно начинаться немедленно, и повреждение должно устраняться в кратчайший срок. Допустимая длительность работы с заземленной фазой определяется Правилами технической эксплуатации (ПТЭ) и в большинстве случаев не должна превышать 2 ч.

Более опасно однофазное замыкание на землю через дугу, так как дуга может повредить оборудование и вызвать двух- или трехфазное КЗ (последнее часто наблюдается при однофазных замыканиях на землю одной из жил трехфазного кабеля). Особенно опасны дуги внутри машин и аппаратов, возникающие при однофазных замыканиях на заземленные корпуса или сердечники.

При определенных условиях в месте замыкания на землю может возникать так называемая перемежающаяся дуга, т.е. дуга, которая периодически гаснет и зажигается вновь. Перемежающаяся дуга сопровождается возникновением перенапряжений на фазах относительно земли, которые могут достигать 3,5 Uф. Эти перенапряжения распространяются на всю электрически связанную сеть, в результате чего возможны пробои изоляции и образование КЗ в частях установки с ослабленной изоляцией.

Наиболее вероятно возникновение перемежающихся дуг при емкостном токе замыкания на землю более 5-10 А, причем опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения сети. Допустимые значения тока нормируются и не должны превышать следующих значений:

В сетях 3-20 кВ, имеющих линии на железобетонных и металлических опорах, допускается Ic не более 10 А. В блочных схемах генератор-трансформатор на генераторном напряжении емкостный ток не должен превышать 5А.

Работа сети с незаземленной (изолированной) нейтралью применяется и при напряжении до 1 кВ. При этом основные свойства сетей с незаземленной нейтралью сохраняются и при этом напряжении. Кроме того, эти сети обеспечивают высокий уровень электробезопасности и их следует применять для передвижных установок, торфяных разработок и шахт. Для защиты от опасности, возникающей при пробое изоляции между обмотками высшего и низшего напряжений, в нейтрали или фазе каждого трансформатора устанавливается пробивной предохранитель.

Трехфазные сети с резонансно-заземленными (компенсированными) нейтралями

В сетях 3-35 кВ для уменьшения тока замыкания на землю с целью удовлетворения указанных выше норм применяется заземление нейтралей через дугогасящие реакторы.

В нормальном режиме работы ток через реактор практически равен нулю. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю протекает наряду с емкостным током IC также индуктивный ток реактора IL (рис. 3). Так как индуктивный и емкостный токи отличаются по фазе на угол 180°, то в месте замыкания на землю они компенсируют друг друга. Если IC=IL (резонанс), то через место замыкания на землю ток протекать не будет. Благодаря этому дуга в месте повреждения не возникает и устраняются связанные с нею опасные последствия.

Рис.3. Трехфазная сеть с резонансно-заземленной нейтралью

Суммарная мощность дугогасящих реакторов для сетей определяется из выражения

Q = n IC UФ, (6)

где n — коэффициент, учитывающий развитие сети; ориентировочно можно принять n = 1,25; IC — полный ток замыкания на землю, А; UФ — фазное напряжение сети, кВ.

По рассчитанному значению Q в каталоге подбираются реакторы требуемой номинальной мощности. При этом необходимо учитывать, что регулировочный диапазон реакторов должен быть достаточным для обеспечения возможно более полной компенсации емкостного тока при вероятных изменениях схемы сети (например, при отключении линий и т.п.). При IC ≥ 50 А устанавливают два дугогасящих реактора с суммарной мощностью по (6).

Рис. 4. Устройство дугогасящих реакторов
а — типа РЗДСОМ, б — типа РЗДПОМ

В России применяют дугогасящие реакторы разных типов. Наиболее распространены реакторы типа РЗДСОМ (рис.4,а) мощностью до 1520 кВ А на напряжение до 35 кВ с диапазоном регулирования 1:2. Обмотки этих реакторов располагаются на составном магнитопроводе с чередующимися воздушными зазорами и имеют отпайки для регулирования тока компенсации. Реакторы имеют масляное охлаждение.

Более точно, плавно и автоматически можно производить настройку компенсации в реакторах РЗДПОМ, индуктивность которых изменяется с изменением немагнитного зазора в сердечнике (рис.4,б) или путем подмагничивания стали магнитопровода от источника постоянного тока.

Дугогасящие реакторы должны устанавливаться на узловых питающих подстанциях, связанных с компенсируемой сетью не менее чем тремя линиями. При компенсации сетей генераторного напряжения реакторы располагают обычно вблизи генераторов. Наиболее характерные способы присоединения дугогасящих реакторов показаны на рис.5.

Рис.5. Размещение дугогасящих реакторов в сети

На рис.5,а показаны два дугогасящих реактора, подключенных в нейтрали трансформаторов подстанции, на рис.5.б — реактор, подключенный к нейтрали генератора, работающего в блоке с трансформатором. В схеме на рис.5, в показано подключение дугогасящего реактора к нейтрали одного из двух генераторов, работающих на общие сборные шины. Следует отметить, что при этом цепь подключения реактора должна проходить через окно сердечника трансформатора тока нулевой последовательности (ТНП), что необходимо для обеспечения правильной работы защиты генератора от замыканий на землю.

При подключении дугогасящих реакторов через специальные трансформаторы и трансформаторы собственных нужд, по мощности соизмеримые с мощностью реакторов, необходимо учитывать их взаимное влияние.

В первую очередь это влияние сказывается в уменьшении действительного тока компенсации по сравнению с номинальным из-за наличия последовательно включенного с реактором сопротивления обмоток трансформатора

(7)

где Iном,р — номинальный ток дугогасящего реактора; Uк% — напряжение КЗ трансформатора; Sном,т — номинальная мощность трансформатора.

Особенно резко ограничивающее действие обмоток трансформатора сказывается при использовании схемы соединения обмоток звезда-звезда, так как при однофазных замыканиях на землю индуктивное сопротивление у них примерно в 10 раз больше, чем при междуфазных КЗ. По этой причине для подключения реакторов предпочтительнее трансформаторы со схемой соединения обмоток звезда-треугольник. В свою очередь наличие дугогасящего реактора в нейтрали трансформатора обусловливает при однофазных замыканиях на землю дополнительную нагрузку на его обмотки, что приводит к повышенному нагреву. Это особенно важно учитывать при использовании для подключения реактора трансформаторов, имеющих нагрузку на стороне низшего напряжения, например трансформаторов собственных нужд электростанций и подстанций. Допустимая мощность реактора, подключаемого к нагруженному трансформатору, определяется из выражения

(8)

где Sном,т — номинальная мощность трансформатора; Smax — максимальная мощность нагрузки.

Выражение (8) справедливо с учетом того, что значение cosφ нагрузки обычно близко к единице, а активное сопротивление реактора мало.

С учетом перегрузки трансформатора, допустимой на время работы сети с заземленной фазой и определяемой коэффициентом перегрузочной способности kпер, допустимая мощность реактора, подключаемого к данному трансформатору, равна

(9)

При подключении реактора к специальному ненагруженному трансформатору необходимо выдержать условие (если перегрузка трансформатора допустима).

В сетях с резонансно-заземленной (компенсированной) нейтралью, так же как и в сетях с незаземленными нейтралями, допускается временная работа с замкнутой на землю фазой до тех пор, пока не представится возможность произвести необходимые переключения для отделения поврежденного участка. При этом следует учитывать также допустимое время продолжительной работы реактора 6ч.

Наличие дугогасящих реакторов особенно ценно при кратковременных замыканиях на землю, так как при этом дуга в месте замыкания гаснет и линия не отключается. В сетях с нейтралями, заземленными через дугогасящий реактор, при однофазных замыканиях на землю напряжения двух неповрежденных фаз относительно земли увеличиваются в √3 раз, т.е. до междуфазного напряжения. Следовательно, по своим основным свойствам эти сети аналогичны сетям с незаземленными (изолированными) нейтралями.

Трехфазные сети с эффективно-заземленными нейтралями

В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0,8 междуфазного напряжения в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали.

Рис.6. Трехфазная сеть с эффективно-заземленной нейтралью

Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена ЭДС фазы (рис.6). Возникает режим КЗ, сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому КЗ быстро отключаются релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относится к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного включения (АПВ), которые, действуя после работы устройств релейной защиты, восстанавливают питание потребителей за минимальное время.

Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи КЗ и поэтому представляет собой в данном случае сложное инженерное сооружение.

Третий недостаток — значительный ток однофазного КЗ, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного КЗ. Для уменьшения токов однофазного КЗ применяют, если это возможно и эффективно, частичное разземление нейтралей (в основном в сетях 110-220 кВ). Возможно применение для тех же целей токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов.

Сети с глухозаземленными нейтралями

Такие сети применяются на напряжение до 1 кВ для одновременного питания трехфазных и однофазных нагрузок, включаемых на фазные напряжения (рис.7). В них нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформатор тока). Для фиксации фазного напряжения при наличии однофазных нагрузок применяют нулевой проводник, связанный с нейтралью трансформатора (генератора). Этот проводник служит для выполнения также и функции зануления, т.е. к нему преднамеренно присоединяют металлические части электроустановок, нормально не находящиеся под напряжением.

При наличии зануления пробой изоляции на корпус вызовет однофазное КЗ и срабатывание защиты с отключением установки от сети. При отсутствии зануления корпуса (второй двигатель на рис.7) повреждение изоляции вызовет опасный потенциал на корпусе. Целость нулевого проводника нужно контролировать, так как его случайный разрыв может вызвать перекос напряжений по фазам (снижение его на загруженных фазах и повышение на незагруженных). Может быть принято при необходимости раздельное выполнение нулевого защитного и нулевого рабочего проводников.

Рис.7. Трехфазная сеть с глухозаземленной нейтралью



Изолированная нейтраль — это… Что такое Изолированная нейтраль?



Строительный словарь.

  • Изолированные кабели
  • Изолированная энергосистема

Смотреть что такое «Изолированная нейтраль» в других словарях:

  • Изолированная нейтраль — нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление …   Российская энциклопедия по охране труда

  • изолированная нейтраль — Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при… …   Справочник технического переводчика

  • изолированная нейтраль — 3.23 изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор,… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная нейтраль — – нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств. ПУЭ, п. 1.7.6 …   Коммерческая электроэнергетика. Словарь-справочник

  • Нейтраль трансформатора изолированная — Нейтраль изолированная нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие …   Официальная терминология

  • Изолированная или неэффективно заземленная система — 2.3 Изолированная или неэффективно заземленная система система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей… …   Словарь-справочник терминов нормативно-технической документации

  • Изолированная или неэффективно заземленная система — English: Insulated system Система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей через ограничивающий резистор …   Строительный словарь

  • Нейтральный провод — Нейтральный (нулевой рабочий) провод  провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. Содержание 1 Назначение 2 Обозначение 3 Нейтраль в ЛЭП …   Википедия

  • Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться …   Википедия

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

Резистивное заземление нейтрали. Достоинства и недостатки

В данной статье речь пойдет о достоинствах и недостатках резистивного заземления нейтрали в сетях 6-35 кВ.

Резистивное заземление нейтрали (заземление нейтрали через резистор) в электрических сетях среднего напряжения достаточно широко применяется во Франции, Германии и некоторых других странах. Принято различать два варианта заземления нейтрали через резистор: высокоомное и низкоомное. При высокоомном заземлении нейтрали сопротивление R заземляющего резистора выбирается из условия [Л1,с.16]:

R = (1 — 2)*Xc∑ = (1 — 2)* Uфном./Iс∑ (1)

где:

  • Uфном. – фазное номинальное напряжение, кВ;
  • Iс∑ — суммарный емкостной ток сети, А.

При выборе сопротивления заземляющего резистора из условия (1) эффект накопления зарядов на фазах сети при дуговом перемежающемся ОЗЗ сводится к минимуму, и перенапряжения на неповрежденных фазах при повторных зажиганиях дуги не превышают значений (2,4 — 2,5) Uф.ном.

Основные характеристики высокоомного заземления нейтрали приведены в таблице 1.

Таблица 1 - Характеристики высокоомного заземления нейтрали через резистор

Если принять, что при высокоомном заземлении нейтрали ток замыкания на землю не должен превышать предельных значений, принятых для сети с изолированной нейтралью, то при R = Xc∑, суммарный емкостный ток сети Iс∑ должен быть в √2 раз меньше, чем для сети с изолированной нейтралью.

Поэтому область применения высокоомного режима заземления нейтрали будет еще более ограничена (по значению Iс∑), чем режима изолированной нейтрали. По мнению многих специалистов применение высокоомного режима заземления нейтрали целесообразно прежде всего в сетях с Uном = 6 — 10 кВ при Iс∑ не более 5 — 10 А [2]. К таким сетям относятся, в частности, большинство воздушных сетей 6 – 10 кВ, непротяженные кабельные шахтные, карьерные сети, сети торфоразработок и др.

При низкоомном заземлении нейтрали через резистор минимальное значение тока О33 в месте повреждения ограничивается двумя условиями:

  • обеспечение устойчивости функционирования простых токовых защит нулевой последовательности от ОЗЗ во всех режимах работы сети;
  • полное исключение возможности возникновения наиболее опасных дуговых перемежающихся ОЗЗ.

В зависимости от параметров электрической сети и линий условия устойчивости функционирования токовых защит нулевой последовательности обеспечиваются при значениях тока ОЗЗ от десятков до сотен ампер [3]. Для исключения возможности возникновения дуговых перемежающихся ОЗЗ минимальное значение тока замыкания должно быть не менее 100 А.

При указанных значениях тока ОЗЗ защита от этого вида повреждений должна действовать только на отключение.

Максимально допустимое значение тока ОЗЗ ограничивается условием недопущения серьезных повреждений элементов сети за время действия защиты.

Основные характеристики низкоомного заземления нейтрали приведены в таблица 2.

Таблица 2 - Характеристики низкоомного заземления нейтрали через резистор

Основным недостатком низкоомного заземления нейтрали является возможность существенного увеличения числа отключений элементов сети из-за переходов кратковременных самоустраняющихся (при других режимах заземления нейтрали) пробоев изоляции в устойчивые повреждения.

Опыт применения низкоомногo заземления нейтрали в сети 6 кВ собственных нужд Рефтинской ГРЭС, показал, что число отключений электродвигателей на секциях с низкоомным заземлением нейтрали оказалось больше, чем на секциях, работающих с изолированной нейтралью или с компенсацией емкостногo тока. Увеличение числа отключений элементов сети при недостаточной степени автоматизации и резервирования электрической сети и технологических процессов потребителей может привести к увеличению ущербов от ОЗЗ, т.е. к снижению надежности.

Уменьшить число излишних отключений элементов в сетях, работающих с низкоомным заземлением нейтрали, можно при использовании быстродействующего автоматического кратковременного заземления (АЗФ) поврежденной фазы, обеспечивающего эффективное самогашение дуги в большинстве случаев пробоев изоляции на землю. Однако в России, несмотря на наличие соответствующих разработок, необходимая для реализации быстродействующего АЗФ аппаратура промышленностью не выпускается.

С учетом сказанного, низкоомное заземление нейтрали целесообразно применять только в тех сетях, где допустимо (с учетом условий электрическогo и технологического резервирования, степени автоматизации распределительных сетей, систем электроснабжения, технологических процессов) отключение любого элемента сети.

Сочетание резонансного и высокоомногo режима заземления нейтрали, предложенное в [2], предполагает шунтирование ДГР резистором, выбранным из условия:

Rn = Uф/∆Iз (2)

где: ∆Iз = |Iдгр — Iс| — ток расстройки компенсации;

Применение выслкллмного резистора, шунтирующего ДГР, приводит к прекращению биений напряжения на фазах после погасания дуги даже при достаточно больших расстройках компенсации и уменьшает кратности перенапряжений на неповрежденных фазах до значений 2,5.

К достоинствам данного режима заземления нейтрали следует отнести также улучшение режима работы сети с большой несимметрией емкостей фаз на землю. Недостатком является некоторое увеличение тока в месте повреждения и увеличение вероятности повторных зажиганий дуги.

Литература:

  1. В.А.Шуин, А.В.Гусенков. Защиты от замыканий на землю в электрических сетях 6-10 кВ.
  2. Евдокунин Г. А., Гудилин С. В., Корепанов А. А. Выбор способа заземления нейтрали в сетях 6 — 10 кВ // Электричество. 1998.
  3. Правила технической эксплуатации электрических станций и сетей. 15-e изд. М.: Энерrоатомиздзт,1996.

Поделиться в социальных сетях

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *