Что измеряет электрический заряд – Измерение электрического заряда | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Содержание

что это такое и как он измеряется

В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом. Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Притяжение наэлектризованных частиц

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Франклин ловит молнию

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

Шарль Кулон

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Теоретические сведения

Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.

В чем измеряется

Единица измерения в системе СИ называется «Кулон» – это электрический заряд, проходящий через сечение проводника 1 Ампер за 1 секунду.

Буквенное обозначение – Q или q. Может принимать как положительные, так и отрицательные значения. Название носит в честь физика Шарля Кулона, он вывел формулу для нахождения сил взаимодействия между ними, она называется «Закон Кулона»:

Закон Кулона формула

В ней q1, q2 – модули зарядов, r – расстояние между ними, k – коэф-т пропорциональности.

Формула похожа на закон притяжения, в принципе она и описывает подобное взаимодействие. Он имеет наименьшую массу. Его электрический заряд отрицателен и он равен:

-1.6*10^(-19) Кл

Позитрон – это противоположная величина электрону, также состоит из одного положительного элементарного заряда.

Электрон и позитрон

Кроме того, что он дискретен, квантуется или измеряется порциями, для него еще и справедлив Закон сохранения зарядов, который говорит о том, что в замкнутой системе могут возникать только одновременно заряды обоих знаков. Простым языком – алгебраическая (с учетом знаков) сумма зарядов частиц и тел, в замкнутой (изолированной) системе всегда остается неизменной. Он не изменяется со временем или при движении частицы, он постоянен в течение её времени жизни. Простейшие заряженные частицы условно сравнивают с электрическими зарядами.

Закон сохранения электрических зарядов впервые подтвердил Майкл Фарадей в 1843 году. Это один из фундаментальных законов физики.

Проводники, полупроводники и диэлектрики

В проводниках есть много свободных зарядов. Они свободно перемещаются по всему объему тела. В полупроводниках свободных носителей почти нет, но если передать телу небольшую энергию они образуются, в результате чего тело начинает проводить электрический ток, т.е. электрические заряды начинают движение. Диэлектриками называют вещества, где число свободных носителей минимально, поэтому ток через них протекать не может или может при определенных условиях, например, очень высокое напряжение.

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

Взаимодействие зарядов

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Крутильные весы

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.

Электроскоп

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Электрометр

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Мы рассмотрели важную физическую величину. Учения о ней позволили значительно расширить знания об электричестве в целом. Вклад в науку и технику достаточно весомый, а область применения этих знаний связана и с медициной. Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского. Теперь вы знаете, что такое электрический заряд и как его измеряют.

Материалы по теме:

Электрический заряд — это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10

−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Измерение электрического заряда | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Признаком того, что тело имеет электри­ческий заряд, является его взаимодействие с другими телами. Об этом шла речь в предшествующем параграфе. Но такое вза­имодействие в каждом отдельном случае по интенсивности может быть разным. Это дает основание утверждать, что свойство тела, называющееся электрическим зарядом, мо­жет иметь количественную меру.

Термин «электрический заряд» часто употребляют и просто для обозначения «тела, имеющего электрический заряд».

Количественную меру электрического за­ряда сначала назвали количеством электри­чества. Но со временем эта мера получила название просто электрического заряда. Итак, если говорят о значении электрического заряда, то подразумевают количественную меру свойства тела — электрического заряда.

Электрический заряд — это свойство тела, проявляющее­ся во взаимодействии с элект­ромагнитным полем. Электрический заряд — это также ме­ра свойства тела, имеющего электрический заряд.

Значение заряда про­тяженного тела обозначается буквой Q. Если же речь идет о заряде точечного тела, то он обозначается маленькой буквой q.

Для измерения электрического заряда ис­пользуют специальные приборы. Одним из таких приборов является электрометр.

Рис. 4.4. Электрометр конструкции Брау­на
Рис. 4.5. Электронный зарядометр для лабораторных исследований

Главная часть электрометра — это метал­лический стержень, закрепленный в метал­лическом корпусе с помощью втулки из непроводящего вещества (рис. 4.4). В нижней части стержня находится легкая металли­ческая стрелка, которая может вращаться на горизонтальной оси. Ось стрелки прохо­дит несколько выше ее центра масс. Под действием только силы тяжести стрелка в обычном состоянии будет находиться в вер­тикальном положении. Материал с сайта http://worldofschool.ru

Если верхнего конца стержня коснуться заряженным металлическим шариком, то стержень и стрелка получат электрический заряд. Вследствие взаимодействия одноимен­но заряженных стержня и стрелки возникнет сила, которая повернет стрелку на опреде­ленный угол. Экспериментально установле­но, что угол отклонения стрелки будет за­висеть от значения заряда на стержне и стрелке. Таким образом, измерив угол от­клонения стрелки, можно сделать вывод о значении электрического заряда. Чтобы на стрелку не влияли другие тела, металли­ческий корпус обязательно соединяют с зем­лей.

В технике и научных исследованиях ис­пользуют более сложные и более чувстви­тельные приборы для измерения электри­ческих зарядов, которые называют кулон-метрами (рис. 4.5). Это, как правило, элект­ронные приборы, принцип действия кото­рых основан на явлении изменения пара­метров некоторых элементов электронных систем при сообщении им электрического заряда.

Вопросы по этому материалу:
  • Как называется количественная мера электрического заряда?

  • Какие приборы применяют для непосредственного измерения электрического заряда?

  • Для чего металлический корпус электрометра соединяют с зем­лей?

Электрический заряд

Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

e = Кл

Тело имеет заряд, значит имеет лишние или недостающий электроны. Такой заряд обозначается q = ne. (он равен числу элементарных зарядов).

Наэлектризовать тело – создать избыток и недостаток электронов. Способы: электризация трением и электризация соприкосновением.

Точечный заряд – заряд тела, которое можно принять за материальную точку.

Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой.

Закон Кулона: силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры.

, где Ф/м, Кл2/нм2 – диэлектр. пост. вакуума

— относит. диэлектрическая проницаемость (>1)

— абсолютная диэлектрическая прониц. среды

Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

Свойства электрического поля:

  1. Электрическое поле существует вокруг любого заряда. Если заряд неподвижен – поле электростатическое.

  2. Электрическое поле действует на любой помещённый в него заряд согласно закону Кулона. Обнаружить электрическое поле можно только по его действию на другие заряды.

  3. Электрическое поле существует в любой среде и распространяется с конечной скоростью: м/с.

  4. Электрическое поле не имеет чётких границ. Действие его уменьшается при увеличении расстояния от заряда, его создающего.

Характеристики электрического поля:

  1. Напряжённость (E) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

Измеряется в Н/Кл.

Направление – такое же, как и у действующей силы.

Напряжённость не зависит ни от силы, ни от величины пробного заряда.

Суперпозиция электрических полей: напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

Графически электронное поле изображают с помощью линий напряжённости.

Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

Свойства линий напряжённости: они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

Виды полей:

  • Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

+

+ —

+ —

+ —

  • Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

  • Постоянное электрическое поле – вектор напряжённости не изменяется.

  • Непостоянное электрическое поле – вектор напряжённости изменяется.

  1. Работа электрического поля по перемещению заряда.

, где F – сила, S – перемещение, — угол между F и S.

Для однородного поля: сила постоянна.

Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

Для неоднородного поля:

  1. Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

потенциал – энергетическая характеристика поля. Измеряется в Вольтах

Разность потенциалов:

Если , то

, значит

градиент потенциала.

Для однородного поля: разность потенциалов – напряжение:

. Измеряется в Вольтах, приборы – вольтметры.

Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

.

Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

, где r – размер, — проницаемость среды вокруг тела.

Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

Конденсатор – устройство для накопления заряда. Электроёмкость:

Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

, где S – площадь пластин, d – расстояние между пластинами.

Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

Перенос малого заряда , напряжение измениться на , совершится работа . Так как , а С = const, . Тогда . Интегрируем:

Энергия электрического поля: , где V=Sl – объём, занимаемый электрическим полем

Для неоднородного поля: .

Объёмная плотность электрического поля: . Измеряется в Дж/м3.

Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя — l).

Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается . Измеряется в Кулон-метрах.

Диполь в однородном электрическом поле.

На каждый из зарядов диполя действуют силы: и . Эти силы противоположно направлены и создают момент пары сил – вращающий момент: , где

М – вращающий момент F – силы, действующие на диполь

d – плечо сил l – плечо диполя

p – дипольный момент E – напряжённость

— угол между p и Е q – заряд

Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы p и Е будут параллельны и однонаправлены.

Диполь в неоднородном электрическом поле.

Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

градиент напряжённости. Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

Собственное поле диполя.

Но . Тогда:

.

Пусть диполь находится в точке О, а его плечо мало. Тогда:

.

Формула получена с учётом:

Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

Диэлектрики в электрическом поле.

Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

Классы диэлектриков:

  • с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

  • с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

  • кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

Способы поляризации:

1 способ – электрохимическая поляризация:

На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10-3-10-2 с.

2 способ – ориентационная поляризация:

На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10-13-10-7 с. Частота 10 МГц.

3 способ – электронная поляризация:

Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10-16-10-14 с. Частота 108 МГц.

4 способ – ионная поляризация:

Две решётки (Na и Cl) смещаются относительно друг друга.

Время релаксации: =10-8-10-3с. Частота 1 КГц

5 способ – микроструктурная поляризация:

Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

Время релаксации: =10-8-10-3с. Частота 1 КГц

Числовые характеристики степени поляризации:

    1. вектор поляризованности . Измеряется в Кл/л

    2. относительная диэлектрическая проницаемость раз

    3. Дисперсия – зависимость от частоты.

Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

Условия существования электрического тока:

  1. наличие свободных зарядов

  2. наличие электрического поля, т.е. сил, действующих на эти заряды

Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

Измеряется в Амперах.

n – концентрация зарядов

q – величина заряда

S – площадь поперечного сечения проводника

— скорость направленного движения частиц.

Скорость движения заряженных частиц в электрическом поле небольшая – 7*10-5 м/с, скорость распространения электрического поля 3*108 м/с.

Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м2.

. Измеряется в А/м2.

— сила, действующая на ион со стороны эл поля равна силе трения

— подвижность ионов

— скорость направленного движения ионов =подвижность, напряжённость поля

Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

Электрический заряд — Википедия

Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника с током 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, то есть с силой, с которой гравитация Земли притягивает предмет массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) может принимать и положительные, и отрицательные значения; она является численной характеристикой носителей заряда и заряженных тел. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноимённо заряженные тела отталкиваются, разноимённо — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов[5]. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[6] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные заряды.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

Примечания

  1. ↑ Или, более точно, 1,602176487(40)·10−19 Кл.
  2. ↑ Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. ↑ Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. ↑ Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
  6. ↑ Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

•             Существует два рода электрических зарядов, условно названных положительными и отрицательными.

•             Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

•             Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом   и   Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр (или электроскоп) – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.

Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2.

Прибор Кулона

 

Рисунок 1.1.3.

Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

Где   – электрическая постоянная.

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4.

Принцип суперпозиции электростатических сил

 

Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

в каких единицах измеряют электрический заряд?

Кулоны. Амперы это сила тока, а не заряд. Кулон равен количеству электричества, проходящего через поперечное сечение проводника при силе тока 1 А за время 1 с.

в кулонах разумеется!

кулоны конечно

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *