Электроснабжение — это… Что такое Электроснабжение?
Высоковольтная линия электропередачи
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электрической энергии [1].
ГОСТ 24291-90 дает следующее определение электрической сети:
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.
Классификация электрических сетей
Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.
- Назначение, область применения
- Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
- Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
- Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
- Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
- Масштабные признаки, размеры сети
- Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
- Региональные сети: сети масштаба региона (области, края). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
- Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольщие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
- Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
- Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).
- Род тока
- Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называется «фаза». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
- Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
- Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого напряжения, имеющих пока ограниченное распространение.
Принципы работы
Электрические сети осуществляют передачу, распределение и преобразование электроэнергию в соответствии с возможностями источников и требованиями потребителей.
Переменный ток
Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.
Классы напряжения
При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле S = IU для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют классы напряжения 1150 кВ, 750 кВ, 500 кВ, 330 и 220 кВ. Сети, передающие средние мощности, имеют классы напряжения 220 кВ, 110 кВ, 35 кВ. Сети, передающие малые мощности, имеют классы напряжения 35 кВ, 20 кВ, 10 кВ, 6 кВ. Сети конечных потребителей имеют класс напряжения 0,4 кВ. Высоковольтные сети постоянного напряжения имеют классы напряжения
Преобразование напряжения
Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны напряжению, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи трансформаторов.
Структура сети
Сеть электроснабжения может иметь сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.
Основные компоненты сети
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).
ГОСТ 2.702-75 Правила выполнения электрических схем
Примечания
- ↑ ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»
См. также
Wikimedia Foundation. 2010.
Электроснабжение — это… Что такое электроснабжение?
электроснабжениеср.Снабжение электрической энергией.
электроснабжениеср. Снабжение электрической энергией.
совокупность мероприятий по обеспечению электроэнергией различных ее потребителей. Комплекс инженерных сооружений, осуществляющих задачи электроснабжения, называется системой электроснабжения.
электроснабжениеэлектроснабжение ср. Снабжение электрической энергией.
электроснабжениеэлектроснабжения, мн. нет, ср. (тех.). Снабжение электрической энергией. См. (электро).
электроснабжениеслужит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические , питающие распределительные электрические сети , различные вспомогательные устройства и сооружения. Основная часть вырабатываемой электроэнергии потребляется промышленностью, например в СССР — около 70% (
1977). Структура Э. определяется исторически сложившимися особенностями производства и распределения электроэнергии в отдельных странах. Принципы построения систем Э. в промышленно развитых странах являются общими. Некоторая специфика и местные различия в схемах Э. зависят от размеров территории страны, её климатических условий, уровня экономического развития, объёма промышленного производства и плотности размещения электрифицированных объектов и их энергоёмкости. Источники питания. Основные источники питания электроэнергией — электростанции и питающие сети районных энергетических систем . На промышленных предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали (ТЭЦ), мощность которых определяется потребностью в тепле для технологических нужд и отопления. Для крупных энергоёмких предприятий, например металлургических заводов с большим теплопотреблением и значительным выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на которых устанавливают генераторы, вырабатывающие ток напряжением до 20 кв. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1-2 км, имеют районное значение и, кроме предприятия, снабжают электрической энергией и теплом близлежащие промышленные и жилые районы. Для разгрузки источников питания в часы пик служат так называемые ‘потребители-регуляторы’, которые без существенного ущерба для технологического процесса допускают перерывы или ограничения в потреблении электроэнергии. К числу таких электроприёмников относится, например, большинство электропечей, обладающих значительной тепловой инерцией, некоторые электролизные установки, которые позволяют выравнивать графики нагрузок в энергетических системах. Напряжения в системах Э. являются оптимальными значениями, проверенными на практике. В каждом конкретном случае выбор напряжения зависит от передаваемой мощности и (от расстояния источника питания до потребителя. Шкалы напряжений, принятые в разных странах, не имеют между собой принципиальных различий. Используемые в СССР напряжения (6, 10, 20, 35, 110, 220, 300 кв и т. д.) характерны и для других стран. В шкалах некоторых стран имеются напряжения промежуточных значений, которые были введены на раннем этапе строительства электрических сетей и продолжают использоваться, хотя в ряде случаев уже и не являются оптимальными. Питание электроэнергией крупных промышленных и транспортных предприятий и городского хозяйства осуществляется на напряжениях 110 и 220 кв (в США часто 132 кв ) , а для особо крупных и энергоёмких — 330 и 500 кв. Распределение энергии на первых ступенях при этом выполняется на напряжении 110 или 220 кв. Напряжение 110 кв применяется чаще, т. к. в этом случае легче разместить воздушные линии электропередачи на застроенных территориях предприятий и городов. Распределение энергии между потребителями при напряжении 220 кв целесообразно тогда, когда это напряжение является также и питающим. При определённых условиях имеет преимущества сетевое напряжение 60-69 кв (применяется в ряде стран Западной Европы и в США). Напряжение 35 кв используют в питающих и распределительных сетях промышленных предприятий средней мощности, в небольших и средних городах и в сельских электрических сетях, а также для питания на крупных предприятиях мощных электроприёмников: электропечей, выпрямительных установок и т. п. Напряжение 20 кв используется сравнительно редко для развития сетей, имеющих это напряжение; оно может оказаться целесообразным в районах с небольшой плотностью электрических нагрузок, а также в больших городах и на крупных предприятиях при наличии ТЭЦ с генераторным напряжением 20 кв . Напряжения 10 и 6 кв применяют при распределении электроэнергии (на различных ступенях Э.) на промышленных предприятиях, в городах и др. Эти напряжения пригодны также для питания объектов небольшой мощности, недалеко отстоящих от источника питания. В большинстве случаев целесообразно использование напряжения 10 кв в качестве основного. При этом питание электродвигателей производится от понизительных подстанций 10/6 кв по схеме трансформатор — двигатель или от обмоток 6 кв трансформатора 110/220 кв с расщепленными вторичными обмотками (10и 6 к;
6). Схемы систем Э. строят, исходя из принципа максимально возможного приближения источника электроэнергии высшего напряжения к электроустановкам потребителей с минимальным количеством ступеней промежуточной коммутации и трансформации. Для этих целей применяют т. н. глубокие вводы (35-220 кв )кабельных и воздушных линий электропередачи. Понижающие подстанции размещаются в центрах расположения основных потребителей электроэнергии, т. е. в центрах электрических нагрузок. В результате такого размещения снижается потеря электроэнергии, сокращается расход материалов, уменьшается число промежуточных сетевых звеньев, улучшается режим работы электроприёмников. Элементы системы Э. несут постоянную нагрузку, рассчитываются на взаимное резервирование с учётом допустимых перегрузок и разумного ограничения потребления электроэнергии и в послеаварийном режиме, когда производятся восстановительные работы на поврежденном элементе или участке сети. В большинстве случаев предусматривается раздельная работа элементов с использованием средств автоматики и глубокого секционирования всех звеньев. Параллельная работа применяется лишь при необходимых обоснованиях. Глубокие вводы выполняют магистральными и радиальными линиями ( рис. 1 ) в зависимости от условий окружающей среды, застройки территории и др. факторов. Схема ввода кабельных радиальных линий непосредственно в трансформатор подстанции является простейшей наиболее компактной и надёжной. При использовании глубоких вводов возможно применение компактных, полностью закрытых ячеек КРУЭ (комплектных распределит, устройств с элегазовым наполнением) на напряжение 110 кв.Схемы распределит, сетей 6-20 кв выполняют магистральными, радиальными или смешанными ( рис. 2 ) с модификациями по степени надёжности. Первые ступени Э. крупных предприятий обычно выполняют по магистральным схемам с мощными токопроводами 6-10 кв, от которых через распределительные пункты питаются цеховые трансформаторные пункты. В городских сетях при напряжениях 6 и 10 кв применяют петлевые, двухлучевые и многолучевые схемы, являющиеся разновидностями магистральных. На крупных узловых подстанциях 110-220 кв (на больших заводах, в городах с развитой электрической сетью, большим числом присоединений и т. п.) электрические схемы обычно имеют двойную систему шин. При напряжениях 6 и 10 кв в крупных распределительных устройствах в случае необходимости разделения питания или выделения потребителей (например, на крупных преобразовательных подстанциях) двойная система шин позволяет переводить некоторые агрегаты на пониженное напряжение, сохраняя для прочих потребителей нормальное напряжение. В потребительских электроустановках наиболее часто используют схемы подстанций с одной системой секционированных шин с применением (при необходимости) автоматики на секционных выключателях или вводах. При частых оперативных переключениях и ревизиях (осмотрах и проверках) выключателей целесообразными являются схемы с обходной (дополнительной) системой шин, которая позволяет произвести ревизию или ремонт любой рабочей системы шин и любого выключателя без перерыва питания. Эти схемы применяют, например, на крупных электропечных подстанциях промышленных предприятий. Распространены простейшие схемы подстанций без шин первичного напряжения на подстанциях глубоких вводов 210 и 220 кв и на трансформаторных подстанциях 10 и 6 кв, питаемых по блочным схемам линия — трансформатор (см. рис. 1 и 2 ). На трансформаторных подстанциях на стороне 10 и 6 кв ставят выключатели нагрузки, а при радиальном питании применяют глухое присоединение трансформаторов. На крупных объектах рационально строительство электрических сетей с мощными токопроводами 10 и 6 кв (взамен большого числа кабелей), кабельных эстакад и галерей (вместо дорогих и громоздких туннелей), прокладка кабелей 110 и 220 кв (взамен воздушных линий). Надёжность Э. зависит от требований бесперебойности работы электроприёмников. Необходимая степень надёжности определяется тем возможным ущербом, который может быть нанесён производству при прекращении их питания. Существуют 3 категории надёжности электроприёмников. К 1-й категории относят те, питание которых обеспечивают не менее чем 2 независимых автоматически резервируемых источника. Такие электроприёмники необходимы на объектах с повышенными требованиями к бесперебойности работы (например, непрерывное химическое производство). Наилучшие в этом случае схемы Э. с территориально разобщёнными независимыми источниками. Допустимый перерыв в Э. для некоторых производств не должен превышать 0,15-0,25 сек , поэтому важным условием является необходимое быстродействие восстановления питания. Для особо ответственных электроприёмников в схеме Э. предусматривают дополнительный третий источник. Ко 2-й категории относятся электроприёмники, допускающие перерыв питания на время, необходимое для включения ручного резерва. Для приёмников 3-й категории допускается перерыв питания на время до 1 сут, необходимое на замену или ремонт поврежденного элемента системы. Качество электроэнергии. В системы Э. часто входят электроприёмники, работа которых сопровождается ударными нагрузками и неблагоприятно отражается на работе других (‘спокойных’) электроприёмников, общем режиме работы системы, на качестве электроэнергии (см. Электроэнергии качество ) . К таким электроприёмникам относятся вентильные преобразователи, дуговые электропечи, электросварочные аппараты, электровозы, работа которых сопровождается резкопеременными толчками нагрузки, колебаниями напряжения, снижением коэффициента мощности, образованием высших гармоник, возникновением несимметрии напряжений. Показатели качества электроэнергии улучшаются при повышении мощности короткого замыкания в точке сети, к которой приключены электроприёмники с неблагоприятными характеристиками. Чтобы создать такие условия, уменьшают реактивное сопротивление питающих линий, не включая в них реакторы электрические или уменьшая их реактивность, исключая из схем токопроводы и др. При этом должна быть соответственно увеличена отключаемая мощность выключателей. Вопросы улучшения качества электроэнергии решаются комплексно при проектировании систем Э. и электропривода. Хорошие результаты даёт разделение питания электроприёмников с ударными и т. н. спокойными нагрузками путём присоединения их к разным трансформаторам и различным ветвям расщепленных трансформаторов или плечам сдвоенных реакторов. Улучшению качества электроэнергии способствует внедрение в схемы Э. электроприводов с пониженным потреблением реактивной мощности, применение многофазных схем выпрямления и др. При недостаточности этих мероприятий применяют специальные устройства: синхронные компенсаторы с быстродействующим возбуждением, большой кратностью перегрузки по реактивной мощности (в 3-4 раза), работающие в т. н. режиме слежения за реактивной мощностью электроприёмников; синхронные электродвигатели со спокойной нагрузкой, присоединяемые к общим с вентильными преобразователями шинам и имеющие необходимую располагаемую мощность и быстродействующее возбуждение с высоким уровнем форсировки; статические источники реактивной мощности с высоким быстродействием, безынерционностью и плавным изменением реактивной мощности; продольную ёмкостную компенсацию, дающую возможность мгновенного безынерционного и непрерывного автоматического регулирования напряжения; силовые резонансные электрические фильтры для гашения высших гармоник.Лит.: Князевский Б. Л., Липкин Б. Ю., Электроснабжение промышленных предприятий, М., 1969; Крупович В. И., Ермилов А. А., Трунковский Л. Е., Проектирование и монтаж промышленных электрических сетей, М., 1971; Козлов В. А., Билик Н. И., Файбисович Д. Л., Справочник по проектированию систем электроснабжения городов, Л., 1974; Ермилов А. А., Основы электроснабжения промышленных предприятий, 3 изд., М.,
1976. А. А. Ермилов.
электроснабжениеэлектроснабжение, -я
ЭЛЕКТРОСНАБЖЕНИЕ — это… Что такое ЭЛЕКТРОСНАБЖЕНИЕ?
- ЭЛЕКТРОСНАБЖЕНИЕ
- ЭЛЕКТРОСНАБЖЕНИЕ
- ЭЛЕКТРОСНАБЖЕ́НИЕ, электроснабжения, мн. нет, ср. (тех.). Снабжение электрической энергией. см. электро….
Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.
.
- ЭЛЕКТРОСКОП
- ЭЛЕКТРОСТАЛЬ
Смотреть что такое «ЭЛЕКТРОСНАБЖЕНИЕ» в других словарях:
электроснабжение — электроснабжение … Орфографический словарь-справочник
электроснабжение — Обеспечение потребителей электрической энергией. [ГОСТ 19431 84] Качество электрической энергии (КЭ) тесно связано с надежностью электроснабжения, поскольку нормальным режимом электроснабжения потребителей является такой режим, при котором… … Справочник технического переводчика
Электроснабжение — Электроснабжение. Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена… … Энциклопедический справочник «Санкт-Петербург»
ЭЛЕКТРОСНАБЖЕНИЕ — совокупность мероприятий по обеспечению электроэнергией различных ее потребителей. Комплекс инженерных сооружений, осуществляющих задачи электроснабжения, называется системой электроснабжения … Большой Энциклопедический словарь
Электроснабжение — Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена электростанция,… … Санкт-Петербург (энциклопедия)
электроснабжение — сущ., кол во синонимов: 5 • снабжение (49) • снабжение электроэнергией (2) • … Словарь синонимов
электроснабжение — электрическое снабжение снабжение электрической энергией техн., энерг. Источник: http://www.sibnn.ru/news.php?id=11841 … Словарь сокращений и аббревиатур
электроснабжение — 1 электроснабжение: Обеспечение потребителей электрической энергией в соответствии с определенными техническими, метрологическими и экономическими характеристиками (частота, напряжение, продолжительность, максимум нагрузки, пункт питания, тариф)… … Словарь-справочник терминов нормативно-технической документации
Электроснабжение — Высоковольтная линия электропередачи Электрическая сеть совокупность подстанций, распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электрической энергии [1]. ГОСТ… … Википедия
электроснабжение — летательного аппарата обеспечение электропитанием потребителей, установленных на борту летательного аппарата. Система Э. состоит из системы генерирования (СГ) и системы распределения (СР) электроэнергии. СГ совокупность источников… … Энциклопедия «Авиация»
Книги
- Электроснабжение, Б. И. Кудрин. В учебнике изложены теория электрического привода и основы управления, составляющие традиционное содержание курса «Электрический привод» . Учебник сопровождаетсяпримерами расчетов… Подробнее Купить за 1789 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабженияобъектов; излагается методика… Подробнее Купить за 601 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. 328 стр. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабжения объектов; излагается… Подробнее Купить за 509 грн (только Украина)
Что значит электроснабжение — Значения слов
служит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические , питающие распределительные электрические сети , различные вспомогательные устройства и сооружения. Основная часть вырабатываемой электроэнергии потребляется промышленностью, например в СССР ≈ около 70% (1977). Структура Э. определяется исторически сложившимися особенностями производства и распределения электроэнергии в отдельных странах. Принципы построения систем Э. в промышленно развитых странах являются общими. Некоторая специфика и местные различия в схемах Э. зависят от размеров территории страны, её климатических условий, уровня экономического развития, объёма промышленного производства и плотности размещения электрифицированных объектов и их энергоёмкости.
Источники питания. Основные источники питания электроэнергией ≈ электростанции и питающие сети районных энергетических систем . На промышленных предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали (ТЭЦ), мощность которых определяется потребностью в тепле для технологических нужд и отопления. Для крупных энергоёмких предприятий, например металлургических заводов с большим теплопотреблением и значительным выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на которых устанавливают генераторы, вырабатывающие ток напряжением до 20 кв. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1≈2 км, имеют районное значение и, кроме предприятия, снабжают электрической энергией и теплом близлежащие промышленные и жилые районы. Для разгрузки источников питания в часы пик служат так называемые «потребители-регуляторы», которые без существенного ущерба для технологического процесса допускают перерывы или ограничения в потреблении электроэнергии. К числу таких электроприёмников относится, например, большинство электропечей, обладающих значительной тепловой инерцией, некоторые электролизные установки, которые позволяют выравнивать графики нагрузок в энергетических системах.
Напряжения в системах Э. являются оптимальными значениями, проверенными на практике. В каждом конкретном случае выбор напряжения зависит от передаваемой мощности и (от расстояния источника питания до потребителя. Шкалы напряжений, принятые в разных странах, не имеют между собой принципиальных различий. Используемые в СССР напряжения (6, 10, 20, 35, 110, 220, 300 кв и т. д.) характерны и для других стран. В шкалах некоторых стран имеются напряжения промежуточных значений, которые были введены на раннем этапе строительства электрических сетей и продолжают использоваться, хотя в ряде случаев уже и не являются оптимальными. Питание электроэнергией крупных промышленных и транспортных предприятий и городского хозяйства осуществляется на напряжениях 110 и 220 кв (в США часто 132 кв), а для особо крупных и энергоёмких ≈ 330 и 500 кв. Распределение энергии на первых ступенях при этом выполняется на напряжении 110 или 220 кв. Напряжение 110 кв применяется чаще, т. к. в этом случае легче разместить воздушные линии электропередачи на застроенных территориях предприятий и городов. Распределение энергии между потребителями при напряжении 220 кв целесообразно тогда, когда это напряжение является также и питающим. При определённых условиях имеет преимущества сетевое напряжение 60≈69 кв (применяется в ряде стран Западной Европы и в США). Напряжение 35 кв используют в питающих и распределительных сетях промышленных предприятий средней мощности, в небольших и средних городах и в сельских электрических сетях, а также для питания на крупных предприятиях мощных электроприёмников: электропечей, выпрямительных установок и т. п. Напряжение 20 кв используется сравнительно редко для развития сетей, имеющих это напряжение; оно может оказаться целесообразным в районах с небольшой плотностью электрических нагрузок, а также в больших городах и на крупных предприятиях при наличии ТЭЦ с генераторным напряжением 20 кв. Напряжения 10 и 6 кв применяют при распределении электроэнергии (на различных ступенях Э.) на промышленных предприятиях, в городах и др. Эти напряжения пригодны также для питания объектов небольшой мощности, недалеко отстоящих от источника питания. В большинстве случаев целесообразно использование напряжения 10 кв в качестве основного. При этом питание электродвигателей производится от понизительных подстанций 10/6 кв по схеме трансформатор ≈ двигатель или от обмоток 6 кв трансформатора 110/220 кв с расщепле
Электроснабжение что это? Значение слова Электроснабжение
Значение слова Электроснабжение по Ефремовой:
Электроснабжение — Снабжение электрической энергией.
Электроснабжение в Энциклопедическом словаре:
Электроснабжение — совокупность мероприятий по обеспечению электроэнергиейразличных ее потребителей. Комплекс инженерных сооружений, осуществляющихзадачи электроснабжения, называется системой электроснабжения.
Значение слова Электроснабжение по словарю Ушакова:
ЭЛЕКТРОСНАБЖЕНИЕ
электроснабжения, мн. нет, ср. (тех.). Снабжение электрической энергией. См. (электро).
Определение слова «Электроснабжение» по БСЭ:
Электроснабжение — служит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические, питающие распределительные электрические сети, различные вспомогательные устройства и сооружения. Основная часть вырабатываемой электроэнергии потребляется промышленностью, например в СССР — около 70% (1977). Структура Э. определяется исторически сложившимися особенностями производства и распределения электроэнергии в отдельных странах. Принципы построения систем Э. в промышленно развитых странах являются общими. Некоторая специфика и местные различия в схемах Э. зависят от размеров территории страны, её климатических условий, уровня экономического развития, объёма промышленного производства и плотности размещения электрифицированных объектов и их энергоёмкости.
Источники питания. Основные источники питания электроэнергией — электростанции и питающие сети районных энергетических систем (См. Энергетической системы устойчивость). На промышленных предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали(ТЭЦ), мощность которых определяется потребностью в тепле для технологических нужд и отопления. Для крупных энергоёмких предприятий, например металлургических заводов с большим теплопотреблением и значительным выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на которых устанавливают генераторы, вырабатывающие ток напряжением до 20 кв. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1-2 км, имеют районное значение и, кроме предприятия, снабжают электрической энергией и теплом близлежащие промышленные и жилые районы. Для разгрузки источников питания в часы пик служат так называемые
«потребители-регуляторы», которые без существенного ущерба для технологического процесса допускают перерывы или ограничения в потреблении электроэнергии. К числу таких электроприёмников относится, например, большинство электропечей, обладающих значительной тепловой инерцией, некоторые электролизные установки, которые позволяют выравнивать графики нагрузок в энергетических системах.
Напряжения в системах Э. являются оптимальными значениями, проверенными на практике. В каждом конкретном случае выбор напряжения зависит от передаваемой мощности и (от расстояния источника питания до потребителя. Шкалы напряжений, принятые в разных странах, не имеют между собой принципиальных различий. Используемые в СССР напряжения (6, 10, 20, 35, 110, 220, 300 кв и т. д.) характерны и для других стран. В шкалах некоторых стран имеются напряжения промежуточных значений, которые были введены на раннем этапе строительства электрических сетей и продолжают использоваться, хотя в ряде случаев уже и не являются оптимальными. Питание электроэнергией крупных промышленных и транспортных предприятий и городского хозяйства осуществляется на напряжениях 110 и 220 кв (в США часто 132 кв), а для особо крупных и энергоёмких — 330 и 500 кв. Распределение энергии на первых ступенях при этом выполняется на напряжении 110 или 220 кв. Напряжение 110 кв применяется чаще, т. к. в этом случае легче разместить воздушные линии электропередачи на застроенных территориях предприятий и городов.
Распределение энергии между потребителями при напряжении 220 кв целесообразно тогда, когда это напряжение является также и питающим. При определённых условиях имеет преимущества сетевое напряжение 60-69 кв (применяется в ряде стран Западной Европы и в США). Напряжение 35 кв используют в питающих и распределительных сетях промышленных предприятий средней мощности, в небольших и средних городах и в сельских электрических сетях, а также для питания на крупных предприятиях мощных электроприёмников: электропечей, выпрямительных установок и т. п.
Напряжение 20 кв используется сравнительно редко для развития сетей, имеющих это напряжение. оно может оказаться целесообразным в районах с небольшой плотностью электрических нагрузок, а также в больших городах и на крупных предприятиях при наличии ТЭЦ с генераторным напряжением 20 кв. Напряжения 10 и 6 кв применяют при распределении электроэнергии (на различных ступенях Э.) на промышленных предприятиях, в городах и др. Эти напряжения пригодны также для питания объектов небольшой мощности, недалеко отстоящих от источника питания. В большинстве случаев целесообразно использование напряжения 10 кв в качестве основного. При этом питание электродвигателей производится от понизительных подстанций 10/6 кв по схеме трансформатор — двигатель или от обмоток 6 кв трансформатора 110/220 кв с расщепленными вторичными обмотками (10и 6 к. 6).
Схемы систем Э. строят, исходя из принципа максимально возможного приближения источника электроэнергии высшего напряжения к электроустановкам потребителей с минимальным количеством ступеней промежуточной коммутации и трансформации. Для этих целей применяют т. н. глубокие вводы (35-220 кв) кабельных и воздушных линий электропередачи. Понижающие подстанции размещаются в центрах расположения основных потребителей электроэнергии, т. е. в центрах электрических нагрузок. В результате такого размещения снижается потеря электроэнергии, сокращается расход материалов, уменьшается число промежуточных сетевых звеньев, улучшается режим работы электроприёмников. Элементы системы Э. несут постоянную нагрузку, рассчитываются на взаимное резервирование с учётом допустимых перегрузок и разумного ограничения потребления электроэнергии и в послеаварийном режиме, когда производятся восстановительные работы на поврежденном элементе или участке сети. В большинстве случаев предусматривается раздельная работа элементов с использованием средств автоматики и глубокого секционирования всех звеньев. Параллельная работа применяется лишь при необходимых обоснованиях.
Глубокие вводы выполняют магистральными и радиальными линиями (рис. 1) в зависимости от условий окружающей среды, застройки территории и др. факторов. Схема ввода кабельных радиальных линий непосредственно в трансформатор подстанции является простейшей наиболее компактной и надёжной. При использовании глубоких вводов возможно применение компактных, полностью закрытых ячеек КРУЭ (комплектных распределит, устройств с элегазовым наполнением) на напряжение 110 кв.
Схемы распределит, сетей 6-20 кв выполняют магистральными, радиальными или смешанными (рис. 2) с модификациями по степени надёжности. Первые ступени Э. крупных предприятий обычно выполняют по магистральным схемам с мощными токопроводами 6-10 кв, от которых через распределительные пункты питаются цеховые трансформаторные пункты. В городских сетях при напряжениях 6 и 10 кв применяют петлевые, двухлучевые и многолучевые схемы, являющиеся разновидностями магистральных.
На крупных узловых подстанциях 110-220 кв (на больших заводах, в городах с развитой электрической сетью, большим числом присоединений и т. п.) электрические схемы обычно имеют двойную систему шин. При напряжениях 6 и 10 кв в крупных распределительных устройствах в случае необходимости разделения питания или выделения потребителей (например, на крупных преобразовательных подстанциях) двойная система шин позволяет переводить некоторые агрегаты на пониженное напряжение, сохраняя для прочих потребителей нормальное напряжение. В потребительских электроустановках наиболее часто используют схемы подстанций с одной системой секционированных шин с применением (при необходимости) автоматики на секционных выключателях или вводах.
При частых оперативных переключениях и ревизиях (осмотрах и проверках) выключателей целесообразными являются схемы с обходной (дополнительной) системой шин, которая позволяет произвести ревизию или ремонт любой рабочей системы шин и любого выключателя без перерыва питания. Эти схемы применяют, например, на крупных электропечных подстанциях промышленных предприятий. Распространены простейшие схемы подстанций без шин первичного напряжения на подстанциях глубоких вводов 210 и 220 кв и на трансформаторных подстанциях 10 и 6 кв, питаемых по блочным схемам линия — трансформатор (см. рис. 1 и 2). На трансформаторных подстанциях на стороне 10 и 6 кв ставят выключатели нагрузки, а при радиальном питании применяют глухое присоединение трансформаторов.
На крупных объектах рационально строительство электрических сетей с мощными токопроводами 10 и 6 кв (взамен большого числа кабелей), кабельных эстакад и галерей (вместо дорогих и громоздких туннелей), прокладка кабелей 110 и 220 кв (взамен воздушных линий).
Надёжность Э. зависит от требований бесперебойности работы электроприёмников. Необходимая степень надёжности определяется тем возможным ущербом, который может быть нанесён производству при прекращении их питания. Существуют 3 категории надёжности электроприёмников. К 1-й категории относят те, питание которых обеспечивают не менее чем 2 независимых автоматически резервируемых источника. Такие электроприёмники необходимы на объектах с повышенными требованиями к бесперебойности работы (например, непрерывное химическое производство). Наилучшие в этом случае схемы Э. с территориально разобщёнными независимыми источниками. Допустимый перерыв в Э. для некоторых производств не должен превышать 0,15-0,25 сек, поэтому важным условием является необходимое быстродействие восстановления питания. Для особо ответственных электроприёмников в схеме Э. предусматривают дополнительный третий источник. Ко 2-й категории относятся электроприёмники, допускающие перерыв питания на время, необходимое для включения ручного резерва. Для приёмников 3-й категории допускается перерыв питания на время до 1 сут, необходимое на замену или ремонт поврежденного элемента системы.
Качество электроэнергии. В системы Э. часто входят электроприёмники, работа которых сопровождается ударными нагрузками и неблагоприятно отражается на работе других («спокойных») электроприёмников, общем режиме работы системы, на качестве электроэнергии (см. Электроэнергии качество). К таким электроприёмникам относятся вентильные преобразователи, дуговые электропечи, электросварочные аппараты, электровозы, работа которых сопровождается резкопеременными толчками нагрузки, колебаниями напряжения, снижением коэффициента мощности, образованием высших гармоник, возникновением несимметрии напряжений. Показатели качества электроэнергии улучшаются при повышении мощности короткого замыкания в точке сети, к которой приключены электроприёмники с неблагоприятными характеристиками. Чтобы создать такие условия, уменьшают реактивное сопротивление питающих линий, не включая в них реакторы электрические или уменьшая их реактивность, исключая из схем токопроводы и др. При этом должна быть соответственно увеличена отключаемая мощность выключателей.
Вопросы улучшения качества электроэнергии решаются комплексно при проектировании систем Э. и электропривода. Хорошие результаты даёт разделение питания электроприёмников с ударными и т. н. спокойными нагрузками путём присоединения их к разным трансформаторам и различным ветвям расщепленных трансформаторов или плечам сдвоенных реакторов. Улучшению качества электроэнергии способствует внедрение в схемы Э. электроприводов с пониженным потреблением реактивной мощности, применение многофазных схем выпрямления и др. При недостаточности этих мероприятий применяют специальные устройства: синхронные компенсаторы с быстродействующим возбуждением, большой кратностью перегрузки по реактивной мощности (в 3-4 раза), работающие в т. н. режиме слежения за реактивной мощностью электроприёмников. синхронные электродвигатели со спокойной нагрузкой, присоединяемые к общим с вентильными преобразователями шинам и имеющие необходимую располагаемую мощность и быстродействующее возбуждение с высоким уровнем форсировки. статические источники реактивной мощности с высоким быстродействием, безынерционностью и плавным изменением реактивной мощности. продольную ёмкостную компенсацию, дающую возможность мгновенного безынерционного и непрерывного автоматического регулирования напряжения. силовые резонансные электрические фильтры для гашения высших гармоник.
Лит.: Князевский Б. Л., Липкин Б. Ю., Электроснабжение промышленных предприятий, М., 1969. Крупович В. И., Ермилов А. А., Трунковский Л. Е., Проектирование и монтаж промышленных электрических сетей, М., 1971. Козлов В. А., Билик Н. И., Файбисович Д. Л., Справочник по проектированию систем электроснабжения городов, Л., 1974. Ермилов А. А., Основы электроснабжения промышленных предприятий, 3 изд., М., 1976.
А. А. Ермилов.
Рис. 1. Схема глубоких вводов 110 и 220 кв: а — радиальная. б — магистральная. ПГВ — подстанции глубокого ввода. УРП — узловая распределительная подстанция.
Рис. 2. Схемы сетей 6 и 10 кв: а — двухступенчатая радиальная с промежуточными распределительными пунктами (РП). б — магистральная с токопроводами. в — двухлучевая с автоматическим включением резерва (АВР) на напряжение 0,4 кв. ГПП — главная понизительная подстанция. ТП — трансформаторная подстанция.
электроснабжение — это… Что такое электроснабжение?
- электроснабжение
электроснабже́ние летательного аппарата обеспечение электропитанием потребителей, установленных на борту летательного аппарата. Система Э. состоит из системы генерирования (СГ) и системы распределения (СР) электроэнергии. СГ совокупность источников или преобразователей электроэнергии (генераторов, преобразовательных установок рода тока и напряжения, аккумуляторов), устройств стабилизации напряжений и частот тока, устройств параллельной работы, защиты, управления и контроля, которые обеспечивают выработку электроэнергии и поддержание её характеристик в заданных пределах в точках регулирования при всех режимах работы системы. СР совокупность устройств, передающих электроэнергию от СГ к распределительным устройствам (РУ) и от РУ к потребителям. СР обеспечивает выполнение необходимых коммутаций, резервирование электропитания потребителей и защиту силовых проводов от коротких замыканий и недопустимых перегрузок.
Системы Э. могут быть первичными и вторичными. Первичной называется система, генераторы которой приводятся во вращение маршевыми двигателями самолёта, редуктором несущего винта вертолёта или вспомогательной силовой установкой. Вторичной называется система, питаемая преобразующими устройствами от первичной. На летательном аппарате обычно используется первичная система переменного трёхфазного тока стабильной частоты 400 Гц с номинальным напряжением 220/115 В. Вторичной является система постоянного тока с напряжением 27 В. Иногда на лёгких самолётах система постоянного тока используется в качестве первичной. Применяются первичные системы переменного тока нестабильной частоты. В этом случае вторичными являются системы переменного тока стабильной частоты и постоянного тока.
Источниками энергии в первичной системе переменного тока являются электромашинные генераторы. Генератор снабжается регуляторами напряжения, частоты и устройствами управления и защиты. Иногда предусматриваются устройства для параллельной работы генераторов. Источниками энергии во вторичной системе являются выпрямительные устройства, состоящие из трансформатора, выпрямителя и фильтра. Для аварийного электропитания используются аккумуляторные батареи. Аварийными источниками переменного тока являются статические преобразователи. Иногда в качестве аварийных источников используются генераторы с приводом от гидродвигателя или ветродвигателя, который в случае необходимости выпускается в поток воздуха.
Генераторы первичной системы присоединяются к центральному РУ. Линии питающей сети связывают центральное РУ с другими РУ. К шинам РУ присоединяются линии электропитания потребителей. Линии питающей сети и потребителей защищаются от коротких замыканий плавкими предохранителями или автоматическими выключателями. Для обеспечения надёжности и живучести системы Э. отечественных самолётов имеют не менее двух раздельных каналов.
Литература:
Электроснабжение летательных аппаратов, под ред. Н. Т. Коробана, М., 1975;
Брускин Д. Э., Синдеев И. М., Электроснабжение летательных аппаратов, М., 1988.В. П. Щелкин.
Энциклопедия «Авиация». — М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.
- электрооборудование
- элероны
Смотреть что такое «электроснабжение» в других словарях:
электроснабжение — электроснабжение … Орфографический словарь-справочник
электроснабжение — Обеспечение потребителей электрической энергией. [ГОСТ 19431 84] Качество электрической энергии (КЭ) тесно связано с надежностью электроснабжения, поскольку нормальным режимом электроснабжения потребителей является такой режим, при котором… … Справочник технического переводчика
Электроснабжение — Электроснабжение. Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена… … Энциклопедический справочник «Санкт-Петербург»
ЭЛЕКТРОСНАБЖЕНИЕ — совокупность мероприятий по обеспечению электроэнергией различных ее потребителей. Комплекс инженерных сооружений, осуществляющих задачи электроснабжения, называется системой электроснабжения … Большой Энциклопедический словарь
ЭЛЕКТРОСНАБЖЕНИЕ — ЭЛЕКТРОСНАБЖЕНИЕ, электроснабжения, мн. нет, ср. (тех.). Снабжение электрической энергией. см. электро…. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Электроснабжение — Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена электростанция,… … Санкт-Петербург (энциклопедия)
электроснабжение — сущ., кол во синонимов: 5 • снабжение (49) • снабжение электроэнергией (2) • … Словарь синонимов
электроснабжение — электрическое снабжение снабжение электрической энергией техн., энерг. Источник: http://www.sibnn.ru/news.php?id=11841 … Словарь сокращений и аббревиатур
электроснабжение — 1 электроснабжение: Обеспечение потребителей электрической энергией в соответствии с определенными техническими, метрологическими и экономическими характеристиками (частота, напряжение, продолжительность, максимум нагрузки, пункт питания, тариф)… … Словарь-справочник терминов нормативно-технической документации
Электроснабжение — Высоковольтная линия электропередачи Электрическая сеть совокупность подстанций, распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электрической энергии [1]. ГОСТ… … Википедия
Книги
- Электроснабжение, Б. И. Кудрин. В учебнике изложены теория электрического привода и основы управления, составляющие традиционное содержание курса «Электрический привод» . Учебник сопровождаетсяпримерами расчетов… Подробнее Купить за 1789 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабженияобъектов; излагается методика… Подробнее Купить за 601 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. 328 стр. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабжения объектов; излагается… Подробнее Купить за 509 грн (только Украина)
электроснабжение — это… Что такое электроснабжение?
- электроснабжение
электроснабже́ние Первые электрические станции появились в Москве в конце XIX в. Вырабатываемая электроэнергия с 1900 использовалась главным образом для освещения центра Москвы (в частности, Большого Каменного моста и площади у храма Христа Спасителя), отдельных предприятий и жилых домов. В 1904 отпуск энергии для технических нужд составил 12,5%, к 1907 свыше 30% электроэнергии потреблял трамвай. К 1917 мощность электростанций Москвы и Московской губернии составила 93 МВт. В 1921 было создано Московское объединение (ныне АО Мосэнерго) государственных электростанций. С вводом в строй в 1922 Каширской ГЭС Москва стала получать электроэнергию по высоковольтной линии электропередачи напряжением 110 кВ, протяжённостью 120 км. В 1925 вступила в строй первая очередь Шатурской ГРЭС мощностью 32 МВт, от которой электрический ток напряжением 110 кВ также стал поступать в Москву. В 1926 организована центральная диспетчерская служба Московской энергосистемы. В 1931 принято решение о сооружении в Москве теплофикационных электростанций (ТЭЦ). В 1933 на Московской государственной электростанции (МГЭС-1) установлена первая теплофикационная турбина. В 194041 вступили в строй Угличская и Рыбинская ГЭС, включённые в Московскую систему, которые сыграли большую роль в электроснабжении столицы во время Великой Отечественной войны. К концу 60-х гг. Московская энергосистема объединяла электростанции общей мощностью 6 ГВт, а к концу 70-х гг. свыше 10 ГВт; Москву снабжали электроэнергией 20 электростанций, в том числе Конаковская ГРЭС, Волжские ГЭС имени В.И. Ленина и имени XXII съезда КПСС.
Электростанции Москвы вырабатывают электрическую и тепловую энергию. Их работа организована по так называемому отопительному графику: в тёплое время года избыток электроэнергии передаётся потребителям за пределы Московской области, в холодное время дефицит электроэнергии покрывается в Москве из областных и других более отдалённых источников. Распределение энергии производится главным образом по воздушным ЛЭП напряжением 110 750 кВ, которое понижается на подстанциях до 610 кВ. Новые подстанции сооружаются по типу закрытых, энергия подводится к ним по кабелю. Распределительные сети среднего (до 10 кВ) и низкого (до 380 В) напряжений выполняются, как правило, также кабельными.
В.Г. Гейнц.
Москва. Энциклопедический справочник. — М.: Большая Российская Энциклопедия. 1992.
- электропоезда
- Эльконин Виктор Борисович
Смотреть что такое «электроснабжение» в других словарях:
электроснабжение — электроснабжение … Орфографический словарь-справочник
электроснабжение — Обеспечение потребителей электрической энергией. [ГОСТ 19431 84] Качество электрической энергии (КЭ) тесно связано с надежностью электроснабжения, поскольку нормальным режимом электроснабжения потребителей является такой режим, при котором… … Справочник технического переводчика
Электроснабжение — Электроснабжение. Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена… … Энциклопедический справочник «Санкт-Петербург»
ЭЛЕКТРОСНАБЖЕНИЕ — совокупность мероприятий по обеспечению электроэнергией различных ее потребителей. Комплекс инженерных сооружений, осуществляющих задачи электроснабжения, называется системой электроснабжения … Большой Энциклопедический словарь
ЭЛЕКТРОСНАБЖЕНИЕ — ЭЛЕКТРОСНАБЖЕНИЕ, электроснабжения, мн. нет, ср. (тех.). Снабжение электрической энергией. см. электро…. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Электроснабжение — Опытные электрические фонари зажглись в 1873 на Одесской улице. В 1879 12 электрических фонарей конструкции П. Н. Яблочкова были установлены для освещения Литейного моста. В 1883 на деревянной барже на р. Мойка сооружена электростанция,… … Санкт-Петербург (энциклопедия)
электроснабжение — сущ., кол во синонимов: 5 • снабжение (49) • снабжение электроэнергией (2) • … Словарь синонимов
электроснабжение — электрическое снабжение снабжение электрической энергией техн., энерг. Источник: http://www.sibnn.ru/news.php?id=11841 … Словарь сокращений и аббревиатур
электроснабжение — 1 электроснабжение: Обеспечение потребителей электрической энергией в соответствии с определенными техническими, метрологическими и экономическими характеристиками (частота, напряжение, продолжительность, максимум нагрузки, пункт питания, тариф)… … Словарь-справочник терминов нормативно-технической документации
Электроснабжение — Высоковольтная линия электропередачи Электрическая сеть совокупность подстанций, распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электрической энергии [1]. ГОСТ… … Википедия
электроснабжение — летательного аппарата обеспечение электропитанием потребителей, установленных на борту летательного аппарата. Система Э. состоит из системы генерирования (СГ) и системы распределения (СР) электроэнергии. СГ совокупность источников… … Энциклопедия «Авиация»
Книги
- Электроснабжение, Б. И. Кудрин. В учебнике изложены теория электрического привода и основы управления, составляющие традиционное содержание курса «Электрический привод» . Учебник сопровождаетсяпримерами расчетов… Подробнее Купить за 1789 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабженияобъектов; излагается методика… Подробнее Купить за 601 руб
- Электроснабжение, Ю. Д. Сибикин, М. Ю. Сибикин. 328 стр. В книге рассматриваются методы расчета электрических нагрузок, вопросы качества электрической энергии и компенсации реактивной мощности, схемы электроснабжения объектов; излагается… Подробнее Купить за 509 грн (только Украина)