Что такое эпра в светильниках: Электронный пускорегулирующий аппарат — Википедия – отличие от ЭмПРА, как работают, как выбрать

Содержание

что это такое, как работает, схемы подключения ламп с эпра

Эпра (электронный балласт) – что это такое?

Эпра для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с эпра

Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры.

В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины.

Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе.

Обратите внимание

В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении.

Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников.

Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания.

Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя.

Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения.

Одним из устройств с отрицательным сопротивлением является газоразрядная лампа.

В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя.

Внешний вид ЭПРА для ламп Т8

Существуют такие модификации ЭПРА, которые встраиваются в корпус люминесцентных ламп цокольной модификации.

Они устанавливаются в кожухе лампы, находящемся между цоколем и излучающей трубкой.

Для светодиодных ламп, панелей и лент, принцип работы которых основан не на использовании электрического разряда между электродами лампы, а на свечении кристаллических светодиодов, вместо ЭПРА применяются электронные блоки питания.

Они могут быть встроены в корпус лампы или же установлены в светильник как отдельный элемент цепи.

Ниже показано устройство светодиодной лампы со встроенным драйвером.

Компактная лампа с встроенным ЭПРА

Электронные балласты не требуют для зажигания лампы наличия стартера как самостоятельного элемента цепи.

Важно

Схема электронного пускорегулирующего аппарата создает заданное напряжение и ток в последовательности, требующейся для корректной работы.

Электронная схема ЭПРА на нужном уровне стабилизирует рабочий ток и преобразует переменное синусоидальное напряжение питающей сети частотой 50 герц в ток более высокой частоты, от 20 кГц до 60 кГц.

Поэтому при работе люминесцентной лампы достигается отсутствие мерцания, пульсаций при запуске и гудения светильника.

Существуют различные варианты зажигания ламп, которые можно реализовать с помощью ЭПРА.

Это может быть плавный пуск с постепенным увеличением яркости свечения до номинальной за несколько секунд. Можно установить моментальный запуск.

Так же как и электромагнитный дроссель, ЭПРА первоначально разогревают электроды лампы, затем создают высоковольтный импульс и после возникновения тлеющего разряда поддерживают ее работу в оптимальном режиме.

Применение этих приборов ведет к увеличению энергоэффективности лампы и сохранению ее работоспособности на весь установленный срок службы.

Ниже приводится электрическая схема электронного преобразующего аппарата, применяемого для включения и регулирования работы люминесцентной лампы мощностью 30 ватт.

Совет

На мостик, состоящий из четырех диодов D1, D2, D3, D4 типа 1N4007 подается напряжение сети 220 вольт, частотой 50 герц.

На нем происходит выпрямление входного напряжения, то есть нижний полупериод синусоидального тока переходит в верхнюю часть графика.

После этого ток, который был условно преобразован в постоянный, необходимо сгладить, уменьшив его амплитуду. Это выполняет конденсатор С1.

Для того чтобы полученное выпрямленное напряжение преобразовать в напряжение высокой частоты, используется инвертор на транзисторах Т1 и Т2.

В схеме используется трансформатор TU3802, имеющий две управляющие обмотки и одну рабочую, с которой напряжение частотой 20 кГц подается на электроды лампы.

Ток, подающийся на лампу, разогревает электроды, и ртуть в колбе начинает испаряться, а импульс напряжения величиной 1 200 вольт зажигает тлеющий разряд в лампе, и она начинает работать в стабильном режиме.

Возможно подключение нескольких ламп через один электронный пускорегулирующий аппарат. Ниже показаны схемы включения двух и четырех ламп через один балласт.

Четыре лампы с общим ЭПРА

Для люстры можно использовать ЭПРА, если в ней установлены компактные люминесцентные лампы.

Для этого нужно выбрать прибор, рассчитанный на суммарную мощность всех ламп, установленных в люстре, с двукратным запасом по величине.

Если в люстре установлены светодиодные лампы без встроенного драйвера, то в схеме желательно предусмотреть электронный блок питания.

Обратите внимание

В случае применения электронных балластов устраняются такие негативные явления, как мигание ламп во время включения, мерцание и гудение, сопровождающие работу светильников с электромагнитными ПРА. Устраняется стробоскопический эффект, который имеет место при работе ламп на переменном токе частотой пятьдесят герц.

При использовании электронного балласта возникновение этого эффекта невозможно, поскольку на лампу подается ток высокой частоты в несколько десятков килогерц.

По цене ЭПРА довольно дорогие, но их стоимость быстро окупается в результате создания ими экономичного режима работы ламп в люстре.

Можно устанавливать в люстры лампы с встроенными драйверами.

При помощи электронных ПРА можно создать режим включения ламп с постепенным нарастанием мощности, отрегулировать поочередную работу различных групп ламп в люстре и применить другие интересные решения.

Электронные блоки питания и контроллеры применяются и в цепях со светодиодными лентами.

С применением ЭПРА мощность, расходуемая светильником, становится меньше на тридцать процентов по сравнению с потребляемой при использовании ЭмПРА.

Продолжительность пригодности лампы возрастает на пятьдесят процентов в связи с обеспечением ее работы в щадящем режиме.

Сокращаются расходы на ремонт и замену комплектующих в светильниках, оборудованных ЭПРА.

Эти приборы незаменимы в цепях, обеспечивающих работу аварийного освещения.

Электронный пускорегулирующий аппарат

Эпра для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с эпра

ЭПРА ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП – И СВЕТОДИОДНЫХ

Включение газоразрядных ламп, в чисто которых входят всем известные люминесцентные лампы, имеет ряд особенностей. Для возникновения разряда между электродами в среде газа требуется импульс высокого напряжения между предварительно прогретыми электродами.

Во время работы ток разряда должен ограничиваться специальным балластом, функции которого выполняет дроссель – катушка с большой индуктивностью.

Пускорегулирующая аппаратура, разработанная для включения люминесцентных ламп имела множество существенных недостатков:

  • низкая надежность стартера из-за наличия контактной группы;
  • громоздкий тяжелый и шумный дроссель;
  • мерцание ламы с частотой питающей сети;
  • длительный процесс зажигания ламп;
  • затрудненный пуск при низкой температуре;
  • низкий КПД;
  • высокий уровень электромагнитных помех.

На смену устаревшим пусковым агрегатам были разработаны электронные устройства, которые не содержат механических контактов и тяжелого и габаритного дросселя.

Малые габариты современных электронных пускорегулирующих устройств (ЭПРА) дали толчок дальнейшему развитию и широкому распространению малогабаритных люминесцентных ламп, которые в народе прозвали «экономками».

Новое оборудование полностью свободно от перечисленных недостатков и, к тому же, увеличивает продолжительность работы источников света за счет плавного разогрева нитей накаливания.

Кроме того, ЭПРА имеет следующие достоинства:

  • отсутствуют механические контакты;
  • питание производится высокочастотным напряжением, что полностью исключает мерцание;
  • малые габариты и вес;
  • высокий КПД за счет введения цепей коррекции мощности;
  • минимум сетевых помех и практически полное отсутствие электромагнитных.

Работа лампы с электронным запуском включает несколько последовательных стадий:

  1. Разогрев нитей накаливания.
  2. Инициирование разряда в среде газа между электродами.
  3. Поддержание горения.

Все этапы включения полностью контролируются электронной схемой ЭПРА, которая состоит из следующих элементов:

Входной фильтр.Не пропускает помехи от ЭПРА в сеть и наоборот.Корректор мощности.Устанавливается, в основном в дорогих и мощных пускателях.Сглаживающий фильтр.Исполняется в виде электролитического конденсатора большой емкости.

Также в состав устройства входят инверторная схема преобразования напряжения и малогабаритный дроссель.

В инверторе используются мощные высоковольтные транзисторные ключи, которые включены в мостовую схему с автогенерацией или управляются специальной микросхемой. В диагональ моста включен многообмоточный резонансный трансформатор, одна из обмоток которого включена последовательно с нитями накала и резонансным конденсатором.

При включении лампы напряжение обмотки трансформатора разогревает нити накала, а затем, за счет резонанса, происходит разряд конденсатора между электродами.

Межэлектродный разряд уменьшает сопротивление рабочей среды лампы, в результате чего резонансный конденсатор оказывается закороченным и резонанс пропадает. Оставшегося значения напряжения достаточно для нормального горения.

Ток разряда ограничивается дросселем, включенным последовательно с электродами.

Эпра для питания люминесцентных ламп

Первоначально конструкции ЭПРА разрабатывались для замены старых дроссельно-стартерных устройств для установки в классические светильники с люминесцентными лампами. Для облегчения перехода на новую аппаратуру, ее габаритные размеры, как говорилось выше, делали схожими со старыми устройствами.

Такой подход позволял без изменения технологических линий по производству светильников устанавливать электронные пускатели.

Использование миниатюрных SMD компонентов и совершенствование схемотехники позволили создавать ЭПРА с минимальными габаритами.

Такие устройства помещаются в стандартный цоколь типоразмера Е27 или даже Е14, что привело к широкому распространению энергосберегающих люминесцентных ламп обладающих большим разнообразием:

  • форм;
  • мощностей;
  • цветов и оттенков свечения.

Основными характеристиками электронного пускателя для люминесцентных ламп является допустимая мощность светильника и количество одновременно подключаемых источников. Некоторые типы имеют режим плавного пуска. При этом после нажатия клавиши включения освещения светильник загорается через время от одной до нескольких секунд.

В подобных устройствах за счет схемотехнических решений разряд резонансного конденсатора происходит только после полного прогрева нитей накаливания. Лампы, включаемые через такой пускатель меньше изнашиваются, поэтому срок их службы возрастает.

Некоторые модели дешевых пускорегулирующих аппаратов имеют низкое качество изготовления. Особенно это касается параметров электролитического конденсатора фильтра. Малая емкость приводит к заметным пульсациям света, а низкое граничное напряжение увеличивает вероятность выхода конденсатора из строя.

Важно

Очень опасны модели, в которых мощные ключевые транзисторы крепятся радиатором к металлическому корпусу устройства через пластиковую изоляцию. Через некоторое время работы пластик под действием нагрева транзистора деформируется и радиатор замыкается на корпус.

Прикосновение к такому блоку во время его работы приводит к удару электрическим током.

В начало

Эпра для светодиодных светильников и панелей

Сразу следует заметить, что пускорегулирующая аппаратура для светодиодных ламп и других LED источников света не существует! Как бы не утверждали продавцы магазина или консультанты в интернет-сервисах, это свидетельствует лишь о их некомпетентности.

Светодиодные источники света в пусковых устройствах типа ЭПРА не нуждаются. Необходим источник постоянного напряжения, а в идеальном варианте – стабилизатор тока.

Такие устройства называются драйверами. Они формируют напряжение на выходных клеммах в соответствии с подключаемым источником света и ограничивают или стабилизируют значение выходного тока в определенных пределах.

Дело в том, что светодиоды нормально функционируют только в узком диапазоне протекающего через них тока.

Меньшее значение снижает яркость, а высокое вызывает резкое снижение срока службы вплоть до мгновенного перегорания излучающего диода.

Светодиод, как полупроводниковый элемент, обладает ярко выраженной зависимостью величины сопротивления от температуры, поэтому ее изменение всего на несколько градусов способно вызвать критический рост тока.

Чем отличается стабилизатор напряжения от стабилизатора тока?

Если выразить простыми словами, то стабилизатор напряжения имеет на выходе стабильное напряжение при том, что ток потребления подключенных устройств может меняться в широких пределах.

Иная ситуация в случае стабилизатора тока. Здесь обеспечивается стабильное значение тока при различных сопротивлениях нагрузки. При этом значение напряжения стабилизатора может изменяться в достаточно широком диапазоне.

Данная характеристика накладывает ограничение на совместимость устройств различных типов. К источнику тока нельзя подключать светодиодные светильники иной мощности, чем той, что указана в спецификации. Нельзя подключать параллельно несколько ламп. В крайнем случае возможно последовательное подключение, но это если позволяет диапазон выходных напряжений.

Пример.

Драйвер (именно так именуется в настоящее время стабилизатор тока) рассчитан на выходной ток 100 мА и 12 – 24 В выходного напряжения. Можно подключать:

  • светодиодную лампу 100 мА 12 В или 100 мА 24 В;
  • две лампы 100 мА 12 В, соединенные последовательно;
  • две лампы 50 мА 12 – 24 В, соединенные параллельно.

Схема драйвера может быть выполнена быть выполнена как на основе трансформатора, так и при помощи инвертора, что в настоящее время составляет подавляющее большинство устройств. Драйверы с изменяемым значением выходного тока используются для регулировки яркости LED светильников.

Большинство компактных ламп выпускаются со встроенными драйверами, освобождая покупателя от мук выбора. Использование отдельных драйверов необходимо только в случае использования светодиодных лент или изготовления светильников из отдельных светодиодов или матриц.

Приобретая светодиодные панели с фиксированными размерами, желательно сразу же рассчитывать на драйвер с рекомендуемыми параметрами.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Принцип работы и схема подключения люминесцентных ламп

Эпра для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с эпра

Февраль 2, 2014

47049 просмотров

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу.

Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон.

Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды.

    Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.

Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.

Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.


Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

Как подключить люминесцентную лампу к сети — варианты и схемы

Эпра для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с эпра

Популярность применения люминесцентных ламп обусловлена несколькими факторами. Важнейшими из них являются их экономичность, эффективность работы, а также равномерный свет, испускаемый с достаточно большой площади поверхности. Но помимо этих качеств необходимо знать правила подключения люминесцентных ламп. Для этого применяется несколько типов схем и дополнительных устройств.

Особенности функционирования люминесцентных приборов

В основу работы этих источников света заложен эффект формирования ИК излучения парами ртути под воздействием электрического разряда. На практике для этого в стеклянную колбу помещают спиральную пару катод-анод, внутреннюю поверхность лампы обрабатывают люминофорным раствором. Затем происходит наполнение конструкции сложной смесью, основным компонентом которой являются пары ртути.

При подаче электротока возникает разряд, который и приводит к свечению лампы. Но в отличие от аналогичных моделей накаливания величина разряда должна быть четко нормированной. Только при соблюдении этого условия возможен равномерный процесс формирования света.

Для осуществления этого применяют два типа приборов:

  1. ЭмПРА – пускорегулирующий аппарат. Он более известен как дроссель. Может использоваться в паре со стартером.
  2. ЭПРА. Более надежный и технологичный способ контроля работы люминесцентной лампы. Его применение практически полностью исключает характерное мигание лампы.

В настоящее время большее распространение получили схемы с установкой ЭмПРА. Это связано с их дешевизной и возможность реализации подключения нескольких ламп.

Специфика применения ЭмПРА

Для применения электромагнитного запуска понадобятся компенсационный конденсатор, дроссель и стартер. В целях обеспечения надежности функционирования схемы вся внутренняя проводка должна быть выполнена проводами ПУГВ.

Схема для одной лампы

Для лучшего понимания необходимо рассмотреть все этапы включения:

  • После замыкания контакта К происходит подача электрического тока на стартер. Он представляет собой небольшую газоразрядную лампу. При этом в ней начинает формироваться тлеющий разряд, значение напряжения которого меньше чем в сети, но больше нормированного для основного прибора освещения.
  • Затем происходит тепловое расширение электродов, в результате которого они соединяются, образуя электрическую цепь. Величина тока, протекающего по ней, напрямую зависит от параметров дросселя. Он должен превышать номерованный для лампы в 1,5-2 раза.
  • В это время происходит предварительный разогрев пары катод-анод в лампе для формирования разряда в газовой среде. После размыкания электродов дросселя появляется высокий ток самоиндукции. Конденсатор снижает эту величину до нужного уровня.
  • Резкий рост напряжения провоцирует появление в колбе большого количества заряженных частиц, которые и приводят к формированию плазмы и как следствие – газового разряда.

По такому же принципу можно сделать соединение двух люминесцентных ламп. Процессы, протекающие в этой цепи, практически полностью аналогичны вышеописанным.

Подключение двух световых приборов

К недостаткам такого способа подключения относят небольшой срок службы дросселей и стартеров. Это связано со спецификой процессов, которые происходят в них.

Подключение с помощью ЭПРА

Намного эффективнее использовать ЭПРА – электронный пускорегулирующий аппарат. Его принцип работы отличается от ЭмПРА. Это устройство подает на контакты лампы высокочастотное напряжение, величина которого может варьироваться от 25 до 130 Гц.

Для правильного подключения прибора достаточно предварительно ознакомиться с инструкцией. В большинстве случаев схема подсоединения состоит из следующих этапов.

  1. Подключение контактов к электросети.
  2. Соединение проводов с клеммами нитей накалов. Для каждой из них потребуется два контакта.

Преимущества применения этого пускового устройства заключаются в существенной экономии электроэнергии, увеличении срока службы, а также полного отсутствия мерцания и характерного для люминесцентных осветительных приборов шума.

Cравнение ЭПРА и ЭмПРА — Центр Технического Света

Cравнение ЭПРА и ЭмПРА

Обоснование критериев выбора светильников с электронными (ЭПРА) или электромагнитными (ЭМПРА) пускорегулирующими аппаратами для уличного освещения.

Существует большое разнообразие приемов и решений для уличного освещения. Задачи со временем становятся только сложнее: сегодня уже недостаточно, чтобы освещение было просто качественным, удовлетворяло всем нормам, сегодня требуется также повышать энергоэффективность и достигать максимально возможной и разумной экономии средств.

Одним из важных компонентов осветительной системы, влияющим как на стоимость, так и на качество, является пуско-регулирующий аппарат (ПРА). ПРА установлен в светильнике и предназначен для обеспечения стабильной работы лампы в номинальном для нее режиме.

Сегодня»на слуху» два наиболее популярных варианта решения — использование ЭПРА и ЭМПРА. Чтобы определить, какой из вариантов предпочесть, имеет смысл взвесить достоинства и недостатки каждого варианта решения.

Частые вопросы об ЭПРА и ЭМПРА

1. Для начала, какой вариант является массовым для уличного освещения?

Массовым, серийным, доминирующим решением является применение в уличном освещении светильников с ЭМПРА. Это неоспоримый факт, который подтверждается, если выглянуть на улицу своего города, соседних городов, получить информацию в эксплуатирующих организациях, проанализировать доли рынка и объемы продаж ведущих производителей.

2. Является ли применение ЭПРА в уличном освещении новостью, прорывом, свежим взглядом, решением всех проблем? Может быть, все жили в незнании, а теперь появилось новое решение?

Нет, не является. ЭПРА существуют очень давно, немногим менее, чем ЭМПРА. И несмотря на это, во всем мире в уличном освещении доля ЭПРА является ничтожно малой.

3. Так в чем же дело? Ведь у ЭПРА огромное количество достоинств, это невозможно отрицать.

Разумеется. Вопрос лишь в том, что эти достоинства являются выигрышными и оправдывают себя в сфере внутреннего освещения, а не наружного. Наружное освещение характеризуется более жесткими условиями эксплуатации (температура, влажность и т.д.), а ЭМПРА на основе дросселей — изделия совершенно неприхотливые. Более того, в наружном освещении многие плюсы ЭПРА просто не имеют смысла, например, отсутствие акустического резонанса, который бывает у ЭМПРА. На высоте 3 метров в тихом офисе он заметно мешает и недопустим, а на высоте 10 метров на и без того шумной улице он никого не беспокоит, и то, что у ЭПРА его нет, на улице уже не является преимуществом.

4. На какие критерии опираться при выборе светильника с ЭПРА или светильника с ЭМПРА?

Давайте просто рассмотрим все достоинства и недостатки ЭПРА (по сравнению с ЭМПРА) и разберемся, насколько каждое достоинство или недостаток существенно именно для уличного освещения и сделаем выбор.

Достоинства ЭПРА

Достоинство ЭПРА № 1 — более качественная, чем у ЭМПРА, стабилизация мощности и светового потока лампы

А это принципиально для улицы? Нет, не принципиально. Это важно в офисе, на работе, где мы проводим минимум 8 часов ежедневно и нам важен максимальный комфорт. Уличные светильники работают вечером и ночью. Да, при колебаниях напряжения сети на улице происходят колебания светового потока, но давайте признаем: мы не ощущаем этого в жизни. Эти колебания в пределах 10% ощутимы, если работаешь 8 часов при высоких уровнях освещенности, но незаметны, если едешь на машине в течение часа при низких уровнях освещенности.

Достоинство ЭПРА № 2 — более высокий коэффициент мощности, практически 0,98, против 0,85 у ЭМПРА.

А это принципиально для улицы? Это главное достоинство и козырь ЭПРА — 10% мощности экономится.

Достоинство ЭПРА № 3 — масса меньше, чем у ЭМПРА, примерно в 4 раза.

А это принципиально для улицы? Нет. При массе опоры в десятки килограмм плюс-минус 2-3 килограмма у светильника ничего не решают. Масса, если она не экстремально большая или малая, не является ключевым критерием при выборе светильника для уличного освещения.

Достоинство ЭПРА № 4 — возможность управления освещением (регулировка мощности либо внешнее управление).

А это принципиально для улицы? Да, эта возможность важна. Но в массовом уличном освещении нечасто требуется плавная регулировка (скажем откровенно — практически не требуется), а ступенчатая регулировка возможна с помощью ЭМПРА с переключением обмоток, то есть существуют различные решения, и выбор ЭПРА отнюдь не единственный и не очевидный.

Достоинство ЭПРА № 5 — возможность диагностики состояния светоточки.

А это принципиально для улицы? Да, эта возможность важна. Но она может быть реализована только при внедрении широкомасштабной системы регулировки, управления и контроля городским освещением, при условии очень больших инвестиций. И опять же — существуют варианты таких систем не только с ЭПРА, но и с ЭМПРА, так что это достоинство так же относится и к ЭМПРА.

Достоинство ЭПРА № 6 — отсутствие акустического резонанса.

А это принципиально для улицы? Абсолютно нет. Это имеет значение только для внутреннего освещения.

Недостатки ЭПРА

Недостаток ЭПРА № 1 — сравнительно высокая стоимость.

А это принципиально для улицы?Это влияет на стоимость светильника. Если светильник с ЭПРА стоит столько же, сколько светильник с ЭМПРА, значит, скорее всего, он уступает еще и в других компонентах.

Недостаток ЭПРА № 2 — меньшие, чем у ЭМПРА, срок службы и надежность.

А это принципиально для улицы? Исключительно принципиально! Срок службы ЭПРА меньше (4 года) и физически ограничен сроком службы электролитического конденсатора. Срок службы ЭМПРА по паспорту — 10 лет. Это имеет огромное значение на улице, так как для замены аппарата придется чаще задействовать спецтехнику. Кроме того, при действительно высоких плюсовых (от +30) и минусовых (от −35) температурах износ ЭПРА станет очень существенным и срок службы будет гораздо меньше указанного. Если в регионе климатические условия регулярно пересекают указанные пороги температур, применение ЭПРА становится попросту экономически бессмысленным ввиду необходимости постоянной замены выходящих из строя аппаратов.

Недостаток ЭПРА № 3 — это единый технически сложный и чувствительный к внешним условиям блок.

А это принципиально для улицы? Конечно. Случись хоть что — замена всего блока. Если у ЭМПРА можно поменять, например, отдельные детали — конденсатор, дроссель или ИЗУ, то в случае с ЭПРА надо менять сразу весь блок. Конечно, это стоит дороже.

Недостаток ЭПРА № 4 — высокая чувствительность к температуре.

А это принципиально для улицы? Это самое главное. Уличное освещение тем и отличается от внутреннего, что светильник находится в условиях ежедневного перепада температур на десятки градусов. Это крайне плохо влияет на электронные схемы и компоненты ЭПРА, чей ресурс напрямую зависит от температуры. Собственно, причина № 4 — главная, по которой развитие ЭПРА на улице во всем мире ограничено.

Недостаток ЭПРА № 5 — только малые мощности.

А это принципиально для улицы? В Европе практически не выпускают ЭПРА мощностью, превышающей 150 Вт. Случайно ли это? Многочисленные исследования показывают, что 150 Вт — это порог экономической целесообразности ЭПРА, при более высоких мощностях их эффективность в работе системы «лампа — ПРА» сравнивается с ЭМПРА, и это в лабораторных условиях, а не на улице, где электронные ПРА вдобавок ко всему «убивает» температура, влажность, давление и т.п.

Резюме

Краткий анализ показывает, что большинство достоинств ЭПРА на улице либо перестает быть достоинством, либо не имеет значения, а недостатки носят принципиальный характер. Поэтому светильники с ЭПРА непопулярны в Америке, в Европе, непопулярны у нас. Их доля в общем количестве уличных светильников — менее 1%, и это не просто так.

При этом во внутреннем освещении ситуация кардинально противоположная, применение ЭПРА оправдано и целесообразно, экономически эффективно.

В уличном освещении рекомендуется использовать либо светильники с традиционными ЭМПРА, либо, для задач управления освещением, ЭМПРА с переключением обмоток.

Функции и параметры электронных аппаратов для люминесцентных ламп, ЭПРА

ЭПРА позволила совместить в общем блоке стартерную и балластную часть, при этом существенно возросло качество света.

Распределение функций

В подавляющем большинстве современных электронных аппаратов управляющий модуль выполняет еще две важные функции:

  • стабилизирует ток лампы при перепадах напряжения в сети
  • и корректирует коэффициент мощности.

Коэффициент мощности рассчитывается как отношение потребляемой лампой вместе с аппаратом мощности к произведению тока и напряжения. При синусоидальном токе и напряжении коэффициент мощности совпадает с тем, который был описан при рассмотрении стартерно-дроссельной схемы включения. Однако при работе ламп через электронные аппараты запуска ток искажается, в нем появляются дополнительные гармоники, и коэффициент мощности изменяется. У наиболее качественных современных электронных аппаратов (ЭПРА) этот коэффициент приближается к 1 (0,95–0,99).

Функции корректирования формы потребляемого тока (подавление дополнительных гармоник) чаще всего выполняет входной фильтр. Корректирование формы потребляемого тока позволяют обеспечивать электромагнитную совместимость электронного аппарата запуска лампы с питающей электрической сетью.

Иногда в электронных аппаратах управляющий модуль выполняет дополнительную функцию — регулирование потока света, обычно с помощью изменения частоты напряжения конвертора. Кстати говоря, лишь эти устройства и могут называться пускорегулирующими аппаратами, так как лишь они и запускают лампы, и позволяют регулировать их световой поток.

Достоинства ЭПРА

Коренное отличие электронных схем запуска люминесцентных ламп от описанных ранее стартерно-дроссельных схем состоит в том, что источники света в этих схемах питаются высокочастотным током (20–40 кГц), вместо 50 Гц, что позволяет достигать следующих положительных результатов:

  1. Из-за специфики разряда высоких частот повышается светоотдача источников света. Чем меньше длина лампы, тем больше это увеличение: у ламп мощностью 36 Вт светоотдача увеличивается приблизительно на 10 процентов, у ламп мощностью 20 Вт — на 15 процентов, у ламп мощностью 4 Вт — на 40 процентов.
  2. Глубина пульсаций потока света с частотой 100 герц снижается примерно на 95% по сравнению с пульсацией в стартерно-дроссельных схемах.
  3. Устраняются звуковые шумы, издаваемые дросселями.
  4. Устраняется мерцание источников света при их запуске.
  5. Устраняется обязательность компенсации реактивной мощности (коррекции коэффициента мощности).
  6. За счет устранения мерцаний при запуске и корректного нагревания электродов увеличивается продолжительность службы ламп (примерно в 1,5 раза).
  7. Применение электронных схем запуска позволяет регулировать световой поток.
  8. Электронные аппараты запуска имеют меньший вес, чем дроссели и используемые с ними конденсаторы.

 

Таким образом, электронные аппараты запуска ликвидируют основные недостатки люминесцентных ламп, работающих со стартерно-дроссельными аппаратами запуска. Однако электронные аппараты обладают и определенными недостатками, которые не позволяют повсеместно и широко их внедрять: стоимость электронных аппаратов запуска выше, чем стоимость дросселей, стартеров и компенсирующих конденсаторов вместе взятых. Тем не менее, как уже говорилось, в европейских странах доля осветительных приборов с электронными схемами запуска составляет около половины от всех выпускаемых светильников с люминесцентными лампами.

Важно отметить, что новейшие люминесцентные лампы с колбами диаметром 16 мм могут корректно функционировать лишь с использованием электронных аппаратов включения. Эта особенность обуславливает еще некоторые достоинства светильников с этими лампами.

ЭПРА для газоразрядных ламп высокого давления

В настоящее время происходит довольно активное внедрение электронных аппаратов запуска газоразрядных ламп высокого давления, которые сочетают в себе функции запускающего устройства и дросселя. Подобные аппараты позволяют обеспечить питание источников прямоугольным током с частотой 100–150 герц, что ощутимо снижает глубину пульсаций потока света и улучшает некоторые качественные показатели ламп (продолжительность службы и светоотдачу). Зарубежные фирмы-производители изготавливают такие аппараты только для источников малых мощностей (до 150 ватт). На периодических светотехнических выставках демонстрировались электронные аппараты запуска ламп мощностью до 600 ватт, выпускаемые российской фирмой DECSY и белорусским заводом ЭНЭФ.

Самыми известными и крупными европейскими производителями электронных аппаратов запуска являются Philips, Helvar, Osram, VosslohSchwabe, TridonicAtco. Технические характеристики электронных аппаратов различных фирм-производителей принципиально друг от друга ничем не отличаются. Особо можно лишь выделить электронные аппараты Quiktronic-Multiwatt, выпускаемые компанией Osram, и PC PRO Т5 LP, выпускаемые компанией TridonicAtco, которые могут работать с лампами разных номиналов мощности. Почти все перечисленные производители изготавливают и аппараты, которые позволяют регулировать излучаемые потоки света, то есть пускорегулирующие аппараты в совершенном смысле этого определения. Помимо способности создания максимально комфортного светового потока, электронные пускорегулирующие аппараты могут также создавать системы автоматического управления уровнем освещенности, что позволяет повысить экономию электрической энергии до 75%.

Коэффициент мощности всех электронных аппаратов включения составляет не меньше 0,95.

«Бюджетные» ЭПРА

В последнее время на российском рынке светотехнических приборов начали встречаться довольно дешевые аппараты, производимые чаще всего в азиатско-тихоокеанских странах.

Значительное уменьшение стоимости электронных аппаратов возможно лишь за счет исключения определенных функций схем их включения. Электронные аппараты с низкой стоимостью позволяют обеспечить функционирование люминесцентных источников света, однако им свойственны некоторые существенные недостатки:

  1. Запуск ламп зачастую выполняется без первоначального нагревания рабочих ламповых электродов, что при повторяющихся частых включениях в скором времени приводит к уменьшению продолжительности службы ламп.
  2. В таких аппаратах отсутствует стабилизация режима работы ламп при перепадах напряжения в сети.
  3. Обычно в дешевых электронных аппаратах включения отсутствует функция компенсации реактивной мощности, в связи с чем возникает необходимость применения дополнительных компенсирующих конденсаторов.
  4. Отсутствует функция коррекции формы потребляемого тока, вследствие чего такие аппараты не отвечают основным требованиям европейских и российских нормативных документов по электромагнитной совместимости.
  5. Практически все электронные аппараты запуска низкой стоимости не имеют возможности функционировать в сетях с постоянным током, что делает невозможным их применение в системах аварийного освещения.
  6. Продолжительность службы подобных электронных аппаратов почти в два раза меньше, чем качественных европейских аппаратов.

Подобные недостатки лишь повышают эксплуатационные затраты в осветительных системах на их основе и сводят к нулю экономию средств при покупке. Помимо этого, фирмы-производители осветительных устройств довольно часто сталкиваются с тем, что светильники не отвечают многим требованиям нормативных актов (чаще всего по электромагнитной совместимости и коэффициенту мощности).

ЭПРА позволяет внести серьезные коррективы в качество работы газоразрядных ламп. При этом возрастает эффективность и длительность их использования. В угоду потребителю выпускаются «бюджетные» модели, но экономия на цене приводит к возрастанию эксплуатационных трат.

Все о ПРА — электромагнитном пускорегулирующем аппарате

Все о ПРА — электромагнитном пускорегулирующем аппарате

 

1. Общее описание электромагнитных ПРА :

Электромагнитныe ПРА для трубчатых люминесцентных и компактных люминесцентных ламп внутреннего применения. Иногда их называют: дроссель для ламп дневного света. Класс защиты от поражения электрическим током — I, степень защиты от воздействия от окружающей среды — IP 20. Применяется для двухламповых светильников. Простой монтаж и подключение.

 

Область применения:

  • магазины,
  • офисные центры,
  • гостиницы,
  • промышленные помещения.

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель), подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами электромагнитного дросселя для ламп дневного света является его простота и дешевизна. Недостатки электромагнитного балласта — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск пра (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Электромагнитный дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания. 

2. Регламентирующие нормативные документы для электромагнитных ПРА

  • DIN VDE 0100 Предписание по устройству силовых электроустановок с номинальным напряжением ДО 1000 В
  • EN 60598-1 Осветительные приборы — часть 1: Общие требования и испытания
  • EN 61347-1 Устройства управления для ламп — часть 1: Общие требования и требования безопасности
  • ЕN 61 347-2-8 Устройства управления для ламп — часть 2-8: Особые требования к электромагнитным ПРА для люминесцентных ламп.
  • ЕN 60921 ПРА для трубчатых люминесцентных ламп. Требования к рабочим характеристикам.
  • ЕN 50294 Методы измерения общей потребляемой мощности соединения ПРА — лампа.
  • ЕN 61000-3-2 Электромагнитная совместимость. Предельно допустимые токи высших гармоник в питающей сети.
  • ЕN 61547 Осветительные приборы и системы общего назначения. — Требования к электромагнитной совместимости и устойчивости к электромагнитным помехам.

 

З. Общие данные ПРА

Электромагнитные (индуктивные) ПРА являются активными компонентами, которые совместно со стартерами нагревают электроды ламп, обеспечивают напряжение зажигания и стабилизируют ток лампы в течение ее работы. Для компенсации реактивного тока необходимы конденсаторы последовательного или параллельного соединения. 

При установке в светильники нужно обращать внимание на напряжение и частоту сети, габаритные размеры и температурные пределы, а также возможное генерирование шумов.

Электромагнитные ПРА оптимизированы в отношении к их магнитным полям и магнитным нагрузкам так, чтобы они обычно не ощущались. Поскольку магнитные колебания могут воздействовать в зависимости от конструкции светильников на другие области, то нужно учитывать при проектировании светильников.

Необходимо сделать конструкцию жесткой, чтобы вибрации не распространялись.

Срок службы индуктивного ПРА определяется выбором материала и изоляцией обмотки.

Предельная температура обмотки обозначает ту величину температуры (tw), которую выдерживает изоляция при непрерывной работе при номинальных условиях в течение 10 лет. Эта предельная температура обмотки не должна быть превышена в светильнике в реальных условиях, тогда можно достигнуть работы ПРА на весь срок службы. Установленная в светильнике температура обмотки электромагнитного балласта состоит из температуры окружающей среды, температурных условий в светильнике и потери мощности дросселя. Мерой потери мощности ПРА является Δt, значение которой находится на маркировке балласта. В дополнение к этому, потеря мощности схемы соединения дросселя и люминесцентной лампы измеряется по норме ЕN 50294. Этот метод измерений является основой классификации энергопотребления ПРА.

Кроме этого, применяется европейская директива 2000/55/ЕС «Предельные допустимые величины потребления мощности схемами люминесцентных ламп».

При включении электромагнитного балласта возникают кратковременные высокие импульсы тока из-за паразитарных нагрузок, которые суммируются в зависимости от количества светильников в осветительной установке. Эти высокие токи при включении системы нагружают автоматы защиты электропроводки, поэтому необходимо использовать соответствующим образом подобранные автоматические выключатели.

Индуктивные ПРА конструктивно вызывают токи утечки, которые отводятся заземлением светильника (устройство заземления). Максимально допустимая величина тока утечки у светильников класса защиты I составляет 1 мА.

4. Электромагнитная совместимость (ЭМС/ ЕМV)

Помехи:

Измерение напряжения помех должно проводиться у светильников с электромагнитными ПРА на

контактных зажимах, поскольку частота напряжения ламп этих систем ниже 100 Гц. Это низкочастотное напряжения помех, как правило, не критично у электромагнитных дросселей, если конструкция ПРА согласована в этом отношении.

Невосприимчивость к помехам:

Благодаря жесткой конструкции и специально отобранным материалам, электромагнитные ПРА обеспечивают высокую степень защиты от помех и не подвержены отрицательному влиянию присутствующих помех в сети.

Гармоники сети:

Люминесцентные лампы имеют пик перезажигания после каждого N-прохода тока ламп, лампы

гаснут на короткое время (почти незаметно глазом). За счет этих пиков перезажигания люминесцентных ламп создаются гармоники сети, которые сглаживаются с помощью импеданса ПРА. С помощью правильной конструкции, то есть выбора рабочей точки магнитного ПРА, ограничиваются гармоники сети на предельные значения нормы Е N 6100-3-2

5. Схемы соединения люминесцентных ламп с электромагнитными пускорегулирующими аппаратами (ПРА)

 

6. Температурный режим ПРА

Предельные значения температур:

При нормальной работе температура обмотки tw не должна превышать 130º С. При аномальном режиме работы предельное значение температуры обмотки tw =232º С: Эти значения должны быть проверены методом «изменения сопротивления» в течение работы.

Повышение температур:

Ток лампы, который протекает через ПРА, обуславливает потерю мощности, что приводит к повышению температуры обмотки. Критерием для этого повышения является значение Δt как для нормальной так и для аномальной работы. Значение Δt определяется по стандартной схеме измерений и указывается на маркировке в градусах Кельвина.

Пример: Δt =55К/140К

Первое значение Δt указывает на превышение температуры для нормального режима при рабочем токе лампы. Второе значение (здесь 140К) означает превышение температуры обмотки, что является результатом протекания тока, когда разрядный промежуток лампы короткозамкнут. Ток, который течет в этом режиме, является током нагрева для электродов лампы.

7. Срок службы электромагнитного балласта

При условии, что температура обмотки будет соответствовать указанному предельному значению, можно рассчитывать на срок службы 10 лет. Интенсивность отказов < О,О2% / 1.000 час. 

8. Коэффициент мощности ПРА 

Индуктивные ПРА: λ ≤ 0,5. Параллельно компенсированные дроссели для ламп дневного света:

λ ≤ 0,9 

9. Рекомендации по монтажу электромагнитных дросселей

  • Положение встраивания: Любое
  • Место монтажа: электромагнитные ПРА спроектированы для установки в светильниках или в подобных приборах.
  • Независимые ПРА не нужно встраивать в корпус.
  • Крепление дросселей: Предпочтительно с помощью винтов М4

10. Электрический монтаж электромагнитного ПРА

Клеммные колодки (универсальные контактные зажимы)

  • Применять медный провод (негибкий провод)
  • Поперечные сечения для соединения безвинтового зажима 0,5—1,0 мм²
  • Длина зачищенного конца проводника 8 мм
  • Поперечное сечение соединительного надреза (IDС — зона) 0,5 мм² , с изоляцией максимум Ø2 мм, снятие изоляции не обязательно, монтаж возможен только со специальным инструментом.

Безвинтовые контактные зажимы

  • Встроенные контактные зажимы могут присоединять только жесткие проводники. Жесткие проводники:
  • 0,5—1,0 мм². Длина зачищенного конца проводника 8 мм.
  • Соединение проводников
  • Соединение между сетью, дросселем и люминесцентными лампами должно производиться согласно представленным схемам соединения. 

Преимущество ЭПРА перед ЭмПРА в люминесцентных светильниках

ЭПРА или ЭмПРА

Электромагнитный пускорегулирующий аппарат (ЭмПРА) и электронный пускорегулирующий аппарат (ЭПРА).

Какие преимущества ЭПРА перед ЭмПРА?

  • ЭПРА значительно быстрее вводит люминесцентную лампу в рабочее состояние, примерно в течение 0,5 -1 секунды. Отсутствует телескопический эффект, частота работы ЭПРА 40000 – 50000 тысяч герц — исключает эффект мерцания. У ЭмПРА всего 50 герц. Хотя наш глаз неспособен за одну секунду уловить мерцание с частотой в пятьдесят импульсов, но при постоянной работе ЭмПРА зрение утомляется. При работе ЭПРА наше зрение свет воспринимает как более или менее естественное. Срок ламп в системе ЭПРА увеличивается в два раза в зависимости от качества люминесцентной лампы.
  • Светильники с ЭПРА просты в эксплуатации, достаточно заменить лампы, тогда как у ЭмПРА помимо ламп, часто выходят из строя дроссели и стартеры. Если лампа перегорает у системы ЭмПРА, энергопотребление все же продолжает поступать на вышедшею из строя лампу. Тогда как у ЭПРА дроссель автоматически блокирует поставку энергии на перегоревшую лампу, и энергопотребление значительно снижается до 25%.
  • ЭПРА в отличии ЭмПРА может питаться от постоянного тока, то есть от аккумулятора, как  аварийное освещение.
  • Есть ЭПРА холодного и теплого пуска. У теплого пуска сначала идет сигнал на спирали лампы, чтобы они нагрелись, как только они нагреваются они сразу загораются и все это может произойти за доли секунды. Срок службы теплого пуска увеличивается в три, четыре раза. Холодный пуск лишен такого преимущества.
  • Светильники ЭПРА абсолютно бесшумны в отличии балластов ЭмПРА, которые могут издавать гудящий неприятный шумовой фон.
  • В состав ЭПРА входят: выпрямитель тока, фильтр электромагнитных помех, инвертор,  схема коррекции коэффициента мощности, фильтр постоянного тока, балласт (дроссель).

Оцените качество статьи:

Понравилась статья? Поделиться с друзьями:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *