Величина | Символ | Единица СИ | Описание |
Площадь | S | м2 | Протяженность объекта в двух измерениях. |
Объём | V | м3 | Протяжённость объекта в трёх измерениях. |
Скорость | v | м/с | Быстрота изменения координат тела. |
Ускорение | a | м/с² | Быстрота изменения скорости объекта. |
Импульс | p | кг·м/с | Произведение массы и скорости тела. |
Сила | F | кг·м/с2 (ньютон, Н) | Действующая на объект внешняя причина ускорения. |
Механическая работа | A | кг·м2/с2 (джоуль, Дж) | Скалярное произведение силы и перемещения. |
Энергия | E | кг·м2/с2 (джоуль, Дж) | Способность тела или системы совершать работу. |
Мощность | P | кг·м2/с3 (ватт, Вт) | Скорость изменения энергии. |
Давление | p | кг/(м·с2) (паскаль, Па) | Сила, приходящаяся на единицу площади. |
Плотность | ρ | кг/м3 | Масса на единицу объёма. |
Поверхностная плотность | ρA | кг/м2 | Масса на единицу площади. |
Линейная плотность | ρl | кг/м | Масса на единицу длины. |
Количество теплоты | Q | кг·м2/с2 (джоуль, Дж) | Энергия, передаваемая от одного тела к другому немеханическим путём |
Электрический заряд | q | А·с (кулон, Кл) | |
Напряжение | U | м2·кг/(с3·А) (вольт, В) | Изменение потенциальной энергии, приходящееся на единицу заряда. |
Электрическое сопротивление | R | м2·кг/(с3·А2) (ом, Ом) | сопротивление объекта прохождению электрического тока |
Магнитный поток | Φ | кг/(с2·А) (вебер, Вб) | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. |
Частота | ν | с−1 (герц, Гц) | Число повторений события за единицу времени. |
Угол | α | радиан (рад) | Величина изменения направления. |
Угловая скорость | ω | с−1 (радиан в секунду) | Скорость изменения угла. |
Угловое ускорение | ε | с−2 (радиан на секунду в квадрате) | Быстрота изменения угловой скорости |
Момент инерции | I | кг·м2 | Мера инертности объекта при вращении. |
Момент импульса | L | кг·м2/c | Мера вращения объекта. |
Момент силы | M | кг·м2/с2 | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. |
Телесный угол | Ω | стерадиан (ср) |
Физические величины и единицы их измерения
Пространство и время
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Длина | l, s, d | метр | м | Протяжённость объекта в одном измерении. |
|
Площадь | S | квадратный метр | м2 | Протяженность объекта в двух измерениях. |
|
Объем, вместимость | V | кубический метр | м3 | Протяжённость объекта в трёх измерениях. | экстенсивная величина |
Время | t | секунда | с | Продолжительность события. |
|
Плоский угол | α, φ | радиан | рад | Величина изменения направления. |
|
Телесный угол | α, β, | стерадиан | ср |
|
|
Линейная скорость | v | метр в секунду | м/с | Быстрота изменения координат тела. | вектор |
Линейное ускорение | a, w | метр в секунду в квадрате | м/с2 | Быстрота изменения скорости объекта. | вектор |
Угловая скорость | радиан в секунду | рад/с = (с−1) | Скорость изменения угла. |
| |
Угловое ускорение | ε | радиан на секунду в квадрате | рад/с2 = (с−2) | Быстрота изменения угловой скорости |
|
Периодические явления, колебания и волны
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Период | T | секунда | с |
|
|
Частота периодического процесса | v, f | герц | Гц = (с−1) | Число повторений события за единицу времени. |
|
Циклическая (круговая) частота | ω | радиан в секунду | рад/с |
|
|
Частота вращения | n | секунда в минус первой степени | с-1 |
|
|
Длина волны | λ | метр | м |
|
|
Волновое число | k | метр в минус первой степени | м-1 |
|
|
Механика
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Масса | m | килограмм | кг | Величина, определяющая инерционные и гравитационные свойства тел. | экстенсивная величина |
Плотность | ρ | килограмм на кубический метр | кг/м3 | Масса на единицу объёма. | интенсивная величина |
Поверхностная плотность | ρA | Масса на единицу площади. | кг/м2 |
|
|
Линейная плотность | ρl | Масса на единицу длины. | кг/м |
|
|
Удельный объем | v | кубический метр на килограмм | м3/кг |
|
|
Массовый расход | Qm | килограмм в секунду | кг/с |
|
|
Объемный расход | Qv | м3/с |
|
| |
Импульс | P | килограмм-метр в секунду | кг•м/с | Произведение массы и скорости тела. | экстенсивная, сохраняющаяся величина |
Момент импульса | L | килограмм-метр в квадрате в секунду | кг•м2/с | Мера вращения объекта. | сохраняющаяся величина |
Момент инерции | J | килограмм-метр в квадрате | кг•м2 | Мера инертности объекта при вращении. | тензорная величина |
Сила, вес | F, Q | ньютон | Н | Действующая на объект внешняя причина ускорения. | вектор |
Момент силы | M | ньютон-метр | Н•м = (кг·м2/с2) | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. | вектор |
Импульс силы | I | ньютон-секунда | Н•с |
|
|
Давление, механическое напряжение | p, σ | паскаль | Па = (кг/(м·с2)) | Сила, приходящаяся на единицу площади. | интенсивная величина |
Работа | A | джоуль | Дж = (кг·м | Скалярное произведение силы и перемещения. | скаляр |
Энергия | E, U | джоуль | Дж = (кг·м2/с2) | Способность тела или системы совершать работу. | экстенсивная, сохраняющаяся величина, скаляр |
Мощность | N | ватт | Вт = (кг·м2/с3) | Скорость изменения энергии. |
|
Тепловые явления
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Температура | T | кельвин | К | Средняя кинетическая энергия частиц объекта. | Интенсивная величина |
Температурный коэффициент | α | кельвин в минус первой степени | К-1 |
|
|
Температурный градиент | gradT | кельвин на метр | К/м |
|
|
Теплота (количество теплоты) | Q | джоуль | Дж = (кг·м2/с2) | Энергия, передаваемая от одного тела к другому немеханическим путём |
|
Удельная теплота | q | джоуль на килограмм | Дж/кг |
|
|
Теплоемкость | C | джоуль на кельвин | Дж/К |
|
|
Удельная теплоемкость | c | джоуль на килограмм-кельвин | Дж/(кг•К) |
|
|
Энтропия | S | джоуль на килограмм | Дж/кг |
|
|
Молекулярная физика
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Количество вещества | v, n | моль | моль | Количество однотипных структурных единиц, из которых состоит вещество. | Экстенсивная величина |
Молярная масса | M, μ | килограмм на моль | кг/моль |
|
|
Молярная энергия | Hмол | джоуль на моль | Дж/моль |
|
|
Молярная теплоемкость | смол | джоуль на моль-кельвин | Дж/(моль•К) |
|
|
Концентрация молекул | c, n | метр в минус третьей степени | м-3 |
|
|
Массовая концентрация | ρ | килограмм на кубический метр | кг/м3 |
|
|
Молярная концентрация | смол | моль на кубический метр | моль/м3 |
|
|
Подвижность ионов | В, μ | квадратный метр на вольт-секунду | м2/(В•с) |
|
|
Электричество и магнетизм
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Сила тока | I | ампер | А | Протекающий в единицу времени заряд. |
|
Плотность тока | j | ампер на квадратный метр | А/м2 |
|
|
Электрический заряд | Q, q | кулон | Кл = (А·с) |
| экстенсивная, сохраняющаяся величина |
Электрический дипольный момент | p | кулон-метр | Кл•м |
|
|
Поляризованность | P | кулон на квадратный метр | Кл/м2 |
|
|
Напряжение | U | вольт | В | Изменение потенциальной энергии, приходящееся на единицу заряда. | скаляр |
Потенциал, ЭДС | φ, σ | вольт | В |
|
|
Напряженность электрического поля | E | вольт на метр | В/м |
|
|
Электрическая емкость | C | фарад | Ф |
|
|
Электрическое сопротивление | R, r | ом | Ом = (м2·кг/(с3·А2)) | сопротивление объекта прохождению электрического тока |
|
Удельное электрическое сопротивление | ρ | ом-метр | Ом•м |
|
|
Электрическая проводимость | G | сименс | См |
|
|
Магнитная индукция | B | тесла | Тл |
|
|
Магнитный поток | Ф | вебер | Вб = (кг/(с2·А)) | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. |
|
Напряженность магнитного поля | H | ампер на метр | А/м |
|
|
Магнитный момент | pm | ампер-квадратный метр | А•м2 |
|
|
Намагниченность | J | ампер на метр | А/м |
|
|
Индуктивность | L | генри | Гн |
|
|
Электромагнитная энергия | N | джоуль | Дж = (кг·м2/с2) |
|
|
Объемная плотность энергии | w | джоуль на кубический метр | Дж/м3 |
|
|
Активная мощность | P | ватт | Вт |
|
|
Реактивная мощность | Q | вар | вар |
|
|
Полная мощность | S | ватт-ампер | Вт•А |
|
|
Оптика, электромагнитное излучение
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Сила света | J, I | кандела | кд | Количество световой энергии, излучаемой в заданном направлении в единицу времени. | Световая, экстенсивная величина |
Световой поток | Ф | люмен | лм |
|
|
Световая энергия | Q | люмен-секунда | лм•с |
|
|
Освещенность | E | люкс | лк |
|
|
Светимость | M | люмен на квадратный метр | лм/м2 |
|
|
Яркость | L, B | кандела на квадратный метр | кд/м2 |
|
|
Энергия излучения | E, W | джоуль | Дж = (кг·м2/с2) |
|
|
Акустика
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Звуковое давление | p | паскаль | Па |
|
|
Объемная скорость | c, V | кубический метр в секунду | м3/с |
|
|
Скорость звука | v, u | метр в секунду | м/с |
|
|
Интенсивность звука | l | ватт на квадратный метр | Вт/м2 |
|
|
Акустическое сопротивление | Za, Ra | паскаль-секунда на кубический метр | Па•с/м3 |
|
|
Механическое сопротивление | Rm | ньютон-секунда на метр | Н•с/м |
|
|
Атомная и ядерная физика. Радиоактивность
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Масса (масса покоя) | m | килограмм | кг |
|
|
Дефект массы | Δ | килограмм | кг |
|
|
Элементарный электрический заряд | e | кулон | Кл |
|
|
Энергия связи | Eсв | джоуль | Дж = (кг·м2/с2) |
|
|
Период полураспада, среднее время жизни | T, τ | секунда | с |
|
|
Эффективное сечение | σ | квадратный метр | м2 |
|
|
Активность нуклида | A | беккерель | Бк |
|
|
Энергия ионизирующего излучения | E,W | джоуль | Дж = (кг·м2/с2) |
|
|
Поглощенная доза ионизирующего излучения | Д | грей | Гр |
|
|
Эквивалентная доза ионизирующего излучения | H, Дэк | зиверт | Зв |
|
|
Экспозиционная доза рентгеновского и гамма-излучения | Х | кулон на килограмм | Кл/кг |
|
|
Производные величины | Символ | Описание | Единица СИ | Примечания |
---|---|---|---|---|
Площадь | S | Протяженность объекта в двух измерениях. | м2 | |
Объём | V | Протяжённость объекта в трёх измерениях. | м3 | экстенсивная величина |
Скорость | v | Быстрота изменения координат тела. | м/с | вектор |
Ускорение | a | Быстрота изменения скорости объекта. | м/с² | вектор |
Импульс | p | Произведение массы и скорости тела. | кг·м/с | экстенсивная, сохраняющаяся величина |
Сила | F | Действующая на объект внешняя причина ускорения. | кг·м/с2 (ньютон, Н) | вектор |
Механическая работа | A | Скалярное произведение силы и перемещения. | кг·м2/с2 (джоуль, Дж) | скаляр |
Энергия | E | Способность тела или системы совершать работу. | кг·м2/с2 (джоуль, Дж) | экстенсивная, сохраняющаяся величина, скаляр |
Мощность | P | Скорость изменения энергии. | кг·м2/с3 (ватт, Вт) | |
Давление | p | Сила, приходящаяся на единицу площади. | кг/(м·с2) (паскаль, Па) | интенсивная величина |
Плотность | ρ | Масса на единицу объёма. | кг/м3 | интенсивная величина |
Поверхностная плотность | ρA | Масса на единицу площади. | кг/м2 | |
Линейная плотность | ρl | Масса на единицу длины. | кг/м | |
Количество теплоты | Q | Энергия, передаваемая от одного тела к другому немеханическим путём | кг·м2/с2 (джоуль, Дж) | скаляр |
Электрический заряд | q | А·с (кулон, Кл) | экстенсивная, сохраняющаяся величина | |
Напряжение | U | Изменение потенциальной энергии, приходящееся на единицу заряда. | м2·кг/(с3·А) (вольт, В) | скаляр |
Электрическое сопротивление | R | сопротивление объекта прохождению электрического тока | м2·кг/(с3·А2) (ом, Ом) | скаляр |
Магнитный поток | Φ | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. | кг/(с2·А) (вебер, Вб) | |
Частота | ν | Число повторений события за единицу времени. | с−1 (герц, Гц) | |
Угол | α | Величина изменения направления. | радиан (рад) | |
Угловая скорость | ω | Скорость изменения угла. | с−1 (радиан в секунду) | |
Угловое ускорение | ε | Быстрота изменения угловой скорости | с−2 (радиан на секунду в квадрате) | |
Момент инерции | I | Мера инертности объекта при вращении. | кг·м2 | тензорная величина |
Момент импульса | L | Мера вращения объекта. | кг·м2/c | сохраняющаяся величина |
Момент силы | M | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. | кг·м2/с2 | вектор |
Телесный угол | Ω | стерадиан (ср) |
Единицы измерения объёма — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 ноября 2015; проверки требуют 20 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 ноября 2015; проверки требуют 20 правок.Единицы измерения объёма — единицы измерения размера пространства, занимаемого твёрдым, сыпучим или жидким. В СИ объём измеряется в кубических метрах]] (м³, метр в кубе). Применяются также кратные и дольные приставки, увеличивающие или уменьшающие размер стандартной единицы — кубический сантиметр (10-6 м3), кубический дециметр(10-3 м3) и т. д.
Внесистемные единицы измерения объёма жидкостей, газов и сыпучих тел[править | править код]
- литр — внесистемная единица объёма жидких и газообразных тел, допускаемая к применению наравне с единицами СИ во всех областях применения. Равна одному кубическому дециметру (10-3 м3)[1][2][3]. Используются также миллилитры (1 мл = 10-3 л = 1 см3 ).
- аам — старинная мера ёмкости в Нидерландах, Бельгии и Прибалтике, применялась преимущественно для измерения объёма вина и спирта (140-220 литров)
- анкер — старинная мера объёма, использовавшаяся в разных странах для вина, коньяка и масла.
- ка — вавилонская мера ёмкости (=0,84 л, иногда 0,42 л)
- арбата
- бочка виленская — мера объёма в Великом княжестве Литовском
- шоппен — старинная мера жидкостей (в том числе напитков) и сыпучих тел сначала в Южной Германии, затем в ряде других германских, швейцарских и французских регионов.
Английская система мер[править | править код]
- баррель — единица английской системы мер, применяется для измерения объёма нефти (= 158,983 л)
- галлон — единица английской системы мер, применяется для измерения объёма жидкостей (редко твёрдых тел). Примерно равен 4 литрам, размер зависит от страны и разновидности галлона[4].
- пинта — единица английской системы мер, 1/8 галлона, примерно 1/2 литра.
- кварта — единица английской системы мер, 1/4 галлона, примерно литр.
- кубический дюйм — единица английской системы мер, 1,64·10−5 м³
- кубический фут[5]
Измерение — Википедия
Измерение — совокупность действий для определения отношения одной (измеряемой) величины к другой однородной величине, принятой всеми участниками за единицу, хранящуюся в техническом средстве (средстве измерений).
Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).
- Принцип измерений — физическое явление или эффект, положенный в основу измерений.
- Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.
Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:
- В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
- С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.
В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов.
Частным случаем измерения является сравнение без указания количественных характеристик.
Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.
По видам измерений[править | править код]
Согласно РМГ 29-99 «Метрология. Основные термины и определения» выделяют следующие виды измерений:
- Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.
- Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
- Совместные измерения — проводимые одновременно измерения двух или нескольких не одноимённых величин для определения зависимости между ними.
- Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путём решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
- Равноточные измерения — ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
- Неравноточные измерения — ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
- Однократное измерение — измерение, выполненное один раз.
- Многократное измерение — измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений
- Статическое измерение — измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
- Динамическое измерение — измерение изменяющейся по размеру физической величины.
- Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
- Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную (см. ниже нулевой метод).
Также стоит отметить, что в различных источниках дополнительно выделяют такие виды измерений: метрологические и технические, необходимые и избыточные и др.
По методам измерений[править | править код]
- Метод непосредственной оценки — метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений.
- Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
- Нулевой (компенсационный) метод измерений — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
- Метод измерений замещением — метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
- Метод измерений дополнением — метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчётом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.
- Дифференциальный метод измерений — метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.
По условиям, определяющим точность результата[править | править код]
- Метрологические измерения
- Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения[1].
- Контрольно-поверочные измерения, погрешность которых с определённой вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определённой вероятностью, не превышающей некоторого, заранее заданного значения[1].
- Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.[1]
По отношению к изменению измеряемой величины[править | править код]
Динамическое и статическое.
По результатам измерений[править | править код]
- Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
- Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.
По точности[править | править код]
- Равноточные измерения — однотипные результаты, получаемые при измерениях одним и тем же инструментом или им подобным по точности прибором, одним и тем же (или аналогичным) методом и в тех же условиях.
- Неравноточные измерения — измерения, произведённые в случае, когда нарушаются эти условия.
По числу измерений[править | править код]
- Однократное измерение — измерение, выполненное один раз.
- Многократное измерение — измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.
По точности[править | править код]
- Детерминированные и случайные.
По результатам измерений[править | править код]
- Равнорассеянные и неравнорассеянные.
Стандартизация измерений[править | править код]
В начале 1840 г. во Франции была введена метрическая система мер.
В 1867 г. Д. И. Менделеев выступил с призывом содействовать подготовке метрической реформы в России. По его инициативе Петербургская академия наук предложила учредить международную организацию, которая обеспечивала бы единообразие средств измерений в международном масштабе. В 1875 г. была принята Метрическая конвенция. Принятие Конвенции ознаменовало начало международной стандартизации.
В физике и технике единицы измерения (единицы физических величин, единицы величин[2]) используются для стандартизованного представления результатов измерений. Использование термина единица измерения противоречит нормативным документам[3] и рекомендациям метрологических изданий[4], однако он широко употребляется в научной литературе[5]. Численное значение физической величины представляется как отношение измеренного значения к некоторому стандартному значению, которое и является единицей измерения. Число с указанием единицы измерения называется именованным. Различают основные и производные единицы. Основные единицы в данной системе единиц устанавливаются для тех физических величин, которые выбраны в качестве основных в соответствующей системе физических величин. Так, Международная система единиц (СИ) основана на Международной системе величин (англ. International System of Quantities, ISQ), в которой основными являются семь величин: длина, масса, время, электрический ток, термодинамическая температура, количество вещества и сила света. Соответственно, в СИ основными единицами являются единицы указанных величин. Размеры основных единиц устанавливаются по соглашению в рамках соответствующей системы единиц и фиксируются либо с помощью эталонов (прототипов), либо путём фиксации численных значений фундаментальных физических постоянных.
Международная система единиц[править | править код]
Основная статья: СИ Семь базовых величин в СИ. Стрелки указывают зависимости между величинами.Система единиц физических величин, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике. В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США) определения традиционных единиц были изменены таким образом, чтобы связать их фиксированными коэффициентами с соответствующими единицами СИ. Официальным международным документом по системе СИ является Брошюра СИ (фр. Brochure SI, англ. SI Brochure), издающаяся с 1970 года. С 1985 года выходит на французском и английском языках, переведена также на ряд других языков. В 2006 году вышло 8-е издание.
Метрическая система мер[править | править код]
Общее название международной десятичной системы единиц, основанной на использовании метра и килограмма. На протяжении двух последних веков существовали различные варианты метрической системы, различающиеся выбором основных единиц. В настоящее время международно признанной является система СИ. Основное отличие метрической системы от применявшихся ранее традиционных систем заключается в использовании упорядоченного набора единиц измерения. Для любой физической величины существует лишь одна главная единица и набор дольных и кратных единиц, образуемых стандартным образом с помощью десятичных приставок. Тем самым устраняется неудобство от использования большого количества разных единиц (таких, например, как дюймы, футы, фадены, мили и т. д.) со сложными правилами преобразования между ними. В метрической системе преобразование сводится к умножению или делению на степень числа 10, то есть к простой перестановке запятой в десятичной дроби.
Система СГС[править | править код]
Основная статья: СГССистема единиц измерения, которая широко использовалась до принятия Международной системы единиц (СИ). Другое название — абсолютная[7] физическая система единиц. В рамках СГС существуют три независимые размерности (длина, масса и время), все остальные сводятся к ним путём умножения, деления и возведения в степень (возможно, дробную). Кроме трёх основных единиц измерения — сантиметра, грамма и секунды, в СГС существует ряд дополнительных единиц измерения, которые являются производными от основных. Некоторые физические константы получаются безразмерными. Есть несколько вариантов СГС, отличающихся выбором электрических и магнитных единиц измерения и величиной констант в различных законах электромагнетизма (СГСЭ, СГСМ, Гауссова система единиц). СГС отличается от СИ не только выбором конкретных единиц измерения. Из-за того, что в СИ были дополнительно введены основные единицы для электромагнитных физических величин, которых не было в СГС, некоторые единицы имеют другие размерности. Из-за этого некоторые физические законы в этих системах записываются по-разному (например, закон Кулона). Отличие заключается в коэффициентах, большинство из которых — размерные. Поэтому, если в формулы, записанные в СГС, просто подставить единицы измерения СИ, то будут получены неправильные результаты. Это же относится и к разным разновидностям СГС — в СГСЭ, СГСМ и Гауссовой системе единиц одни и те же формулы могут записываться по-разному.
Английская система мер[править | править код]
Используется в Великобритании, США и других странах. Отдельные из этих мер в ряде стран несколько различаются по своему размеру, поэтому ниже приводятся в основном округлённые метрические эквиваленты английских мер, удобные для практических расчётов.
Техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии. Классификация:
- по техническому назначению
- по степени автоматизации
- по стандартизации средств измерений
- по положению в поверочной схеме
- по значимости измеряемой физической величины
- по измерительным физико-химическим параметрам
- Точность средства измерений — степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью воспроизводимости. Точность измерительного прибора, откалиброванного по эталону, всегда хуже или равна точности эталона.
- Точность результата измерений — одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Следует отметить, что о повышении качества измерений всегда говорят термином «увеличить точность» — притом, что величина, характеризующая точность, при этом должна уменьшиться.
Погрешность измерения[править | править код]
Оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99[8] термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[8]. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
- ↑ 1 2 3 Метрология и технические измерения. Колчков В. И. Ресурс «ТОЧНОСТЬ-КАЧЕСТВО»]
- ↑ Официальное название по ГОСТ 8.417-2002 Государственная система обеспечения единства измерений. Единицы величин.
- ↑ Постановление Правительства РФ от 31 октября 2009 г. N 879 Об утверждении положения о единицах величин, допускаемых к применению в Российской Федерации (неопр.) (недоступная ссылка). Дата обращения 1 июня 2013. Архивировано 2 ноября 2013 года.
- ↑ «Не допускается применять термин единица измерения физической величины или единица измерения вместо стандартизированного термина единица физической величины или единица, поскольку понятие измерение определяют через понятие единица. Надо писать: ампер — единица силы тока, квадратный метр — единица площади и нельзя писать: ампер — единица измерения силы тока, квадратный метр — единица измерения площади» (Словарь-справочник автора / Сост. Л.А.Гильберг и Л.И.Фрид. — М.: Книга, 1979. — С. 98–99. — 304 с.).
- ↑ Аналогичная вариативность имеется и в иностранной терминологии. Так, в английском языке наряду с термином unit используется unit of measure(ment): Are, a metric unit of measurement, equal to 100 square metres (Concise Oxford English Dictionary, 11th edition, 2004).
- ↑ По историческим причинам, название «килограмм» уже содержит десятичную приставку «кило», поэтому кратные и дольные единицы образуют, присоединяя стандартные приставки СИ к названию или обозначению единицы измерения «грамм» (которая в системе СИ сама является дольной: 1 г = 10−3 кг).
- ↑ Абсолютными называются системы, в которых в качестве основных единиц для механических величин приняты единицы длины, массы и времени.
- ↑ 1 2 РМГ 29-99 Рекомендации по межгосударственной сертификации. Основные термины и определения.
Литература[править | править код]
- Кушнир Ф. В. Радиотехнические измерения: Учебник для техникумов связи. — М.: Связь, 1980
- Нефедов В. И., Хахин В. И., Битюков В. К. Метрология и радиоизмерения: Учебник для вузов. — 2006
- Пронкин Н. С. Основы метрологии: Практикум по метрологии и измерениям. — М.: Логос, 2007
- Воронцов Ю. И. Теория и методы макроскопических измерений. — М.: Наука, 1989. — 280 с. — ISBN 5-02-013852-5
- Пытьев Ю. П. Математические методы интерпретации эксперимента. — М.: Высшая школа, 1989. — 351 с. — ISBN 5-06-001155-0
Нормативно-техническая документация[править | править код]
Что измеряется в ваттах: определение
Ватт — одна из единиц измерения мощности. Международное обозначении ватт — W, а на русском языке — «Вт». Сейчас этот параметр измерения энергии широко используется в различных механизмах — от бытовых приспособлений до сложных технических конструкций.
История
Единица измерения ватт была названа в честь Джеймса Уатта — шотландского инженера, создавшего паровую машину, макет которой он доработал у изобретения Ньюкомена.
Так, единица измерения ватт была принята на втором конгрессе научной ассоциации в Великобритании в 1882-м. До этого для большинства расчетов энергии использовался параметр «лошадиные силы», одна метрическая единица которой равняется примерно 735 ваттам.
Ватт как величина в физике
Чтобы лучше понять, что измеряется в ваттах, нужно освежить в памяти школьные уроки по физике и вспомнить определение энергии. Физическая величина, которая использует в международной системе СИ единицу джоуль (Дж) и называется энергией. Она применяется как общая мера эффективности различных тепловых процессов или взаимодействия между предметами и другими явлениями, происходящими с материей — в науке, природе, в технике и прочее.
Вот что измеряется в ваттах — мощность, определяющая, сколько различные объекты потребляют или выделяют энергии. Также рассчитывается скорость ее передачи через объекты и преобразования одной форму в иную. Другими словами, мощность, определяемая в ваттах, равняется 1 единице энергии, поделенной на 1 единицу времени — секунду:
Вольты и ватты
А в чем отличие вольта от ватта? В вольтах происходит вычисление напряжения. Допустим, напряжение источника питания — батарейки, аккумулятора или сети — должно быть равно или незначительно отклоняться (в %) от напряжения, которое установлено на приборе — лампе или сложном электронном оборудовании.
А что измеряется в ваттах? Ответ здесь уже ясен — это мощность, которая может исчисляться как потребляемая энергия, например, при выборе чайника — нагреется быстрее, но будет больше затрачивать электричества. Или при выходной мощности, допустим, динамика или усилителя, чем больше, тем шире диапазон и громче звук. Ватт также указывается в двигателях внутреннего сгорания — машинах, мотоциклах, триммерах и других механизмах. Тем не менее для таких двигателей в других странах часто используется измерение «лошадиные силы».
Мощность электроприборов
Мощность бытовых приборов измеряется в ваттах, что обычно указывается производителем. Некоторые приборы, как светильники, могут устанавливать ограничения по мощности, чтобы при сильном накаливании патрона они не вышли из строя. Что ограничит срок использования. Как правило, такие проблемы возникают с лампами накаливания. В Европе, например, ограничили использование этих ламп в связи с высокой мощностью.
Светодиодные лампы потребляют гораздо меньше электричества, при этом яркость такой лампы не уступает лампам накаливания. Например, при средней яркости 800 люмен потребление энергии лампы накаливания, измеряемой в ваттах, будет равняться 60, а светодиодной — от 10 до 15 ватт, а это в 4-6 раз меньше. Мощность люминесцентной светильника — 13-15 ватт. Таким образом, хоть и стоимость выше, светодиодное или люминесцентное освещение становится более распространенным, так как служит дольше и экономично потребляет энергию.
Что измеряется в ваттах?
Для четкого понимания, что измеряется в ваттах, стоит вспомнить понятие энергии. Эта физическая величина, единицей которой в системе СИ является джоуль, используется в качестве обобщенной меры эффективности тепловых процессов, движения, взаимодействия тел и других явлений в живой природе и технике. Ватт представляет собой единицу измерения мощности – величины, определяющей скорость потребления или выделения энергии различными объектами, а также ее передачи, преобразования из одной формы в другую. Иными словами, мощность в ваттах равна энергии в джоулях, деленной на промежуток времени в секундах (1 Вт=1 Дж/с).
В зависимости от физической природы процессов, применительно к которым рассматривается понятие мощности, выделяют следующие ее основные виды:
- тепловая – количество теплоты, выделяемой (поглощаемой) в единицу времени;
- механическая – величина работы силы при перемещении тела, отнесенная к временному промежутку, в течение которого она совершалась;
- электрическая, характеризующая скорость совершения работы одноименным полем по перемещению заряженных частиц.
Внесистемной единицей мощности является лошадиная сила. Она хоть и относится к устаревшим и постепенно выводится из обращения, но ввиду сложившейся традиции употребляется применительно к двигателям внутреннего сгорания транспортных средств и хозяйственной техники. 1 метрическая лошадиная сила эквивалентна приблизительно 735 ваттам.
Употребление еще одной внесистемной единицы – киловатт-час – зачастую приводит к путанице и некорректному сравнению различных физических величин. Важно запомнить, что в киловатт-часах (кВт∙ч) измеряется не мощность, а потребляемая или вырабатываемая электрическая энергия.
При рассмотрении электрической мощности в цепях переменного тока выделяют следующие ее разновидности:
- Активная – физически определяет скорость выделения энергии в виде теплоты на участке цепи, обладающем сопротивлением. Обозначается эта величина P и измеряется в ваттах.
- Реактивная – представляет собой энергию, обусловленную переменной составляющей электрического и магнитного поля, которой обмениваются генератор и приемник. Ее обозначают Q и выражают не в ваттах, а в вольт-амперах реактивных (ВАр).
- Полная (кажущаяся), измеряемая в вольт-амперах (ВА). Связь между полной, активной и реактивной мощностью в графическом виде представляется треугольником мощностей с катетами P и Q (на картинке).
В заключение приведем несколько фактов о величине мощности, характеризующей некоторые устройства или процессы.
- При ударе молнии максимальное значение скорости выделения энергии составляет приблизительно 1 ТВт = 1∙1012 Вт.
- Мощность печально известного четвертого энергоблока Чернобыльской АЭС составляла 1000 МВт.
- Приблизительные значения рассматриваемого параметра для передатчика обычного мобильного телефона составляют 1 Вт, конфорок газовой плиты – 1-4 кВт, электрочайника – 1-3 кВт, энергия в секунду, отдаваемая блоком питания компьютера в нагрузку, – 50-1800 Вт.
- Мощность простых лазерных указок с лучом красного цвета – 1-20 мВт.